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We present a powerful Python library to quickly and efficiently generate

realistic peptide model structures. The library makes it possible to quickly set

up quantum mechanical calculations on model peptide structures. It is possible

to manually specify a specific conformation of the peptide. Additionally the

library also offers sampling of backbone conformations and side chain rotamer

conformations from continuous distributions. The generated peptides can then

be geometry optimized by the MMFF94 molecular mechanics force field via

convenient functions inside the library. Finally, it is possible to output the

resulting structures directly to files in a variety of useful formats, such as XYZ

or PDB formats, or directly as input files for a quantum chemistry program.

FragBuilder is freely available at https://github.com/jensengroup/fragbuilder/

under the terms of the BSD open source license.
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1 Introduction

Modeling of chemical properties of proteins is a challenging task in modern computational
biochemistry, mainly due to the large number of atoms that need to be treated computa-
tionally, compared to the computational speed of modern computers. Although theoretical
methods to treat large systems are being developed, it is computationally more feasible to
investigate properties of small, representative, protein-like structures, such as peptides. For
example, calculations on peptides have been used to parametrize protein-specific molecular
mechanics force fields, and models for NMR properties of proteins such as chemical shifts
and spin-spin coupling constants [Mackerell, 2004, Vila et al., 2009, Case et al., 2000].

Recently, we have used the presented Python library to carry out calculations on pep-
tides modeling the backbone of a protein in the parametrization of amide proton chemical
shifts [Christensen et al., 2013]. Since this study, we have carried out more than 1.5 million
quantum mechanical geometry optimization and NMR shielding calculations on peptides
in order to extend our model of protein chemical shifts. Naturally, an efficient and stable
method is needed in order to generate such a number of peptide models.

Two recent programs that can generate peptide structures are the Ribosome program[Srinivasan, 2013]
and the PeptideBuilder library [Tien et al., 2013]. The Ribosome program is written in
FORTRAN and thus difficult to extend and therefore not ideal for use in an automated,
scripting fashion. The PeptideBuilder library is written in Python and is therefore very
attractive for this purpose. Our library which is presented here is very similar to Peptide-
Builder, but offers a number of additional features which we found necessary for our purpose.
Most importantly, our library includes methods for geometry optimization with a molecular
mechanics force field, efficient conformational sampling from continuous probability distri-
butions and lastly output to a variety of output formats or, optionally, directly as input file
for a quantum chemistry program. Currently Gaussian 09 [Frisch et al., 2009] is supported
via specialized classes, and nearly 100 additional file formats are supported through the file
writer.

2 Methods

FragBuilder is implemented in Python and is a library that can be imported and used in
simple Python scripting style. Python is attractive, since a very large number of scientific
libraries are already available in Python, and thus easy to extend and combine with new
code. FragBuilder is implemented using the Open Babel library as back-end for handling the
molecular structure of the peptide via existing classes and methods [O’Boyle et al., 2011].
The methods present in FragBuilder thus have access to a multitude of existing chemistry
and cheminformatics related library routines which are maintained separately by Open Ba-
bel. Especially, the code for manipulating a molecular structure, molecular mechanics and
file writers from Open Babel are used in FragBuilder. FragBuilder also comes with the
BASILISK library which can sample protein backbone and side chain conformations from a
joint probability distribution [Harder et al., 2010].

The only dependencies for running FragBuilder are the NumPy mathematics library
[Oliphant, 2006] and Open Babel with Python bindings. These packages are already avail-
able through package managers on virtually every recent Linux distribution, or otherwise
freely available and open source.
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Table 1: Overview of classes included in the FragBuilder library.
Class name Description
Peptide Class to create and manipulate a peptide structure and write output files.
Basilisk DBN Wrapper class for direct access to the BASILISK library.
PDB Class to extract angles, sequence, etc from a PDB file.
G09 opt, G09 NMR, G09 energy Classes to create input files for QM calculations in Gaussian 09.

3 Functionality and usage

The functionality to create a peptide is implemented in the Peptide class which is imported
from the fragbuilder module. A typical work flow creates a peptide, defines torsion angles,
performs a constrained geometry optimization and finally writes the resulting structure to
a file. A chart describing a typical use case is displayed in Fig. 1, and detailed examples of
the functionality of FragBuilder are given below.

