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Length of hospital stay (LOS) is of primary importance in health services research because
it is directly related to health care management and cost of health care. In some
epidemiological settings the actual length of stay is not directly observed but it is known to
have happened in a particular interval or for simple epidemiological interpretation time is
categorized into ordered categorical responses. In this paper, we focus our attention on
cumulative regression models for ordinal responses to analyze length of hospital stay for
children admitted to a paediatric ward for malaria. Such models exploit the ordered scale
of the outcomes. We approach our analysis using a Bayesian probit model. Our model
incorporated random effects for hospital specific heterogeneity, while simultaneously
investigating nonlinear effects in covariates within the general framework of semi-
parametric regression models. Findings indicate children who died had relatively shorter
LOS, which suggest worse prognosis at admission. Calendar time effects indicated
changing seasonal effects with high peaks in wet season and low peak in dry season,
largely explained by malaria transmission patterns. Age showed deviation from linearity,
and early discharge was associated with much older children than infants.
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Abstract5

Length of hospital stay (LOS) is of primary importance in health services6

research because it is directly related to health care management and cost of7

health care. In some epidemiological settings the actual length of stay is not8

directly observed but it is known to have happened in a particular interval or for9

simple epidemiological interpretation time is categorized into ordered categorical10

responses. In this paper, we focus our attention on cumulative regression models11

for ordinal responses to analyze length of hospital stay for children admitted12

to a paediatric ward for malaria. Such models exploit the ordered scale of the13

outcomes. We approach our analysis using a Bayesian probit model. Our model14

incorporated random effects for hospital specific heterogeneity, while simultane-15

ously investigating nonlinear effects in covariates within the general framework16

of semi-parametric regression models. Findings indicate children who died had17

relatively shorter LOS, which suggest worse prognosis at admission. Calendar18
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time effects indicated changing seasonal effects with high peaks in wet season19

and low peak in dry season, largely explained by malaria transmission patterns.20

Age showed deviation from linearity, and early discharge was associated with21

much older children than infants.22

Keywords: Paediatric malaria; Ordinal regression; Bayesian inference; Thresh-23

old models24

1 Introduction25

In heath services research, length of hospital stay (LOS) is of primary importance26

because it is directly related to health care management [1] and cost of health care27

[2], and research in this area is ongoing [3–7]. Several methods have been proposed28

to model LOS and its association with patient characteristics and hospital effects [1–29

4; 8–11]. These include multiple linear regression where length of stay is assumed30

to be completely observed for each patient [2]. This model is very basic and ignores31

skewness and censoring in the data. Models that have been suggested to deals with32

skewness are gamma, inverse-Gaussian and log-normal models [1; 5; 8]. At times LOS33

is censored and actual time in hospital is incomplete for some patients. In this case34

survival models have been fitted [6; 7; 9–11]. Further alternative methods of analysis35

have used mixture models and multilevel models. For instance, Atienza et al. [4] and36

Lee et al. [12] used a gamma mixture model to analyze heterogeneity in maternal LOS,37

while Wang et al. [10] explored use of Poisson mixture regression models to analyze38

the same data. A study by Carely [13] fitted multilevel models to examine patient and39

hospital characteristics associated with LOS.40

For virulent and infectious diseases, like malaria, the demand and costs for health41

care are huge and stretched especially during high transmission season (e.g. rainy42

season). Reducing the amount of time spent in hospital is a priority. Discharge plan-43

ning emphasize that patients who are not worse-off should be treat and discharge for44

home management the same day they reported for treatment. Those of worse progno-45
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sis, probably associated with severe stages of the disease, have to be discharged once46

clinical stability has been reached [14–16]. In this case, the actual duration becomes47

redundant, but what is recorded is that discharge occurred within some thresholds of48

interest, often described as short, medium and long term LOS, thus generating some49

ordered categorical data [17; 18].50

Cumulative models, as discussed in [19–21], are widely used regression model for51

