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The potential effects of climate change on amphibian

distribution , range fragmentation and turnover in China

Ren-Yan Duan, Xiao-Quan Kong, Min-Yi Huang, Sara Varela, Xiang Ji

Many studies predict that climate change will cause species movement and turnover, but

few studies have considered the effect of climate change on range fragmentation for

current species and/or populations. We used MaxEnt to predict suitable habitat,

fragmentation and turnover for 134 amphibian species in China under 40 future climate

change scenarios spanning four pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5) and two

time periods (the 2050s and 2070s). Our results show that climate change will cause a

major shift in the spatial patterns of amphibian diversity. Suitable habitats for over 90% of

species will be located in the north of the current range, for over 95% of species in higher

altitudes, and for over 75% of species in the west of the current range . The distributions of

species predicted to move westwards, southwards and to higher altitudes will contract,

while the ranges of the species not showing these trends will expand . Amphibians will lose

20% of their original ranges on average; the distribution outside current ranges will

increase by 15% . Climate change will likely modify the spatial configuration of climatically

suitable areas. Changes in area and fragmentation of climatically suitable patches are

related, which means that species may be simultaneously affected by different stressors

as a consequence of climate change.
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20 ABSTRACT

21 Many studies predict that climate change will cause species movement and turnover, but few 

22 studies have considered the effect of climate change on range fragmentation for current species 

23 and/or populations. We used MaxEnt to predict suitable habitat, fragmentation and turnover for 

24 134 amphibian species in China under 40 future climate change scenarios spanning four 

25 pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5) and two time periods (the 2050s and 2070s). 

26 Our results show that climate change will cause a major shift in the spatial patterns of amphibian 

27 diversity. Suitable habitats for over 90% of species will be located in the north of the current 

28 range, for over 95% of species in higher altitudes, and for over 75% of species in the west of the 

29 current range. The distributions of species predicted to move westwards, southwards and to 

30 higher altitudes will contract, while the ranges of the species not showing these trends will 

31 expand. Amphibians will lose 20% of their original ranges on average; the distribution outside 

32 current ranges will increase by 15%. Climate change will likely modify the spatial configuration 

33 of climatically suitable areas. Changes in area and fragmentation of climatically suitable patches 

34 are related, which means that species may be simultaneously affected by different stressors as a 

35 consequence of climate change.

36 Keywords Amphibians, MaxEnt, Climate impacts, Distribution, Fragmentation, Turnover, 

37 Dispersal, Range shifts
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39 INTRODUCTION 

40 The global climate is changing rapidly because of anthropogenic greenhouse gas emissions, with 

41 unexpected consequences (Solomon, 2007). The average temperature on the earth�s surface is 

42 projected to rise by 1.16.4 °C between 1990 and 2100 (Solomon, 2007). Climate change can 

43 alter the distribution of organisms by causing shifts in area, latitude, longitude and/or altitude and 

44 thus impact their geographic ranges ( Pearson & Dawson, 2003; Raxworthy et al., 2008). Range 

45 changes can impact ecosystem function and biodiversity (Raxworthy et al., 2008).

46 The prediction of climate-driven shifts in species� potential ranges under future climate 

47 scenarios relies on the application of species distribution model (SDM) (Collevatti et al., 2013; 

48 Eskildsen et al., 2013). SDM uses current climate data to model species� existing distributions, 

49 and forecast potential future distributions under various climate scenarios (Elith & Leathwick, 

50 2009). These models are needed to understand the possible responses of species to future climate 

51 change and how current species� ranges are determined by potential causal factors (Zhang et al., 

52 2012). For example, Pounds et al. (2006) observed a decline in amphibian populations under 

53 climate warming using SDMs and Lawler et al. (2006) used SDMs to assess the relative 

54 vulnerability of amphibians to future climate change, observing that several regions in Central 

55 America will experience high species turnover. More recently, Ochoa-Ochoa et al. (2012) 

56 showed that species with a low dispersal capability have high extinction rates, and that climate-

57 driven population declines may be species- and region-specific.

