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ABSTRACT

Management in the 1980’s at the US Environmental Protection Agency was concerned that

large quantities of data were collected at great expense, but these data were of little value to

determine compliance or to regulate. The data answered questions that were not essential to

decision-making or were of such uncertain quality that the data could not support a decision. To

assure that the right data were collected to make correct decisions, a decision logic was

developed and used at EPA and the US Department of Energy that demanded stakeholder

agreement on the problem and creation of a quantitative “decision rule”. This decision rule

focused on defining the precise problem and balancing risk associated with proposed action and

acceptable uncertainty in the supporting data. Since required environmental data are expensive

or difficult to obtain, tools to quantify resulting data uncertainty and need for more data to make

correct decisions were developed through advances in Kriging and Bayesian statistical

inference. But, important decisions are really driven by the tradeoff between cost of obtaining

more data to reduce uncertainty and cost of action. Efforts to generate quantitatively-based,

informed cost driven decisions relied on Raifa’s foundational work on statistical decision theory.

Complex mathematical formulae were derived from Raifa’s theory to determine when to stop

collecting data and take action or when to just take action. This paper summarizes 20 years of

research, methodology development, and applications by Professor Daniel Goodman to

address environmental decision-making.

KEYWORDS: quantitative decision rules, quantifying data uncertainty, cost of action, cost of

uncertainty, Bayesian statistical inference, statistical decision theory
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1. US EPA PROBLEM

In the 1980s, the US EPA was spending about $200 million of its $1 billion annual budget

collecting data on concentrations of pollutants in the environment. Management expected to

use these data to make intelligent decisions on what to clean up and what to regulate --- to

protect the public health and ecological systems from harm. US EPA required industries and

state and local governments it was regulating to collect pollutant data to document compliance

with established pollutant standards associated with drinking water; air quality; surface, estuary,

ground and ocean waters; solid waste disposal; pesticide and toxic chemical use and

environmental levels; and radioactive chemicals. At the time, US EPA estimated that the

regulated entities were spending about 10 to 15 times more than US EPA on environmental

data collection --- perhaps $2 to 3 billion annually.

Huge sums of money were spent, but were the resulting data measurably contributing to making

informed and prudent decisions? Or, were the data so uncertain that decisions were made “in

spite of the data”? The Data Quality Management office at US EPA began to ask --- what type

and quality of data should be collected to make informed regulatory decisions?

Few managers were willing to take the time to ask: “What is the problem that requires attention

and are data needed to address the problem? If data are needed, what specific data are

needed and how will that data be used to address the problem or make a difference?”

To answer these key basic questions, Data Quality Management and Dan Goodman began a

20 year relationship. Dan encouraged us to use decision analysis, cost-benefit analysis, and

risk assessment. US EPA could no longer afford to collect expensive data, and still make wrong

decisions (e.g., either regulating when regulation was not required or not regulating when the

public or ecological health were harmed).

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1648v1 | CC-BY 4.0 Open Access | rec: 13 Jan 2016, publ: 13 Jan 2016



4

2. THEORY

In most environmental regulatory decisions, we found that large quantities of data were

collected at great expense, but were of little value to determine compliance or to regulate. The

data answered questions that were not essential to decision-making or were of such uncertain

quality that the data could not support a decision.

2.1 Problem Definition

What was thought to be a simple concept, define the problem and collect the data turned out to

be far more complex. Careful problem definition is critical. With every stakeholder comes their

view of the problem requiring attention. Identifying the stakeholders is the starting point.

Getting them to precisely articulate their view of the problem is challenging, because most

stakeholders view things in generic, not precise terms. A non-precise problem has multiple

courses of action.

The first step is to get the stakeholders (those who can influence the action and outcome)

together to agree on the problem that should be addressed. The problem has to be precise ---

not clean up the contamination, but:

a) what is the contamination of concern,

b) is there exposure and to whom,

c) what is current level of exposure relative to established threshold of concern,

d) what is the risk to public or ecological health,

e) what is the cost of measuring contaminant concentration,

f) what is the cost of remediation,
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g) what is the cost-benefit of remediation versus further measurement, etc.

We found that every issue we faced started with one fundamental, precisely stated problem.