Furthermore FragBuilder has classes to easily access the BASILISK library, read PDB
files and write input files for Gaussian 09. An overview of the available class as well as a
brief description of each can be found in Table 1.

3.1 Creating peptides

The structure of a peptide molecule is generated as a Python object by using the Peptide

class instantiated with the sequence as argument. The Peptide class has access to classes
for each type of residues which each contain a structure for that residue in XYZ format.
Routines from Open Babel are then used to automatically rotate, translate, and connect
the residues. Finally the structure is stored in the Peptide.molecule class variable as an
Open Babel OBMol object.

The sequence interpreted uses the single letter abbreviation for each amino acid. E.g.
Peptide("GLG") will create a glycine-leucine-glycine tripeptide molecule which can then be
manipulated through the interface. The minimal code to achieve this could be:

1 from fragbuilder import Peptide

2 pep = Peptide("GLG")

As default values, the φ, ψ and ω backbone torsion angles are set to −120◦, 140◦ and
−180◦, which corresponds to a typical extended β-strand. The side chain torsion χ angles are
set so two neighboring side chains will not have steric clashes when no side chain torsion angle
input is given. After the peptide has been instantiated, the structure can be manipulated
through built-in methods. Several convenient methods of the Peptide class are presented
in the next sections. An overview of some of the basic methods of the Peptide class can be
seen in Table 2.
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Table 2: Overview of the basic methods in the Peptide class. See the text for detailed
descriptions of each method.
Method name Description
set bb angles Set the backbone φ/ψ-angles for a residue.
set chi angles Set the side chain χ-angles for a residue.
get bb angles Read the backbone φ/ψ-angles for a residue.
get chi angles Read the side chain χ-angles for a residue.
sample bb angles Sample the backbone φ/ψ-angles for a residue using the BASILISK library.
sample chi angles Sample the side chain χ-angles for a residue using the BASILISK library.
optimize Perform a molecular mechanics optimization using the MMFF94 force field.
regularize Perform the regularization procedure to remove steric clashes.
write pdb Write the peptide structure to a PDB file.
write xyz Write the peptide structure to an XYZ file.
write file Write the peptide structure to one of the nearly 100 file types supported by Open Babel.

3.2 Setting dihedral angles

The Peptide class allows for dihedral angles to be manually specified through setter and
getter type functions that set or read backbone and side chain torsion angles. Examples of
torsion angles that can be set in FragBuilder are shown in Fig. 3.

For example, making a glycine-leucine-glycine peptide and setting the backbone angles
to φ = −60.0◦ and ψ = −30.0◦, and side chain angles to χ1 = 180◦ and χ2 = 60◦ of the
leucine (residue 2) can be done through the following code:

1 pep = Peptide("GLG")

2 pep.set_bb_angles (2, [-60.0, -30.0])

3 pep.set_chi_angles (2, [180.0 , 60.0])

This way it is possible to precisely specify dihedral angles manually. This code can be used,
for instance, to set up a scan of torsion angles or making peptides with geometries extracted
from experimental structures. An example of a scan is shown in Fig. 4. This scan was
created in the following manner:

1 pep = Peptide("GLG")

2 for i in range (10):

3 pep.set_bb_angles (2, [-120.0, 100.0+20.0*i])

4 pep.write_xyz("pep_%i.xyz" % (i))

The method Peptide.write xyz() writes the structure to a file in XYZ format and is
described later in this section.

3.3 Sampling dihedral angles from BASILISK

In addition to manual specification of torsion angles values, it is possible set these to val-
ues from predefined distributions, such as the Ramachandran-plot for backbone angles or
rotamer distributions for side chain angles. This allows for fast and efficient sampling of
realistic peptides conformations and rotamer distribution without the need for a molecular
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dynamics or Monte Carlo simulation. For this purpose FragBuilder includes the BASILISK
library and convenient methods to access BASILISK from the Peptide class.