58 Amphibians are sensitive to changes in thermal and hydric environments due to unshelled 

59 eggs, highly permeable skin and unique biphasic life-cycles (Ochoa-Ochoa et al., 2012; Stuart et 
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60 al., 2004). With at least one third of some 6000 known species threatened with extinction, 

61 amphibians are one of the most threatened groups of animals (Hof et al., 2011; Stuart et al., 

62 2004). The reasons for the worldwide decline in amphibian numbers and populations and the 

63 increase in threatened species are numerous and complex, but for many species climate change 

64 cannot be precluded as one of the main causes (Stuart et al., 2004).

65 Locations and regions with many endemic or endangered species, known as hotspots, are 

66 more sensitive to future climate change (Malcolm et al., 2006). China is a confluence of two 

67 main biogeographical divisions, the Oriental and Palaearctic Realms, and contains many priority-

68 eco-regions for global conservation (Fei et al., 2009). Of some 410 amphibian species found in 

69 China, 263 are endemic (Fei et al., 2009). The IUCN (2015) reported that 27.6% of amphibians 

70 in mainland China are at risk of extinction or threatened and 65.2% of them are endemic. Most 

71 of those species are distributed in forests, farmland and wetlands. Thus, climate change would 

72 have severe synergistic effects on Chinese amphibians, because it would increase the effects of 

73 habitat destruction and fragmentation associated with anthropogenic land-use change, that are 

74 one of the main drivers of amphibian�s extinction risk (Hof et al., 2011). Quantifying the general 

75 trends of the climate-change driven shifts in species distribution and abundance is extremely 

76 important for applying adequate conservation policies. However, despite the high endemism and 

77 richness of amphibian species in China, this is the first attempt to predict climate change-driven 

78 shifts in their distribution and abundance.

79 Many studies showed that climate change causes species� movement (Pearson & Dawson, 

80 2003; Raxworthy et al., 2008) and significant species turnover (Peterson et al., 2002), but few 
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81 studies considered the effect of climate change on fragmentation of current species populations. 

82 Here we used MaxEnt (a common SDM) and 40 different future climate scenarios to study the 

83 effect of different greenhouse gas scenarios on the distribution of amphibians in China. We want 

84 to quantify the effect of the current global warming on the Chinese amphibians, namely, 

85 potential range shifts, the directions of those predicted range shifts and the fragmentation of the 

86 future predicted distributions. Further, we aim to calculate the temporal turnover of species 

87 composition in order to identify priority areas for amphibian conservation in China. 

88

89 MATERIALS AND METHODS

90 Species data

91 Occurrence points for amphibians were collected from the Global Biodiversity Information 

92 Facility (GBIF; http://www.gbif.org) and published papers. In order to improve the accuracy of 

93 prediction, we did not include species with less than ten different geo-referenced occurrences. 

94 We obtained a total of 134 species [20 urodeles of the families Cryptobranchidae (1), 

95 Hynobiidae (7) and Salamandridae (12), and 114 anurans of the families Bombinatoridae (3), 

96 Bufonidae (6), Dicroglossidae (17), Hylidae (6), Megophryidae (27), Microhylidae (10), Ranidae 

97 (35) and Rhacophoridae (10) (Table S1).

98

99 Climate variables

100 To build SDMs we chose five climatic variables: (1) annual precipitation; (2) annual mean 

101 temperature; (3) temperature seasonality; (4) minimum temperature of the coldest month; and (5) 
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102 maximum temperature of the warmest month. Although more bioclimatic variables were 

103 available we used these five variables because (1) precipitation and temperature are critical 

104 climatic factors in all atmospheric ocean general circulation models (AOGCMs) and reflect the 

105 availability of water and energy and directly impact amphibian physiology(Collevatti et al., 

106 2013); (2) these variables are very important in determining the distribution of amphibians 

107 (Collevatti et al., 2013; Munguía et al., 2012); (3) the addition of other climatic variables to 

108 SDMs generally increases the danger of over-fitting (Collevatti et al., 2013) and the uncertainty 

109 (Varela et al., 2015). All climate data were obtained at a 5 arc-min grid scale from WorldClim 

110 (http://www.worldclim.org/).