From there, one always found that there was a sequence of associated problems and precise

answers. There was no environmental problem we observed where there were parallel

problems, requiring parallel efforts to resolve. There was always a fundamental issue that

directly affected all other issues. These other issues were always dependent on an answer to

the upstream fundamental issue. Many times we thought the stakeholders had defined the

fundamental problem of concern, only to determine that a more basic issue preceded the stated

problem. For example, the logical stakeholder issue/action/question was remediate the

contamination in the ground water before it spreads to the drinking water aquifer. But, the key

question really was cost of remediation. If remediation was $10,000, then spend the money and

be done. If the remediation cost $100 million or the cost is too uncertain to define, one prefers

to understand the cost-benefit of remediation and value of additional data to make a correct

decision on whether to remediate and extent of remediation. For example, specific information

on:

a) contaminant risk if there were exposure,

b) speed of contaminant movement and contaminant of concern concentration in

drinking water supply versus time, or

c) eliminating the contaminant source

may be more important questions to address when faced with huge remediation costs. As Dan

stated:

Because of the human factor, the precise capture of the key issues in the problem

definition and operationalization of regulatory concerns is often the most difficult part of
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optimizing a real cleanup. It can also be the most important part, since it sets the stage

for all the details that follow. No amount of math and statistics will salvage a project plan

for a mis-stated problem; with a mis-stated problem all that the math and statistics will

provide is an elegant answer to the wrong question. By contrast, successful problem

definition states the problem in such a way that all the remaining decisions for

optimization are merely technical, which is a relief since there is a large portfolio of

proven, relatively mechanical formulations … that can be applied for technical

optimization.(1, at p.4346)

An example: A million gallon underground storage tank at Hanford, Washington containing 500,

000 gallons of a water slurry of high level radioactive waste. Samples taken in the soil column

immediately adjacent to the tank show radioactively consistent with the inventory of waste in the

tank. Numerous stakeholders want to pursue various solutions (e.g., pump the tanks and

temporarily store pumped contents in preparation for vitrification; locate all contamination and its

magnitude; monitor the progression of existing soil column plume to the ground water table).

Once the stakeholders agreed on precisely what they wanted to address, then technical staff

could begin defining the sequence of questions that required answers. Agreement on the

stakeholders’ precise problem results in a unique sequence of questions and associated

answers. Not thinking through this unique sequence results in confusion and collecting data of

limited or no value. Dan:

“… argued for the importance of significant, early, in-depth communication among the

stakeholders in the cleanup, in order to get a clear big-picture perspective on what is the

real problem, and what could be a solution, well before any technical planning begins.

Blunders left uncorrected at this phase of problem definition will hamper the entire

course of the project. Early success in problem definition will set the stage for later

technical successes. (1, at p. 4329)
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2.2 Remaining Important Steps

From precise problem definition, one next needs to determine the possible actions that would

address/solve the problem. The examples above show the linkage between problem and

action. Asking next, how would data influence the decision on what action to take? How good

do the data need to be to make the correct decisions? How costly would collecting the required

data be and could the required data be collected at any cost? Finally, one should understand

the balance between cost of collecting the right data and “brute force” resolving the problem or

changing one’s operation to eliminate the problem.

2.3 Data Quality Objective Process

This logic was transformed into the seven step, “Data Quality Objective” (DQO) process. This

logic was formalized in directives issued by key EPA regulatory offices and the Quality

Management Office, who required that all data collection performed by Regional Offices must

follow this framework.(2)

Understanding the CONTEXT

Converging on a statement of the QUESTIONS

Defining the array of possible useful ANSWERS

Selecting the MEASURES that will estimate the answers

Setting ERROR TOLERANCES for the estimates

Arriving at a DECISION RULE

OPTIMIZING the design
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Dan and his team pursued a computer-based tool so stakeholders and data collectors could

follow a disciplined logic. Since most stakeholders and data collectors were not equipped to

arrive at error tolerances or to optimize the design, the intent was to automate these steps using

statistical tools Dan was developing. The software became a documentation tool for the

sophisticated facilitators who worked with the stakeholders and data collectors on answering the

seven steps.(3,4 at appendix 2)

The process used by the facilitator to help the stakeholders sort through all the “policy calls” was

key. In every environmental issue, there are policy calls (e.g., cleaning up to human habitability

or to an industrial application standard; how clean is clean; what level of acceptable risk --- zero

risk so no measurable contamination, or acceptable to a risk of 1 in 1000 of having an adverse

event affecting a normally healthy individual).