ordinal categorical data. Cumulative models are an alternative approach to modelling52

waiting time data, in this case length of stay till discharge. The ordinal responses arise53

by categorizing the continuous outcomes (i.e the interval in days) by adjacent intervals54

along the continuous scale. The observed response can be regarded as the result of a55

sequential or cumulative process in which each time point (response category) can be56

reached successively [19; 20]. Several advantages also justify the choice of cumulative57

ordinal models to analyse event history data. Firstly, the ordinal categorical model58

compared to other duration models (e.g. the classical proportional hazards model)59

avoids the estimation bias introduced by long-term survivors. Secondly, the sequen-60

tial ordinal model can be used to model non-proportional and non-monotonic hazard61

functions, and the effect of time-varying covariates can be allowed [20; 21].62

Extensions to the cumulative models are many. For example, there are extension63

to deal with correlated ordinal outcomes, see for extensive discussions [21; 22]. An64

important correlation in the outcome can be due to spatial dependence or clustering.65

A popular method for modelling spatial correlation is to introduce random effects.66

Models with random effects also make it possible to account for unobserved spatial67

dependence or heterogeneity. Furthermore, continuous variables may exhibit nonlinear68

effects, and semi-parametric and non-parametric models have been proposed to deal69

with such [23; 24].70

In this paper, we focus our attention on cumulative regression models for ordinal71

response to analyze length of hospitalization. The use of such models to analyze LOS72

are few, see for example [17; 18; 20]. In [17; 18] the objective was for effective dis-73

charge planning, while in [20] the aim was to exemplify use of ordinal regression model74
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to analyze duration of hospitalization. Inference for these models have proposed use of75

maximum marginal likelihood or full likelihood, generalized estimating equations, re-76

stricted maximum likelihood, penalized quasi-likelihood, empirical Bayesian and fully77

Bayesian inference [22–24]. We approach our analysis by employing a Bayesian probit78

model as suggested in literature, see for example [23; 24]. Our model incorporated79

random effects for area clustering and hospital specific heterogeneity, while simulta-80

neously investigating nonlinear effects in covariates within the general framework of81

semi-parametric regression models. In the next section 2 we outline the model, while82

describing the Bayesian framework adopted for the models. Section 4 the model is83

applied to data on length of hospital stay for children hospitalized for malaria. We84

conclude with a discussion in Section 6.85

2 The Model86

2.1 Bayesian multinomial probit model with ordered response87

In this section, we consider cumulative models based on threshold approach to model88

the case of an ordered response Y . Suppose the variable Y has r ordered categories.89

In additional we have a vector v = (v1, . . . , vp)
′ of p categorical covariates, the metrical90

covariate vector x = (x1, . . . , xp)
′ and further a random effects vector bi ∈ {1, . . . , B}91

for heterogeneity among clusters of observations caused by unobserved or unmeasured92

covariates for example areal or hospital effects. Now, the observations (Yi, xi, vi, bi), i =93

1, . . . , N are assumed independent. Then the cumulative regression model relates the94

cumulative response probabilities P (Yi ≤ r|xi, vi, bi), r = 1, . . . , k to the covariates by95

a smooth link function h of the form and the response distribution (y) belongs to the96

exponential family [23].97

A very intuitive approach to this is to postulated that Y is a categorized version of98

the unobserved latent variable Z [23],99

Z = η + ε, (1)
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obtained through the threshold mechanism where the density of Z is divided into slices100

determined by the thresholds101

Y = r ⇔ θr−1 < Z < θr, r = 1, . . . , k, (2)

with thresholds −∞ = θ0 < θ1 < . . . < θk = ∞. Assuming the error variable ε has the102

distribution function F , then Y obeys a cumulative model.103

P (Y ≤ r) = F (θr − η) (3)

where η is the predictor. The common choice for ε is the logistic or standard normal104

leading to either cumulative logit or probit model respectively. Here we assumed that105