111

112 Climate layers

113 Our prediction is based on bioclimatic envelope modeling, which changes with coupled 

114 AOGCMs. Different AOGCMs and greenhouse gas scenarios will lead to various changes in 

115 species� distributions in the future. The Intergovernmental Panel on Climate Change (IPCC) in 

116 its Fifth Assessment Report (AR5) proposes four Representative Concentration Pathways (RCPs). 

117 RCPs may be better than the emission scenarios developed in the Special Report on Emissions 

118 Scenarios (SRES) and hence RCPs have replaced SRES standards (Wayne, 2013). The four 

119 pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5) represent the four possible radiative forcing 

120 values (+2.6, +4.5, +6.0 and +8.5 W/m2, respectively) (Wayne, 2013). We used data from 

121 19502000 as baseline climate data. Five AOGCMs [Integrated Earth System Model (MIROC-

122 ESM), Beijing Climate Center Climate System Model (BCC-CSM1-1), Goddard Institute for 
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123 Space Studies (GISS-E2-R), Community Climate System Model (CCSM4) and Institut Pierre 

124 Simon Laplace (IPSL-CM5A-LR)] were used for the years 2050s and 2070s. For each AOGCM, 

125 we used all four RCPs to evaluate different greenhouse gas scenarios. Hence, the total number of 

126 climate scenarios considered was 40 (20 scenarios and two time steps).

127

128 Species distribution modelling

129 MaxEnt is a commonly used algorithm in species distribution modelling because of its good 

130 predictive performance (Elith et al., 2011; Varela et al., 2014). MaxEnt predicts species� 

131 probability distributions of habitat suitability by calculating the maximum entropy distribution 

132 and constraining the expected value of each of a set of environmental variables to match the 

133 empirical average (Phillips et al., 2006). Using presence-only data, MaxEnt fits an unknown 

134 probability distribution within the environmental space defined by the input variables of the cells 

135 with known species occurrence records. This unknown probability distribution is proportional to 

136 the probability of occurrence (Elith et al., 2011).

137 Analyses were performed in R using the dismo package to simulate species distributions (R 

138 Core Team, 2013; Hijmans et al., 2015). We carried out SDMs following Elith et al. (2011). For 

139 each species, occurrence points were randomly partitioned into two subsets (calibration and 

140 validation, at a ratio of 4:1); this was repeated 100 times, each time choosing different random 

141 combinations of occurrence points for the calibration/validation datasets. Next, we calculated 

142 model parameters and used them to predict future distributions. 

143 The prediction results of the SDMs were evaluated using the area under the receiver 
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144 operating characteristic curve (AUC) ( Elith et al., 2011; Eskildsen et al., 2013; Freeman & 

145 Moisen, 2008; Guisan et al., 2013). We used the maximum value of (sensitivity + specificity) as 

146 a threshold, in order to minimize the mean of the error rate for both positive and negative 

147 observations (Freeman & Moisen, 2008). This is equivalent to maximizing (sensitivity + 

148 specificity − 1), otherwise known as the true skill statistic (TSS) (Freeman & Moisen, 2008).

149

150 Species� range shift and turnover

151 We used four indicators to illustrate changes in amphibian distribution under climate change 

152 scenarios: (1) area change (AC); (2) altitude change; (3) latitude change; and (4) longitude 

153 change. Area is the number of grid cells occupied by the species and AC is the area of a species� 

154 distribution in the future (Af) minus its current area (Ac), divided by its current area: AC = 

155 (AfAc)/Ac×100%. We then calculated the distribution space loss (DSL): DSL = (DScDSfc) / DSc 

156 × 100%, new distribution space (NDS): NDS = (DSfDSfc) / DSf  × 100%, here DSL represents 

157 the proportional decrease in original distribution area under climate change; DSc is the 

158 distribution space under current climatic scenarios; DSf is the distribution space under future 

159 climatic scenarios; DSfc is the overlapped distribution space between future and current climatic 

160 scenarios; and NDS represents the proportion of new distribution area in future distribution under 

161 climate change.