In some cases, the policy call is very simple --- clean up the contamination because the cost of

cleanup is minimal. If the cost of cleanup is prohibitive for typical unrestricted usage, then

establish restricted usage and boundaries for restricted use (e.g., industrial lands where

contaminants are bound to soil column, so concern for leaching is de minimus, add clean soil

layer and use only for industrial applications and workers are on site less than 30% of any 7 day

week. Or, when the cost of cleanup could be substantial (e.g., potential for large number of

random hot spots so substantial costly remediation might be required), qualitatively balance the

cost of sampling and analysis required to pinpoint actual contaminant levels with the level of

acceptable exposure risk, established by desired future use. The more tolerant the exposure

risk (e.g., higher tolerance for uncertainty), the less sampling and analysis one has to perform

because one can tolerate missed hot spots. Increased tolerance for missed hot spots translates

to usage compatible with less allowable exposure (e.g., limited land use).
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Once the policy calls are made, translating those calls into a set of concrete criteria for action

results in creating the decision rule for stakeholder endorsement and data collector

implementation. An example decision rule is:

If the concentration of dioxin in the first 5 inches of soil depth, averaged over any 5000

square foot section of the site under consideration for remediation is greater than 1 ppm,

with a false negative error tolerance of 5 %, then remove the top 8 inches of soil and

incinerate that soil to 5 nines. This decision rule and associated policy calls permit

localized hot spots potentially significantly above 10 ppm to remain unremediated,

because the continued land use will be pasture land. This is a decision rule that accepts

some risk from dioxin exposure, balancing the cost of sampling and analysis and the

cost of incineration.

This decision rule also defines the tolerance for uncertainty in the measured levels of

dioxin. From this decision rule, one can define an optimized sampling program to locate

clean and dirty areas, initially based on where the dust suppressant containing the dioxin

was sprayed and where dioxin bound to surface soil eroded during rain events. This

decision rule took three months to negotiate starting with initial stakeholder policy calls

and ending with a precise rule that established “how clean is clean”. This decision rule

was a careful balance between the cost and benefit of sampling to obtain more precise

data on contaminant distribution with cost of soil removal and dioxin destruction, given

the future use of the land after cleanup.(5,6)

2.4 Replacing Hypothesis Testing Based Design with Statistical Decision Theory Logic

Stakeholders recognized the value of defining the precise problem and associated actions

before embarking on expensive remediations. Everyone intuitively understood that the costs of

sampling and analysis to obtain more precise data were tolerated up to a point. But, many
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recognized the real driver for cleanup was the bankroll set aside for cleanup. There was no

quantitative methodology balancing the cost and tradeoff of how much sampling to perform with

the cost and tradeoff of how much cleanup was necessary and the cost/risk of making wrong

decisions about cleaning up. For addressing uncertainty, the DQO process employed

hypothesis testing. This methodology focused on uncertainty in existing data compared to

making decisions based on a comprehensive data set. Hypothesis testing estimated the

additional data required to achieve desired false negative and false positive error rates,

established, somehow, by the stakeholders.

In applying hypothesis testing, four specifications are required and problematic to define. They

are: a) the critical significance level, b) the power requirement that determines the false

negative and false positive error tolerances, c) the width of the “gray area” that defines the

alternative hypothesis, and d) the expected standard deviation used in the power test. Dan

showed that these four specifications really matter. Changes in these key parameters

addressing acceptable uncertainty in the DQO process can greatly change the cost of a

remediation and the cost of a characterization program. Getting these specifications right

determine whether human health and ecological risk at the site is controlled to as low a level as

required, while simultaneously minimizing cost.

But, cost of remediation was not a factor in establishing these values. Further, establishing

values for these four specifications relied on expert judgment which introduced subjectivity in

the DQO process. What really was the rationale for establishing a 5% false negative error rate

or a gray zone that was within 15% of the acceptable threshold?