BASILISK is a dynamic Bayesian network trained on a large set of representative struc-
tures from the Protein Data Bank[Berman et al., 2000] and is able to sample backbone
angles and side chain angles. BASILISK makes use of directional statistics - the statistics
of angles, orientations and directions - to formulate a well-defined joint probability distri-
bution over side and main chain angles. Backbone angles are essentially sampled from the
Ramachandran-plot via BASILISK. Similarly, side chain angles are sampled from corre-
sponding rotamer distributions. The distributions offered by the BASILISK library are con-
tinuous, in contrast to most approaches based on discrete rotamer libraries. BASILISK can
sample side chain angles either in a backbone conformation-dependent mode or -independent
mode (where backbone dependency is the default behavior). The random seed can be set
explicitly via the fragbuilder.set seed() function. If no seed is supplied the seeding will
be random.

The methods Peptide.sample bb angles() and Peptide.sample bb angles() allows
the user to simultaneously sample and set the torsion angles of a residue. The methods
return the new sets of sampled angles so they are known to the user directly.

The following code will create a glycine-leucine-glycine peptide and the set the back-
bone and side chain angles of the second residue (leucine) to values that are sampled from
BASILISK. The values of the sampled angles are stored in the new bb and new chi variables.

1 from fragbuilder import Peptide , set_seed

2 set_seed (42)

3 pep = Peptide("GLG")

4 new_bb = pep.sample_bb_angles (2)

5 new_chi = pep.sample_chi_angles (2)

It is also possible to get samples from BASILISK via FragBuilder by using the fragbuilder.Basilisk DBN

class which provides direct access to the sampler in the BASILISK library. This class is used
to obtain samples of φ/ψ angles from the Ramachandran-plot or sets of χ angles from ro-
tamer distribution without first creating a peptide.

For instance, a random set of χ angles (chi), φ/ψ angles (bb), and their corresponding
log-likelihood (ll) in the probability distribution can be obtained as follows (here for a
Leucine (”L”) residue):

1 from fragbuilder import Basilisk_DBN

2 dbn = Basilisk_DBN ()

3 # Amino acid type as argument

4 chi , bb , ll = dbn.get_sample("L")

10,000 of such samples from the above code was used to create the Ramachandran plot and
rotamer distribution of leucine which can be seen in Fig. 2A and 2B, respectively.

3.4 Capping peptides

One aspect of carrying out quantum mechanical calculations on peptide fragments is the way
the peptide strands are terminated or capped. This can be important, since the properties
calculated from a quantum mechanical calculation may be affected by how the protein is
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truncated to a model peptide. The specific type of cap is controlled by setting the keywords
nterm and cterm keywords (for the N-terminus and C-terminus, respectively) when the
peptide object is created.

By default, FragBuilder generates methyl caps by adding a CH3-C(=O)- group to the
N-terminus and an -NH-CH3 group to the C-terminus (i.e. if the keywords are not set).
This corresponds to setting both keywords (nterm and cterm) to "methyl". Additionally,
it is possible to cap the ends of the peptide as normal N- and C-termini (amine or carboxyl
groups, respectively) which can be set to either a charged or a neutral state. A charged or
neutral terminus is specified by passing the values "charged" or "neutral", respectively.
See Fig. 5 for a schematic of the three possible types of caps.

For instance, a glycine-leucine-glycine residue with a positively charged N-terminus and
a neutral C-terminus is generated by the following code:

1 pep = Peptide("GLG", nterm="charged", cterm="neutral")

3.5 Optimization

An occurring problem when generating peptides with a specific set of dihedral angles is that
the structure may in some cases contain steric clashes. We found this prevented us from
starting quantum mechanical geometry optimization on the structures, even when these
were generated to match angles from experimental structures. Typical problems with these
structures were SCF convergence issues and very large molecular gradients which cause the
program to fail. In some cases, problems with large molecular gradients may be alleviated
by adjusting the step-size in the optimizer, but this must be investigated on a case-to-case
basis. It is therefore advantageous to remove steric clashes before any quantum mechanical
calculation is carried out.