162 To evaluate overall changes in amphibian diversity and distribution in China we calculated 

163 species turnover sum (TS) and turnover ratio (TR) in each grid cell within the potential 

164 geographical range shifts for all species. TS was calculated as the total number of newly 
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165 occurring species (NC) and extinct species (NE) in a given grid cell: TS = NC + NE. TR was 

166 calculated as TS divided by the sum of current species in each grid cell (NT) and NC: TR = TS / 

167 (NT + NC) × 100% (Peterson et al., 2002). We considered grid cells with a TR greater than 50% 

168 and a TS greater than 20 as areas of significant future change.

169

170 Fragmentation

171 We studied the fragmentation of species distributions according to methods for calculating 

172 habitat fragmentation. We used SDMTools (VanDerWal et al., 2014) to generate patch 

173 information from a raster map. To measure species fragmentation we used the coherence index 

174 (Jaeger, 2000). The coherence index (CI) is a measure of the probability that two animals placed 

175 in different patch areas find each other (Jaeger, 2000). The coherence index is calculated as:

176  , where n is the number of patches; Ai is the size of i-th patch; and At is the total 
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177 area of the species distribution. An increase in the coherence index means distribution 

178 fragmentation decreases (Jaeger, 2000). We chose the coherence index as our measure and not 

179 conventional fragmentation (Cerezo et al., 2010) because of (1) its low sensitivity to very small 

180 patches as opposed to mean patch size; (2) the monotony of its reaction to different 

181 fragmentation phases; and (3) its ability to distinguish spatial patterns.

182

183 RESULTS

184 MaxEnt shows great predictive performance for all distributions under the baseline scenario, 
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185 with high values for AUC (> 0.8). The 134 amphibians show varying sensitivities to future 

186 climate change and most species have large changes in RCP8.5 in the 2070s (Figs 1, S1�S2).

187 The suitable habitat of the majority of species (92.5% in the 2050s, and 91.8% in the 2070s) 

188 will move northwards (mean latitude increased), with a mean latitude shift of 0.60° by the 2050s 

189 and 0.83° by the 2070s (Fig. 2A). The suitable habitat of the majority of species (76.9% in the 

190 2050s, and 84.3% in the 2070s) will move westwards (mean longitude will decrease) across all 

191 future scenarios ranging from 0.03�4.51° (mean 1.35°) in the 2050s, and from 0.03�6.87° (mean 

192 1.72°) in the 2070s. The number of species with the furthest longitudinal movement (more than 

193 0.5° and more than 1°) are 75 and 56 in the 2050s, respectively, and 84 and 68 in the 2070s (Fig. 

194 2B). The suitable habitat of virtually all species (95.5% in the 2050s, and 97.0% in the 2070s) 

195 will move to higher altitudes under climate change, with a mean range shift of 287.2 m by the 

196 2050s and 387.8 m by the 2070s (Fig. 2C). 

197  Area change will vary from -52.8�324.5% by the 2050s and from -57.6�418.1% by the 

198 2070s. 70.9% of species in the 2050s (38.1% for area contraction and 32.8% for area expansion) 

199 and 75.4% of species in the 2070s (37.3% for area contraction and 38.1% for area expansion) 

200 will undergo a significant change in distribution of greater than 10% (Fig. 2D). Among these 

201 species, three and six species in the 2050s, and 13 and 11 species in the 2070s will respectively 

202 show substantial area contraction (greater than 50%) and expansion (greater than 50%) (Fig. 2D).

203 By the 2050s, the mean value of distribution space loss will be 20.7%, and nine species will 

204 lose more than 50% of their original distribution space; by the 2070s, the mean value of 

205 distribution space loss will be 23.9%, and 22 species will lose more than 50% of their original 
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206 distribution space (Fig. 2E). By the 2050s, the mean value of the new distribution space ratio for 

207 amphibians will be 15.9%, and three species will have a new distribution space greater than 50%; 

208 by the 2070s the mean value of the new distribution space ratio will be 21.1%, and five species 

209 will have a new distribution space greater than 50% (Fig. 2F). 

210 Area change and area change ratio were correlated with changes in latitude, longitude and 

211 altitude (Table 1). In other words, under climate change, suitable habitat of amphibians that 

212 move westwards, southwards and to higher altitudes will undergo overall range contraction. 