ε follow a standard normal distribution, hence we have a cumulative probit model or106

a multinomial probit model with ordered categories,107

P (Y ≤ r) = Φ(θr − η) (4)

For identifiability one of the thresholds is set to zero and an intercept is included in108

the model as a fixed effect. Normally the last category is set to zero, i.e θk = 0. The109

predictor η is specified for each child i as110

ηi = w′γ +

p∑
j=1

fj(xi) + hi + si. (5)

where w′ is a vector of linear fixed covariates, fj is (probably smooth) function of contin-111

uous or metrical variable xi, and hi is the hospital specific effects, h ∈ (1, . . . , H), H <112

n, where child i was referred from or some unstructured spatial effect of an area. Some113

of these spatial effects may be structured, thus forcing similarities for neighbouring114

wards. This similarity in risk is captured by si, s ∈ 1, . . . , S. A rationale is that a115

spatial effect is usually a surrogate of many unobserved influences, some of them may116

obey a heterogeneity that be present only locally, such as clustering of cases arising117

from the same clinic. If clustering is ignored in the model, estimates may be unsta-118

ble [2]. Such models are common in spatial epidemiology. We propose implementing119

model (5) using a full Bayesian approach.120
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3 Bayesian Inference121

3.1 Prior assumptions122

For a full Bayesian inference, all the unknown functions and fixed effects are assumed123

random variables and suitable prior assumptions must be specified, in an additional124

stage of hierarchy. We follow the prior distributions proposed by Fahrmeir and Lang125

[23].126

The fixed effects are assumed to have a diffuse prior, p(γ) ∝ constant. Similarly127

the threshold parameters are also assumed to have a diffuse prior distribution. Highly128

dispersed Gaussian priors are another suitable choice.129

For the metrical covariates, priors are based on local smoothness priors. For equally-130

spaced observations u = 1, . . . ,m, say, of a metrical covariate, we assign first and second131

order random walk models, i.e.,132

f(u) = f(u− 1) + ξ(u) or f(u) = 2f(u− 1)− f(u− 2) + ξ(u) (6)

respectively, with Gaussian errors ξ(u) ∼ N(0, τ 2j ) and diffuse priors f(1) ∝ const or133

f(1) and f(2) ∝ constant, for initial values, respectively. Both specifications act as134

smoothness priors that penalize too rough functions of f .135

For the unstructured component the prior assumed is a Gaussian with i.i.d. effects136

with137

h ∼ N(0, τ 2h), h = 1, . . . , H. (7)

Finally, for the spatial components si, we assign a Markov random field (MRF) prior138

[25]. This is analogous to random walk models. The conditional distribution of s, given139

adjacent areas r, is a univariate normal distribution with mean equal the average r140

values of si’s neighbouring areas and variance equal to τ 2s divided by the number of141
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adjacent areas. This leads to a joint density of the form142

p(s|τ 2s ) ∝ exp

(
−τ 2s

2

∑
i∼j

(si − sj)
2

)
(8)

where i ∼ j denotes that area i is adjacent to j, and assumes that parameter values143

si and sj in adjacent areas are similar. The degree of similarity is determined by the144

unknown precision parameter τ 2v .145

By writing f j = Zjβj, h = Zkβk and s = Z lβl, for a well defined design matrix146

Z and a (possibly high-dimensional) vector of regression parameters β, all different147

priors (Equations 6-8) can be expressed in a general Gaussian form148

p(βj|τ 2j ) ∝ exp

(
− 1

2τ 2j
β′

jKjβj

)
(9)

with an appropriate penalty matrix Kj. Its structure depends on the covariate and149

smoothness of the function. In most cases, Kj is rank deficient and hence the prior150

for βj is improper. For the variances τ 2j we assume inverse Gamma priors IG(aj, bj),151

with hyperparameters aj, bj chosen such that this prior is weakly informative.152