Since the late 1980s, Dan remained concerned that even though the DQO process was a major

step forward, it lacked an objective methodology for understanding and balancing cost of

remediation with cost of collecting more data to make the right remediation decision. In the
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early 1990s, Dan began addressing these weaknesses. He turned to H. Raiffa’s work in the

1950’s on statistical decision theory. Dan wanted to incorporate cost, benefit, risk into

calculations to determine the value of collecting more data (balancing cost of obtaining better

information with the cost of taking right and wrong actions). In his key paper in 1996, Dan

posed the issue:

The costs of data collection can be very high; but, the data can be more than worth their

cost if the additional data result in a better remediation by eliminating wasteful

unnecessary remediation or by avoiding costly corrective action that might be necessary

if an initial remediation were inadequate. The key to the success of the decision theory

approach lies in balancing the costs of data against the cost reductions that data can

confer. In calculating the required certainty for making a remediation decision, statistical

decision theory considers the costs and probabilities of all the possible outcomes of the

remediation decision (including the possible mistakes). In calculating the merits of more

sampling, statistical decision theory considers the cost of the data, the probability that

the new data will lead to a better decision, and the cost saving that would be attributable

to a better decision.(7 at p.6)

Dan further added:

How wide a margin of safety should be allowed in deciding about remediation of a unit

where the samples are near the action level? How many additional samples should be

taken to increase the certainty? The correct answers to these questions depend on the

cost of remediation, the costs of mistaken decisions (e.g., the cost of an unscheduled

cleanup if later monitoring reveals that an area that was not initially scheduled for

planned remediation really is above the action level) and the costs of samples.
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Statistical decision theory finds the correct margin of safety and the correct investment in

sampling to minimize the total cost.(7 at p.6)

By employing statistical decision theory to set error tolerances, Dan eliminated the need to

define an alternative hypothesis with a gray area and automated the estimation of expected

standard deviation, removing the need to specify the standard deviation as a separate user-

defined input.

The calculations to apply statistical decision theory to cleanup decisions are complex. Dan

based his advancement on Raiffa and Schlaifer (1961), Berger (1985), DeGroot (1970),

O’Hagen (1994, dealing with Bayesian statistical inference), Maritz and Lwin (1989), Smith and

Gelfand (1992), and Bellman (1961 on dynamic programming). Using concepts presented in

these works, Dan linked his decision theory framework with Bayesian calculations of the

probabilities of uncertain outcomes to provide an unambiguous mathematical formula for the

expected cost calculations. The closed form solutions for the probabilities underlying these

calculations are very difficult. Dan applied computer programs that utilize Monte Carlo methods

to solve the Bayes’ formulae. Dan also developed explicit (but complicated and problem-

specific) mathematical solutions to replace some of the Monte Carlo calculations to arrive at

much faster solutions. These solutions were called SAMPLAN and operate easily on standard

personal computers. See the four key papers on Dan’s efforts to apply statistical decision

theory to environmental issues.(1,7,8,9)

3.0 APPLICATIONS

Over this twenty year relationship, Dan and team worked on a number of projects for the US

EPA across the US and for US Department of Energy at Hanford, Los Alamos, and Oak Ridge.

Some of these applied the DQO Process relying on hypothesis testing and Kriging and some

employed Bayesian techniques to estimate pollutant concentrations.
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3.1 Kriging

This tool developed in the mining industry to estimate the potential locations of minable deposits

based on point sample data, was substantially enhanced by Dan and team. Kriging offered

statistical justification for the way it generates a smoothed, interpolated map of concentrations.

Kriging also generates explicit uncertainty measures for the interpolated and smoothed

estimates. These uncertainty measures can guide the extent of cleanup or can be used to

make decisions on optimizing selection of sampling locations to provide key new data. But,

Kriging has limitations (e.g., choices of variogram model and Kriging neighborhood), which Dan

corrected by incorporating “bootstrapping and jackknife” methods. By developing a new

computational tool, these latter methods became practical for improving variogram

estimation.(4,10,11,12,13,14,15)

3.2 Piazza Road

An oil containing dioxin which leached into the adjacent pasture/farm land, was applied to roads

as a dust suppressant. The cost of incinerating contaminated dirt is large. So, burning “clean”

dirt is not desired. Could one pinpoint the dioxin contamination in the land adjacent to the road,

so only those locations of contaminated soil above a certain threshold would be removed for

incineration? What was the balance between collecting large numbers of soil samples for dioxin

analysis and pinpointing only those locations where sample collection would supply specific

data on where soil required removal. The DQO Process and sophisticated Kriging techniques

were applied.(5,6) These papers discuss issues related to:

1) separation between policy calls about risk goals and technical discussion of cost-

effective alternatives for implementation,

2) translation of the regulatory policy calls (including definition of tolerances for

uncertainty) into specific, concrete, measurable cleanup criteria,
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3) documentation of agreements reached among stakeholders on the critical

requirements for the cleanup, and

4) use of optimization methods to develop and deploy the most cost-efficient design for

obtaining more sample data, balanced with cost of removing and incinerating the

necessary contaminated soil to achieve stakeholder decision rule requirements.

Figure 1 shows where soil contaminated with dioxin needed to be removed. Based on the

stakeholder-established decision rule, substantially less soil required removal and incineration.

3.3 Carolina Transformer

This 5 acre site in North Carolina was used to repair and store electric transformers. PCBs

were found in the soil at various depths. The DQO process, Kriging techniques, and the

resulting focused sampling program identified the likely locations of elevated pollutant

concentrations and the degree of remediation required. The logic, used in Piazza Road, was

employed here. Stakeholders constructed a “discomfort” curve that defined boundaries of

tolerable false positive and false negative error in concentrations of PCB as a function of soil

depth. Given the decision rule and associated error tolerances, the site was divided into 61

“remediation units” and a sampling strategy was used to estimate PCB concentrations at depth.

The resulting data showed that most of the units had PCB contamination above the decision

rule threshold, but only half the units had PCB levels greater than 10 ppm in the soil layer

greater than 10 inches deep. Based on the stakeholder decision rule, a remediation strategy

was developed that removed only 8 inches of soil in 1/3 of the area (would have removed only 2

inches but the backhoe tool could not easily remove less than 8 inches of soil). Another 1/3 of

the site had 10 inches of soil removed. But, only ¼ of the site had 16 inches of soil removed.(16,

at appendix 3)

3.4 Collierville
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At this Tennessee site, Trichloroethylene (TCE) leaked into the city drinking water aquifer.

Extraction wells treated the contaminated aquifer. The issue was where to locate testing wells

to predict TCE concentrations to determine containment success and need for additional

extraction wells. The DQO Process was used to create containment and action decision rules

(e.g., If, at any point outside present 4 ppb isocon, concentration predicted 90 days in advance,

from regression on past 3 quarterly samples at monitoring wells, is below 30 ppb, then

containment is succeeding).(4. at appendix3 and 4) Based on the limited sampling results, Dan’s team

estimated aquifer TCE concentrations using his enhanced Kriging tools. Based on the

containment decision rule and associated risk tolerances, 8 more extraction wells would be

required, given the current well sampling data. By balancing cost of new data (placement of 4

new strategically placed test wells ), the decision rule was met and the city saved the expense

of three additional extraction wells.

3.5 Oak Ridge Bethel Valley Stronium Contamination

Dan used these enhanced Kriging tools to estimate strontium (Sr) concentrations in the soil and

water table under the extensive facilities at the US DOE in Bethel Valley, Tennessee. Based on

a localized large data base, Dan and team created three dimensional maps of Sr contamination

as a function of depth. Average depth to bedrock in this area was 10 feet and average depth to

water table was 20 feet. The information was transformed into a “movie” that showed risk, (i.e.,

the expected concentrations of Sr and associated uncertainty for narrow vertical slices based on

existing data and Kriging). Figure 2 shows existing Sr contamination in the soil. Figure 3 shows

where Sr soil contamination concentrations are “known” (green) and where Sr soil

contamination concentrations are uncertain (red). From these graphics, one could visually

locate those areas where more data would reduce uncertainty, where remediation was a

priority, and where access should be limited.(17)

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1648v1 | CC-BY 4.0 Open Access | rec: 13 Jan 2016, publ: 13 Jan 2016



16

3.6 Hanford

The primary focus was on the 177 large single and double shell underground storage tanks

(most were 50 feet in diameter and 20-30 feet high) containing radioactive waste products from

plutonium production. These tanks were located in a number of tank farms which contained

from 12 to 20 tanks. Waste was moved from tank to tank, so records of the waste contents,

composition, and concentrations were of limited value. Sampling the contents of these highly

radioactive waste tanks with very few port entries are difficult and costly. There is substantial

vertical and horizontal heterogeneity in the tank contents. The tank contents data were too

limited and contradictory, so trying to apply Dan’s sophisticated Kriging methodology produced

little valuable data.