For the reasons mentioned above, FragBuilder offers specialized molecular mechanics op-
timization routines, specifically designed to constrain the dihedral angles of peptides while re-
moving steric clashes. Optimization is performed through Open Babel which provides access
to several force fields and a number of optimizers. The MMFF94 force field [Halgren, 1996]
is arguably the most advanced force field for biomolecules in Open Babel and is used exclu-
sively in FragBuilder along with the conjugate gradient method. FragBuilder offers three
kinds of optimization methods in the Peptide class.

The method Peptide.optimize() will perform a conjugate gradient optimization of
the peptide with no restraints, until the default convergence criterion of Open Babel is
reached (∆E < 1.0 10−6 kcal/mol or a max of 500 steps). Another option is to impose
harmonic constraints on all dihedral angles. This is achieved through an extra keyword, i.e.
Peptide.optimize(constraint=True). This will perform a conjugate gradient minimiza-
tion through Open Babel with harmonic potentials on φ, ψ and ω backbone angles as well
as all side chain χ angles.

A harmonic potential does not keep torsion angles completely fixed during optimization,
and after convergence they deviate slightly from the starting values. For situations where
this is problematic, FragBuilder is offering a routine termed ”regularizing” which is accessed
via the Peptide.regularize() method.

Regularizing cycles between a few constrained geometry optimization steps and resetting
the dihedral angles to the initially specified angles, until self consistency is reached. A default
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regularization cycles 10 times between 50 conjugate gradient steps and angle resets. In most
cases this converges the constrained optimization to less than 0.002◦ from the specified
dihedral angles, which are then set to the specified values.

We found our regularization procedure with flexible bond lengths and angles through
the MMFF94 force field to allowing convergence of QM calculations in many cases, which
would have been hindered by steric clashes due to fixed bond length and angles.

A similar approach to avoid spurious conformations has been adopted by Vila et al. in
the creation of the CheShift chemical shifts predictor, which is parametrized from quantum
mechanical calculations on model peptides [Vila et al., 2009]. Here bond angles and lengths
are simply set to the standard values of the ECEPP/3 force field [Nemethy et al., 1992].
Subsequently the internal energy of the peptide is calculated with the ECEPP-05 force field
and any conformation with an internal energy > 30 kcal/mol is rejected as being unphysical.

Fig. 6 shows an example of a tryptophan-aspartate-glycine peptide with methyl caps in
which the backbone torsion angles are taken from the experimental structure of xylanase
(PDB-code: 1XNB), residues 99-101. This choice of angles causes a clash between a hydro-
gen bonding O...H pair, and a geometry optimization at the B3LYP/6-31+G(d,p) level in
Gaussian 09 could not start (at default settings) due to an excessively large molecular gra-
dient in the initial geometry. Regularization removes the clash, while retaining the specified
dihedral angles, and allows the optimization to proceed.

A peptide can be created and regularized using the following code, which also prints the
MMFF94 force field energy in units of kcal/mol:

1 pep = Peptide(sequence)

2 # The user can manipulate the structure here

3

4 pep.regularize ()

5 print pep.get_energy ()

3.6 Reading PDB files

While sampling and conformational scanning, etc. are efficient ways to generate new peptide
conformations, it can be necessary to extract information about the conformation of a specific
protein structure, usually given in PDB format. FragBuilder implements functionality to
extract information about the amino acid sequence and dihedral angles from a structure in
a PDB formatted file, which can then be stored or passed on in the program, for instance
to methods in the Peptide class. This is carried out via the fragbuilder.PDB class which
creates an object from a PDB file and offers methods to read the relevant information.

The following code example illustrates the basic usage of the fragbuilder.PDB module,
and will print the amino acid type and dihedral angles of residue number 10 in the PDB file
"structure.pdb":

1 from fragbuilder import PDB

2

3 pdbfile = PDB("structure.pdb")

4 i = 10 # Residue number 10 in this example

5 print pdbfile.get_resname(i)

6 print pdbfile.get_bb_angles(i)
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7 print pdbfile.get_chi_angles(i)

3.7 File output and interface to QM programs

Open Babel provides very flexible file readers and writers. The Peptide class wraps Open
Babel with functions to directly write the geometry of a Peptide object to a file in XYZ or
PDB format. This can be done simply as:

1 pep = Peptide(sequence)

2 pep.write_xyz("pep.xyz")

3 pep.write_pdb("pep.pdb")

It is also possible to write to any of the nearly 100 formats supported in Open Babel
by using the method Peptide.write file(filetype, filename) which offers direct ac-
cess to Open Babel’s OBConversion.WriteFile() method. For instance, an input file for
the quantum chemistry program GAMESS [Schmidt et al., 1993] can be created with the
following code:

1 pep.write_file("gamin", "pep.inp")

Here, the file type argument follows the Open Babel syntax, where "gamin" corresponds to
the GAMESS input file format.

FragBuilder additionally offers an interface to write input-files for Gaussian 09, beyond
the capabilities of Open Babel. Currently, it is possible to set up geometry optimization,
single-point energy calculations and calculation of NMR shielding. An example for a simple
work flow that will generate a file for geometry optimization of a peptide in Gaussian 09 at
the B3LYP/6-31G(d) level (using the fragbulder.G09 opt class) is as follows:

1 from fragbuilder import Peptide , G09_opt

2

3 pep = Peptide(sequence)

4 # The user can manipulate the structure here

5

6 opt = G09_opt(pep)

7 opt.set_method("B3LYP /6-31G(d)")

8 opt.write_com("pep.com")

If no method or basis set is specified, the file writer defaults to PM6[Stewart, 2007] for geom-
etry optimization. Other classes that interface to Gaussian 09 are the fragbuilder.G09 NMR

and fragbuilder.G09 energy classes, which are imported and instantiated similarly.

4 Conclusion

We have implemented routines to generate peptide models, from either specific geometries
or efficient conformational sampling through the BASILISK library. We have furthermore
implemented necessary code to perform constrained geometry optimizations of the peptide
models, remove steric clashes and prepare the structure for use in a quantum chemistry
program. In addition, we offer file writers to useful formats.
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The Peptide class wraps functionality from Open Babel offered through its Python
interface. The molecular structure is stored as an Open Babel openbabel.OBMol object in
the Peptide.molecule class variable. This means that developers and users effectively have
access to all the tools present in Open Babel to further manipulate the structure, or extend
FragBuilder by wrapping and combining functionality from Open Babel.

FragBuilder is open source and published under the BSD 2-Clause license. Note that the
packaged BASILISK library is published under the GNU General Public License version 3.
FragBuilder is freely available at https://github.com/jensengroup/fragbuilder/ where
additional examples and full documentation can be found.
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Figure 1: Simple chart of a common work flow using FragBuilder. First a peptide is generated
from the sequence. Then torsion angles are set - either specified manually or sampled through
BASILISK and a quick geometry optimization is performed using the MMFF94 force field.
Finally, the structure is written to a file.

Figure 2: Examples of sampling dihedral angles through BASILISK in fragbuilder. 10,000
samples from BASILISK are shown for a leucine residue. (φ, ψ) backbone torsion angles
pairs are shown in A and (χ1, χ2) side chain torsion angles pairs are shown in B.
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Figure 3: Examples of dihedral angles that can be set via FragBuilder. In A the backbone
ω, φ and ψ torsion angles are shown for the i’th alanine residue of a peptide strand. In B,
the χ1 torsion angle is shown for a valine side chain.

Figure 4: Example of four different conformers of a glycine-alanine-glycine tri-peptide, gen-
erated from a scan over the ψ backbone torsion angle of the alanine residue.
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Figure 5: Overview of the available peptide-capping schemes available in fragbuilder. All
three example shows an alanine residue (show between a set of gray lines). In A, the caps
are the N- and C-termini in their charged states. In B the the caps are the N- and C-termini
in their neutral states. In C the caps are methyl groups. Caps can be mixed and matched
according to the users specifications.

B

Figure 6: Removing clashes by regularization in a tryptophan-apartate-glycine peptide. In
A the peptide clashes between the amide proton on the C-terminal methyl cap and the
amide oxygen in residue 1. in B this clash has been removed by constrained relaxation
during the regularization procedure. Both structures have identical φ, ψ and ω backbone
torsion angles.
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