All these priors can be equivalently rewritten in form of the general prior153

f |τ 2 ∝ exp(− 1

2τ 2
f ′Kf) (10)

154

τ 2 ∼ IG(a, b) (11)

where K− is an appropriate penalty matrix. Since K is often not of full rank, then155

f |τ 2 follows a partially improper Gaussian prior156

f |τ 2 ∼ N(0, τ 2K−)

where K is a generalized inverse of the penalty matrix K. The parameter τ 2 is the157

variance parameter that controls the amount of smoothness. For τ 2 we choose a highly158

dispersed, but proper, inverse Gamma prior as given in equation (11) with a = 1 and159

b = 0.005 or a = b = 0.001.160
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3.2 Posterior inference161

Regression tool for full Bayesian inference is based on MCMC techniques. MCMC162

techniques are used to draw samples from the posterior distribution which are analyt-163

ically intractable because of highly dimensional nature of the distributions. Assuming164

Gaussian errors, we obtain multicategorical probit models with latent semiparametric165

Gaussian models. The sampling scheme has been developed on the basis of the latent166

variable mechanisms (2). Now for α = (f, b), τ is a vector of all variance components167

and γ is a vector of all fixed effects, then the posterior is given by168

P (α, γ, τ, Z|y) ∝ p(y|Z)p(Z|α, γ)p(α|τ)p(τ)p(γ). (12)

where p(y|α, γ, Z) is the likelihood function for the data given parameters and p(Y |Z) =169 ∏
i p(Yi|Zi). A number of sampling schemes are available. For a Gaussian response,170

one can use Gibbs sampling by drawing samples from the Gaussian full conditionals.171

Efficiency is guaranteed by Cholesky decomposition for band matrices [26].172

The full conditional γ|· for fixed effects with diffuse priors is Gaussian with mean173

E(γ|·) = (U ′CU)−U ′C(y − η̃)

and covariance matrix174

Cov(γ|·) = σ2(U ′CU)−

where U is the design matrix of fixed effects and η̃ is the part of the additive predictor175

associated with the other factors in the model such as nonparametric terms. Similarly,176

the full conditional for the regression functions fj is Gaussian with mean177

E(fj|·) =
(
X ′CX

σ2
+

K

τ 2

)−

+
1

σ2
X ′C(y − η̃)

and covariance matrix178

Cov(fj|·) =
(
X ′CX

σ2
+

K

τ 2

)−

.
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4 Applications to paediatric length of hospital stay179

4.1 The Data180

The data presented here were from 3937 patients, diagnosed of malaria, in a paediatric181

ward in Zomba hospital, Malawi. A detailed survey and data description can be found182

in [27]. The response was time spent in the hospital measured in days, categorized into183

three: (1) if length of stay was within one day; (2) if length of stay was up to three184

days and (3) if the length of stay was more than three days. The covariates available185

for smooth modelling were age at admission, calendar time between between 1/1/2002186

and 31/1/2004, measured in months since 1/1/2002 and distance to the hospital. Cat-187

egorical covariates were: sex (male=1, 0=otherwise), hospital management (1=mission188

hospital, 0=otherwise), season (1=wet, 0= dry), day admitted (1=weekend, 0=week-189

day), hospitalization outcome (1=died, 0=discharged), hospital type (1=dispensary,190

2=rural hospital, 3=clinic). Summaries of these variables are given in Table 1. The191

mean and median LOS were 3.04 and 3.00 days respectively. Variability of LOS by192

season, day, referral and outcome are evident in the Table.193

We proposed use of ordinal probit regression models, where our interest was to model194

the duration of stay being ”within 1 day” or ”between 2 days up to 3 days” or ”more195

than three days”. By segmenting duration of stay we realized a triple response ordered196

categories variable, yi, i.e.,197

yi =


1 if length of hospital stay for child i was up to 1 day

2 if the length of stay was up to 3 days

3 if the length of stay was more that 3 days

(13)