213 For species undergoing declines in distribution, the mean value of coherent index (CI) 

214 change will be -16.2% for the 2050s and -19.6% for the 2070s; for species undergoing increases 

215 in distribution, the mean value of CI change will be 5.9% for the 2050s and 6.6% for the 2070s. 

216 Under climate change, species with higher area change (decrease or increase) will have higher CI 

217 changes (Fig. 3).

218 Different regions have different TR and TS (Fig. 4). Areas with the highest TR are located 

219 in Northwest China where amphibian species richness is lower. Areas with high TS are located 

220 in Central and Southern China and these areas were inconsistent with areas of high TR. 

221 According to our composite indicator (with TR > 50% and TS > 20), climate strongly influenced 

222 amphibian distributions in five regions: the Qinling Mountains, Wuyi Mountains, Dabie 

223 Mountains, Sichuan Basin and surrounding areas, and western Guizhou province (Fig. 4).

224

225 DISCUSSION

226 Climatic shifts to warmer, drier regimes can have profound effects on the distribution of 
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227 amphibians (Araújo et al., 2006). The 134 amphibians studied here exhibited a variety of 

228 climate-driven range shifts. Climatic shifts to warmer temperatures were more substantial by the 

229 2070s than by the 2050s. RCP8.5 represents the highest greenhouse gas emission trajectory 

230 (Wayne, 2013) and as expected we detected the greatest change in amphibian distribution under 

231 RCP8.5 and by the 2070s.

232

233 Effects of climate change on the direction of movement

234 The average temperature of Earth�s surface will rise by up to 6.4 °C by 2100, and species will 

235 need to migrate to higher latitudes and/or elevations (Pearson & Dawson, 2003; Raxworthy et al., 

236 2008). When temperature undergoes one degree change, elevation needs to change 100200 m 

237 and latitude about 0.5° (about 55 km of polar movement, though latitude has a complex and 

238 variable relationship with temperature) (Peterson & Vose, 1997). Our study confirmed these 

239 general trends and that under climate warming the suitable habitat of amphibians will 

240 predominantly migrate to higher altitudes and latitudes. The direction and speed of migration 

241 depend on the climate scenario and species being modelled.

242 The annual average temperature is expected to rise to 3.2 °C and 4.5 °C by the 2050s and 

243 2070s respectively, and if temperature has a consistent rate of increase we should see 320�900 m 

244 elevation shifts and/or 1.6�2.3° (176�253 km) of northern movement. However, our results 

245 indicate that species move only 0.60�0.83° and upword 287�387 m. Thus, future climate change 

246 may push many amphibians into unsuitable climatic zones and increase their risk of extinction.

247 Our analysis showed that the majority of amphibians will move westwards. This result 
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248 contradicts other studies where no trend in longitudinal displacement was found (Peterson et al., 

249 2002). However, the longitudinal trend observed in China is plausible given that the terrain of 

250 the country is high in the west and low in the east (amphibians will move to higher altitudes 

251 under climate warming), and that East China is adjacent to the sea without space for amphibians 

252 to migrate.

253 Organisms often show species-specific environmental requirements and global climate 

254 change has different effects on the ranges of different species (Erasmus et al., 2002; Peterson et 

255 al., 2002; Varela et al., 2015). For example, Midgley et al. (2003) found that under climate 

256 warming, 11 plant species in the Cape Floristic Region expanded their distributions and five 

257 species faced elimination of all suitable habitat. Erasmus et al. (2002) found climate-induced 

258 shifts in ranges: 78% of animal species in South Africa underwent range reduction, 17% 

259 expanded, 3% showed no change and 2% became locally extinct. Foden et al. (2013) found that 

260 11�15% of amphibians, 6�9% of birds and 6�9% of coral species were highly vulnerable to 

261 climate change. Our study confirmed that future climate change is a double-edged sword for the 

262 distribution of amphibians: some amphibian species will undergo distribution reduction, and 

263 others will expand. Following our results, if amphibians move west (drier habitats), south 

264 (warmer habitats), and to higher altitudes, their distribution will decrease. In other words, the 

265 direction of movement of amphibians may control the eventual change in distribution area.