Since a large number of these tanks were leaking their slurry contents into the soil column

around the tanks, Dan used his Kriging tool box and 3 dimensional graphical movie displays to

estimate contaminant concentrations in the vadose zone around the leaking tanks. Some

questions were: what data did we have, how good were that data, and where specifically

should we take additional very expensive samples to increase the quality of information on

contaminant concentration and migration toward the water table, and potential entry into the

Columbia River? Figure 4 shows expected locations of Sr in the vadose zone based on existing

data and Kriging.(18)

3.7 SAMPLAN

The DQO Process establishes a structure for stakeholders to reach consensus on the problem

confronting them and the desired action(s) to address the problem. Stakeholders wrestle with

uncertainty and agree on the type and extent of information needed to make a correct decision.

Dan’s enhanced Kriging tool box provided the quantitative methodology to take available data

and estimate concentrations at distances from measured values and the uncertainty in those
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estimated concentrations. Kriging outcomes permitted decisions on where additional sampling

would materially improve uncertainty, so better decisions would be made. Statistical decision

theory and Bayesian statistical inference added cost-benefit-risk assessment to determine the

tradeoff between action and collecting more data. SAMPLAN is a computer assisted tool that

balances the cost of action with the cost of collecting more information. Figure 5 shows the

relation between the expected cost of deciding positive or negative and the probability of actual

positive. If the probability of an actual positive is less than the value of where the cost lines

intersect, then it is more cost effective NOT to take action (e.g., don’t remediate). Figure 6

shows how to estimate the cost of uncertainty. In the 1996 period, Dan prepared a number of

documents describing the theory, mathematics, and applications for this

methodology.(1,7,8,9,13,14,15,19,20) These papers present examples of how various costs and

sample results affect decisions on whether to take action, based on the available data, the cross

over probability, optimized number of new samples, and total expected costs of an action.

Figures 7 and 8 show how cost of cleanup impacts value of obtaining more data in optimizing

the remediation costs. Figure 7 with its remediation cost structure, optimizes remediation with

11 new samples, while Figure 8’s remediation cost structure will not benefit from further

sampling. Figure 9 compares decision theory and hypothesis testing. These calculations show

the cost of remediation warrants no additional samples, yet changing the false positive error

from 5% to 10% increases the number of needed samples. Changing the gray area lower

boundary from 75% to 90% dramatically increases samples needed to achieve the hypothesis

test desired error tolerance. Concerns about artificially establishing key hypothesis testing

parameters which result in expensive and unneeded actions were overcome with Dan’s

advances in applying statistical decision theory.

4.0 SUMMARY
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During this twenty year relationship, Dan and his team developed powerful tools to precisely

define the environmental problem and to optimize the tradeoff between collecting more data to

increase certainty and performing the remediation now. Applying technical tools to imprecisely

defined problems, led only to collecting expensive data of questionable use. Stakeholder

understanding and acceptance of the precise problem definition was the starting point and was

critical. Dan recognized that the quantitative aspects of uncertainty and statistically-based

decision rules were not understood by the stakeholders. More often false negative error rates

and size of gray zones were based on what stakeholders perceived to be appropriate, but

having little basis in the fact when applied to a specific problem. Dan understood that “cost”

was the common denominator that stakeholders understood. Optimizing cost of obtaining more

information and cost of action became Dan’s focus. Building on Raifa’s work on statistical

decision theory, Dan created the logic and mathematical rigor to transform that theoretical

foundation into methodology usable for environmental decision making and actions. An

important element in the methodology was quantifying uncertainty of contamination in three

dimensions, based on limited point source data. Dan made major advances in Kriging including

applying Bayesian statistical inference tools to create distributions leading to improved

estimates of uncertainty, and graphical tools to display the results. During this period, Dan and

team applied these tools to a number of environmental problems resulting in project level

success. Program level success was illusive, perhaps because these concepts were not

intuitive to environmental program leaders. In the future, the hope is that Dan’s tool box will find

a home in the regulated community, the real beneficiaries of these applications.
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