The predictor of the model for ”probability of staying” has the form198

M0: ηi = θj − w′γ.199

In this model we estimate fixed effects only, and is therefore considered as the null200

model against which the performance of all other models is compared. The fixed201

effects in the Bayesian framework are modelled by assuming diffuse priors.202
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The second model, M1, is a spatial parametric model which adjusts for both spatially203

structured and unstructured random effects and covariates,204

M1: ηi = θj − w′
iγ − s(wardi)− h(wardi)205

With this model, we assess how much of the total variability is explained by spatial206

variation in the response. This is achieved by assuming CAR priors (Eq. 8). Further,207

the model permits unstructured heterogeneity, modelled through Eq. (7).208

In the third modelM2, we fit a flexible model by allowing calendar effects, in additional209

to the spatial effects and fixed effects for the other covariates210

M2: ηi = θj − w′
iγ − f(time)− s(wardi)− h(wardi).211

The time components are assumed linear. The last model M3, we fit a spatial semi-212

parametric model with age of the child, distance to the facility and time assumed213

nonlinear and the rest of the variables assumed fixed,214

M3: ηij = θj − w′
iα− f1(time)− f2(agei)− f3(distancei)− s(wardi)− h(wardi)215

For the nonlinear effects we use a second-order random walk prior (Eq. 6). Model216

M3 investigates the bias of fitting restrictive linear model, M2. Implementation of all217

models were carried out in BayesX version 1.4 [28].218

4.2 Model comparison and Sensitivity analysis219

The four model were compared using the Deviance Information Criterion (DIC) [29].220

The DIC is defined as DIC = D(µ̄) + pD, where D(µ̄) is the posterior expectation of221

the deviance, and pD is the effective number of parameters ( which is similar, but not222

equal, to degrees of freedom). The model with a smaller DIC is better than others.223

Bayesian cumulative threshold models have an important problem of mixing and224

convergence, specifically for the threshold parameters. Large MCMC samples have225

to be taken to realize stable estimates. Varying hyperparameters a and b is often226

recommended when modelling nonlinear functions, because in some situations, the227

estimated nonlinear functions may vary considerably because of the choice of hyper-228

parameters. We therefore carried out sensitivity analysis by assumed three starting229

values, a = 0.001, b = 0.001 or a = 1, b = 0.005 or a = 0.0001, b = 0.0001 as suggested230
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in [28].231

5 Results232

First, we carried out a test of parallel lines to assess the proportional odds assumption.233

This test assumes, under null hypothesis, that the slopes of the coefficients in the234

ordinal model are the same across response categories. Test of proportional odds235

assumption showed that the ordinal model was appropriate at p-value of 0.05. We236

then proceeded to fitting the Bayesian semiparametric models. Model selection results237

are shown in Table 2. Sensitivity analysis based on the DIC show that the semi-238

parametric model (M3) had a consistently smaller DIC and hence better compared to239

the other models.240

Results of the fixed estimates, based on model M3, are given in Table 3. The model241

only included variables found significantly associated with LOS based on results in 1.242

Age, distance and calendar time were fitted as nonlinear effects. Included in the table243

are estimates of the threshold parameters, θ1 and θ2. Parameter θ1 is a threshold for244

the LOS of 1 day, while θ2 is that of LOS between 2 and 3 days. These estimates were245

significant. For interpretation of the results of threshold parameters, higher (lower)246

values correspond to early/shorter (delayed/longer) LOS. For instance, a negative sign247

of θ1 signifies a shift on the latent scale to the right side, yielding a lower probability248

for category ”up to 1 day”. Conversely, a positive sign of θ2 signifies a shift to the left249

side, yielding higher probabilities for category ”between 2 days and 3 days”.250

Based on model M3, length of hospital stay was associated with season, day and251

discharge outcome. Discharge through death was negatively associated with LOS (γ1=-252