266

267 Effects of climate change on fragmentation

268 Under climate warming, the increase in fragmentation (lower CI) caused a decrease in 
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269 distribution areas. Distribution fragmentation can reduce populations and habitat connectivity, 

270 interfere with gene communication, and reduce migration rates and resilience (Chen & Bi, 2007; 

271 Sarmento Cabral et al., 2013), negatively affecting the long-term viability of threatened and 

272 endangered amphibians. To our knowledge, this is the first evidence that climate warming will 

273 cause a fragmentation in the distribution of amphibians, though some studies have documented 

274 that climate change can cause habit fragmentation (Opdam & Wascher, 2004). Distribution 

275 fragmentation causes population disjunction and most populations in small fragments can easily 

276 disappear because small populations are sensitivity to genetic, demographic and environmental 

277 fluctuation. The negative effect of distribution fragmentation can be explained by island 

278 biogeography theory and meta-population models. Many species are rare with specialized habitat 

279 requirements making them particularly vulnerable to habitat fragmentation and modification 

280 (Andreone et al., 2005).

281 Our study shows that the lost habitat for some species is not at the edge of distributions but 

282 mainly in the core region (Fig. S3). The core distribution region is very important for a species 

283 because it acts as a hub that connects patches, allowing the genetic exchange between different 

284 populations. Habitat loss and fragmentation have been identified as one of the major causes of 

285 amphibian decline globally (Stuart et al., 2004). Our study shows that future climate change 

286 might not only shrink the distribution area of some amphibians, but also make their distribution 

287 area more fragmented. This is a synergic effect which would accelerate the decline and/or local 

288 extinction of certain amphibians. On the other hand, species predicted to undergo area expansion 

289 such as Hynobius leechii, Hylarana macrodactyla and Fejervarya multistriata were not affected 
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290 by fragmentation, which would benefit them and allow them to expand more easily.

291

292 Species turnover and high impact areas

293 The identification of critical habitats for amphibian protection under climate change is important 

294 for making robust conservation management decisions (Guisan et al., 2013). Areas of high 

295 species turnover may be sites with largest shifts in population. Many studies conduct turnover 

296 assessments using turnover ratios (Erasmus et al., 2002; Peterson et al., 2002), however our 

297 results revealed that areas with high turnover ratios were not the same as areas with high 

298 turnover sums. This is because an area with a low turnover sum can have a high turnover ratio if 

299 the area has a very low species richness under the current climate (e.g. northwestern China). We 

300 considered grid cells with turnover ratios greater than 50% and turnover sums greater than 20 as 

301 areas of potentially large future shifts in amphibians. We found several such areas including the 

302 Sichuan Basin and surrounding areas, the Qinling Mountains, the Dabie Mountains, the Wuyi 

303 Mountains and western Guizhou, and hypothesize that these regions may see major shifts in 

304 amphibians as a result of the combined action of several factors. First, the Sichuan Basin and 

305 surrounding areas, western Guizhou province and Dabie Mountains are located in an area of 

306 transition from the northern subtropics to warm temperate climate; there are relatively large 

307 climatic gradients in these areas (Xie et al., 2007). Second, these five areas contain the 

308 boundaries of many species� distributions (Fei et al., 2009); areas containing many range limits 

309 are expected to experience greater turnover than those containing few range limits. Third, 

310 mountainous regions, such as the Qinling Mountains form a natural (north or south) boundary for 
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311 many species and so may experience significant faunal change. Under climate change, habitat 

312 loss, especially that resulting from changes to freshwater ecosystems, is the greatest risk to 

313 amphibians (Solomon, 2007).

314

315 Conservation implications

316 We found overlapping key amphibian regions, such as important endemic amphibian 

317 regionalization (e.g. Sichuan and Guizhou provinces) and global biodiversity hotspots (e.g. 