1.18, 95%CI: -1.36,-0.98). This implies children who died tend to have a shorter du-253

ration of hospitalization. With regards to season, we observe that LOS was much254

shorter during the dry season than wet season (γ2=-0.17, 95% CI:-0.31,-0.03). This255

may suggest that malaria episodes during the dry season may not be of the severe256

form, hence improved LOS. Similarly LOS is negatively associated with week days257
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(γ3=-0.52, 95% CI: -0.68,-0.35). This is expected, as ward rounds are often conducted258

during weekdays, therefore those admitted during the weekend will stay much longer,259

till the following Monday or Tuesday to be assessed for discharge. For those referred260

from another facility, they tend to stay longer than those not referred (γ4=0.020),261

however, the result is not significant.262

The calendar time effects evidently showed changing seasonal effects in length of263

stay for period of study (Figure 1-top left plot). High peaks are observed in between264

33rd and 37th week, as well as in the 89th to 92nd week, whereas low peaks are in265

the 13th to 15th week, and in the 50th to 53rd week. The effect of age showed slight266

deviations from linearity, with the posterior means increasing with increasing age, more267

pronounced after the age of 60 months (Figure 1-top right plot). In other words the268

probability of early discharge was higher for much older children than infants. For269

distance, the estimated effects were almost linear (Figure 1-bottom plot). The small270

variation at distance 5, 10 and 20 kilometres could be due to data heaping, as the271

distances to Zomba hospital were approximated from the referring hospital centre.272

The residual spatial effects are plotted in Figure 2. The estimated smooth geograph-273

ical effects, with values ranging from -0.18 to +0.27, are varied. Indeed, some of the274

effects are significant both at nominal values of 80% and 95% (Figure 3). We observe275

areas of significantly negative effects, which we interpret as areas where children ad-276

mitted from those areas did not stay long in the hospital. Those children admitted277

in black areas stayed relatively longer than others in the district. The uncorrelated278

spatial heterogeneity at health facility level is given by caterpillar plot in Figure 4.279

There are no clear differences in catchment area specific effects, and most of them280

have a near zero effect on the probability of staying in hospital. It is clear that the281

spatially correlated effects are dominant, based on the ratio of variance components,282

ϕ = τ 2s /(τ
2
s + τ 2H) = 8.701/(8.701 + 0.005) = 0.99 (Table 3).283
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6 Discussion and Conclusion284

This paper considered a Bayesian cumulative probit model with ordered categories285

for the analysis of length of hospital stay data. The data concerns time spent in a286

a paediatric ward among children who were hospitalized for malaria, characterized as287

short, medium and long term. Modelling of categorized LOS is of major importance288

in health services research [1–3], as it allows for prediction of the probability of LOS289

falling within any category. Besides the model allowed us to investigate explanatory290

variables that influence LOS [4–7]. Our study extends use of ordinal categorical models291

as an flexible alternative to event history models often considered in analyzing LOS292

[19; 20; 24].293

The cumulative model may also be used for timely assignment of an estimated date294

of discharge [17; 18]. Using the threshold estimates (θj), one is able to estimate the295

probability of discharge within 1 day, or within three day or more (Table 3). Therefore296

this model can be considered as a tool to determine factors of delayed discharge.297

In our analysis, discharge time was associated with health outcome, season, day of298

the week. The fact that LOS was shorter for those who died, it does indicate that299

these were worse-off at the time of admission. Many times, in rural Africa, treatment300

seeking is influenced by the severity of disease [30]. The results also displayed strong301

seasonality and spatial heterogeneity. This seasonality is evidently governed by malaria302

transmission patterns [16]. The spatial effects are often a surrogate of underlying303

unobserved information, and may give leads for further epidemiological research or304

assist in designing malaria interventions. For example, the increased risk in rural areas305

may be an influence of different factors, such as unavailability or inaccessibility of306

health facilities resulting in increased risk for such children. These effects may also307