318 Sichuan) (Chen & Bi, 2007). Nature reserves provide the most effective approach for 

319 biodiversity conservation, especially for the in situ conservation of wildlife and natural 

320 ecosystems (D�Amen et al., 2011). The current natural reserve network in China does not 

321 provide adequate coverage for amphibians. Only two national nature reserves have been 

322 established to protect amphibians, one in Zhangjiajie and the other in Zhongjianhe, both for the 

323 protection of the Chinese giant salamander (Andrias davidianus). The creation of new nature 

324 reserves, in important regions identified here with high predicted amphibian turnover, is a critical 

325 conservation requirement for China. For other species projected to suffer from large range 

326 contraction, we need to develop and implement management plans for the protection of their 

327 habitat and translocate individuals into these regions. Climate change will change the current 

328 distribution area of species and impact distribution fragmentation, and so we should pay 

329 additional attention to fragments and the connectivity of distribution spaces in the design of 

330 future conservation strategies.
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472 Figure legends

473 Figure 1 Predicted species movement in a climate scenario, using the BC45 scenario as an 

474 example. The arrow represents the distance and direction of species geometric mean point at 

475 different periods. The black arrow presents climatic scenario of the 2050s, blue arrow presents 

476 climatic scenario of the 2050s-2070s. The wind roses summarize the distance and direction of 

477 shift for each species. The radiuses of rings on each wind rose represent geographical distance 

478 (inner circus: 2 degrees; outer circus: 5 degrees). The grey axis bars on wind roses represent a 

479 length of 7 degrees. BC45 scenario represents BCC-CSM1-1 as AOGCM and using RCP4.5 as 

480 greenhouse gas scenarios. The figure was generated using R (http://www.R-project.org/), ggplot2 

481 (http://had.co.nz/ggplot2/boo) and raster (http://CRAN.R-project.org/package=raster) softwares, 

482 and the map was created using data downloaded from the GADM database 

483 (http://www.gadm.org/) for free use.

484 Figure 2 Distribution patterns of 134 species of amphibians from different aspects. 

485 Figure 3 Percent of coherence index (CI) change. CI is the probability that two animals placed 

486 in different areas (patches) will find each other. The order of 134 species in X axis from left to 

487 right depends on the order of mean value of area change (from low to high, to make thing to be 

488 comparable, the 2070s using the order of the 2050s).

489 Figure 4 Turnover of species under climate change, using the BC45 scenario in the 2070s as 

490 example. A: species richness in current; B: turnover rate; C: turnover sum of 134 species. The 
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491 figure was generated using R (http://www.R-project.org/), ggplot2 (http://had.co.nz/ggplot2/boo) 

492 and raster (http://CRAN.R-project.org/package=raster) softwares, and the map was created using 

493 data downloaded from the GADM database (http://www.gadm.org/) for free use.

494 Figure S1 Species movement under different AOGCM models and RCP in the 2050s. Y axis 

495 presents different AOGCM models. X axis presents different RCP models. The arrow and wind 

496 rose are same with Figure 1.

497 Figure S2 Species movement under different AOGCM models and RCP in the 2070s. Y axis 

498 presents different AOGCM models. X axis presents different RCP models. The arrow and wind 

499 rose are same with Figure 1.

500 Figure S3 Distribution change under climate change using Megophrys major as an example. 

501 The figure was generated using R (http://www.R-project.org/), ggplot2 

502 (http://had.co.nz/ggplot2/boo) and raster (http://CRAN.R-project.org/package=raster) softwares, 

503 and the maps were created using data downloaded from the GADM database 

504 (http://www.gadm.org/) for free use.
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506 Table 1 Correlation coefficients between parameters. * P < 0.05, ** P < 0.01, *** P < 0.001.

2050s 2070s

Area change
Area change 

ratio (%)
Area change

Area change 

ratio (%)

Current area 0.363*** 0.108 0.358*** 0.069

Current latitude 0.058 0.135 0.049 0.118

Current longitude 0.053 0.226** 0.060 0.220*

Current altitude ‒0.074 ‒0.146 ‒0.084 ‒0.144

Latitude change 0.28** 0.516*** 0.355*** 0.524***

Longitude change 0.340*** 0.477*** 0.371*** 0.464***

Altitude change ‒0.405*** ‒0.374*** ‒0.432*** ‒0.373***

New distribution area ‒0.027 ‒0.116 ‒0.016 ‒0.123

Distribution area loss ‒0.011 ‒0.074 ‒0.012 ‒0.072

Change of coherence index 0.656*** 0.517*** 0.624*** 0.534***
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515 Figure 3
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