reflect health seeking behaviour [27; 30].308

Although our results did not show significant results for distance to referral hospital,309

type of facility and owner of facility these play an important effect as they influence310

hospitalization trends and define hospital heterogeneity [11]. Studies have shown that311

geographical accessibility of care is directly related to distance to the health facility312
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[2; 11]. The type of facility variable provided an indicator of quality expected at the313

hospital. Rural hospitals are expected to give quality care than dispensaries and clinics314

in terms of diagnosis and appropriate treatment. Lack of quality care make people315

travel long distances to a facility that would provide adequate care. Management316

of the hospital is another variable whose effect is not well documented. There is a317

tendency somewhat that mission hospitals are often preferred to government hospitals318

especially in urban and peri-urban centers. Understaffing and lack of resources in319

recent years has contributed to this trend.320

In our study we adjusted for hospital level clustering, although it was not significant,321

it shows considerable variation across health facilities. Moreover, this adjustment322

was important for two reasons. Firstly, because of similarities in practice styles and323

organization of the hospital, children originating from the same hospital are likely to324

receive the same type of care than those coming from another hospital. By adjusting325

for clustering, thus statistical significance in the results is also adjusted for [2; 13].326

Secondly, by specifying random intercepts we directly modelled for any unobserved or327

unmeasured heterogeneity [23].328

In conclusion, the development of flexible models for health services research like329

LOS is essential to unravel all important determinants of LOS for effective discharge330

planning. Appropriate models used to describe variability in LOS can save costs and331

resources, else poorly fit models are detriment for decision making [1–3].332
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[19] Läärä E, Matthews JN. 1985. The equivalence of two models for ordinal data.384

Biometrika 72:206-207.385

[20] Albert J, Chib S. 2001. Sequential ordinal modelling with applications to survival386

data. Biometrics 57:829–836.387

[21] Tutz G. 2003. Generalized semiparametrically structured ordinal models. Biomet-388

rics 59:263–273.389

[22] Liu I, Agresti A. 2005. The analysis of ordered categorical data: An overview and390

a survey of recent developments. Test 14:1-73.391

16

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1663v1 | CC-BY 4.0 Open Access | rec: 21 Jan 2016, publ: 21 Jan 2016



[23] Fahrmeir, L. and Lang, S. (2001b). Bayesian semiparametric regression analysis of392

multicategorical time-space data. Annals of the Institute of Statistical Mathematics,393

53:10–30.394

[24] Gieger, C. (1997). Non- and semiparametric marginal regression models for ordi-395

nal response. Discussion Paper no. , Statistics department, University of Munich,396

Germany.397

[25] Besag J, York J, Mollie A. 1991. Bayesian image restoration with two applications398

in spatial statistics (with discussion). Annals of the Institute of Statistical Mathe-399

matics 43: 1-59.400

[26] Rue H. (2001). Fast sampling of Gaussian Markov random fields with applications.401

Journal of the Royal Statistical Society, B 63: 325-338.402

[27] Kazembe LN, Kleinschmidt I, Sharp BL. (2006). Patterns of malaria-related hos-403

pital admissions and mortality among Malawian children: an example of spatial404

modelling of hospital register data. Malaria Journal 5:93.405

[28] Brezger A, Kneib T, Lang S (2005). BayesX: Analyzing Bayesian structured ad-406

ditive regression models. Journal of Statistical Software 14:11.407

[29] Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of408

model complexity and fit (with discussion). Journal of the Royal Statistical Society409

B 2002; 64:1–34.410

[30] de Savigny D, Mayombana C, Mwageni E et al (2004). Care-seeking pat-411

terns for fatal malaria in Tanzania. Malaria Journal, 3:27, open access at412

http://www.malariajournal.com/content/3/1/27.413

17

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1663v1 | CC-BY 4.0 Open Access | rec: 21 Jan 2016, publ: 21 Jan 2016



−
.4

−
.2

0
.2

.4
E

ffe
ct

 o
f w

ee
k

0 20 40 60 80 100
week: 01/2002−12/2003

−
.2

0
.2

.4
.6

E
ffe

ct
 o

f a
ge

0 50 100 150 200
Age (months)

−
.4

−
.2

0
.2

.4
E

ffe
ct

 o
f d

is
ta

nc
e

0 10 20 30
Distance (km)

Figure 1: Non–linear effect of calendar time (in weeks), age (in months) and distance

(in km), with corresponding 80% and 95% credible bands.
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Figure 2: Structured spatial effects, at ward level, of length of stay (Model M3). Shown

are the posterior means.
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Table 1: The proportion of children for the three categories of length of stay. Numbers

given are row percentages corresponding to the total given in each category. The

p-value is based on χ2-test.
Variable Length of hospital stay Total p-value

Same day 1–3days ≥4days

Age <1yr 16.1 45.8 38.2 1189 0.32

1–4yr 17.6 46.3 36.0 2136

5+ yr 17.4 42.9 39.8 644

Sex Female 17.2 44.6 38.1 1683 0.60

Male 17.1 46.2 33.6 2286

Day Weekday 20.1 39.7 40.5 2418 <0.001

Weekend 12.4 55.1 32.5 1492

Season Wet 22.0 48.5 28.4 2261 0.003

Dry 22.7 41.7 34.0 1128

Referred No 16.5 47.8 35.7 1895 0.032

Yes 17.9 44.2 37.9 1494

Distance ≤ 5km 18.0 44.8 37.2 1938 0.49

>5km 16.4 46.5 37.1 1999

Hospital type Dispensary 21.9 47.5 30.6 1869 0.74

Rural hospital 20.4 51.6 28.0 93

Clinic 23.2 46.2 30.5 1975

Hospital management Government 22.8 46.6 30.5 3340 0.56

Mission 20.8 48.9 30.3 597

Hospitalization outcome Died 60.9 16.9 13.2 302 <0.001

Discharged 18.5 49.4 32.1 3667
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Table 2: Sensitivity analysis and summary of the DIC of the four models fitted. See

text.
Hyperparameter Diagnostics Model 0 Model 1 Model 2 Model 3

a = 0.001, b = 0.001 Deviance (D̄) 8049.72 6785.29 6780.49 6778.79

pD 23.74 39.99 36.85 40.93

DIC 8097.20 6865.27 6854.19 6860.66

a = 1, b = 0.005 Deviance (D̄) 6788.33 6782.77 6779.83

pD 40.25 36.06 41.78

DIC 6868.83 6854.90 6863.39

a = 0.0001, b = 0.0001 Deviance (D̄) 6788.38 6788.03 6783.12

pD 38.48 33.16 36.54

DIC 6865.33 6854.35 6860.20

Table 3: Parameter effects in the nonlinear ordinal model (Model 3)

Covariate Mean 2.5% quant. 97.5% quant.

Threshold parameters

θ1 -0.93 -1.14 -0.73

θ2 0.40 0.21 0.62

Fixed effects

Outcome discharged 0

died -1.18 -1.36 -0.98

Day weekend 0

weekday -0.52 -0.68 -0.35

Season wet 0

dry -0.17 -0.31 -0.03

Referral no 0 0

yes 0.02 -0.09 0.13

Random effects

Unstructured effects (τ2H) 0.005 0.001 0.019

Spatial effects (τ2s ) 8.701 2.530 23.896
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(a) (b)

Figure 3: Corresponding posterior probabilities, to structural spatial effects (Figure

2), at (a) 80% and (b) 95% nominal level, white denotes regions with strictly negative

credible intervals, black denotes regions with strictly positive credible intervals, and

gray depicts regions of nonsignificant effects.
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Figure 4: Residual unstructured heterogeneity effects of primary health care facilities.

Shown are the caterpillar plots of posterior means (circles), with 80% error bars.
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