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Distributions of p-values smaller than .05 in Psychology: What

is going on?

Chris HJ Hartgerink, Robbie CM van Aert, Mich�le B Nuijten, Jelte M. Wicherts, Marcel ALM van Assen

Previous studies provided mixed findings on pecularities in p-value distributions in

psychology. This paper examined 258,050 test results across 30,710 articles from eight

high impact journals to investigate the existence of a peculiar prevalence of p-values just

below .05 in the psychological literature, and a potential increase thereof over time. We

indeed found evidence for a bump just below .05 in the distribution of exactly reported p-

values in the journals Developmental Psychology, Journal of Applied Psychology, and

Journal of Personality and Social Psychology, but the bump did not increase over the years

and disappeared when using recalculated p-values. We found clear and direct evidence for

the QRP �incorrect rounding of p-value� (John et al., 2012) in all psychology journals.

Finally, we also investigated monotonic excess of p-values, an effect of certain QRPs that

has been neglected in previous research, and developed two measures to detect this by

modeling the distributions of statistically significant p-values. Using simulations and

applying the two measures to the retrieved test results, we argue that, although one of the

measures suggests the use of QRPs in psychology, it is difficult to draw general

conclusions concerning QRPs based on modeling of p-value distributions.
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ABSTRACT7

Previous studies provided mixed findings on pecularities in p-value distributions in psychology. This

paper examined 258,050 test results across 30,710 articles from eight high impact journals to investigate

the existence of a peculiar prevalence of p-values just below .05 in the psychological literature, and

a potential increase thereof over time. We indeed found evidence for a bump just below .05 in the

distribution of exactly reported p-values in the journals Developmental Psychology, Journal of Applied

Psychology, and Journal of Personality and Social Psychology, but the bump did not increase over

the years and disappeared when using recalculated p-values. We found clear and direct evidence

for the QRP ”incorrect rounding of p-value” (John et al., 2012) in all psychology journals. Finally, we

also investigated monotonic excess of p-values, an effect of certain QRPs that has been neglected in

previous research, and developed two measures to detect this by modeling the distributions of statistically

significant p-values. Using simulations and applying the two measures to the retrieved test results, we

argue that, although one of the measures suggests the use of QRPs in psychology, it is difficult to draw

general conclusions concerning QRPs based on modeling of p-value distributions.
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INTRODUCTION10

A set of p-values can be informative of the underlying effects that are investigated, but can also be11

indicative of potential research biases or questionable research practices (QRPs). Masicampo and12

Lalande (2012) found a bump of p-values just below .05 in three main psychology journals (i.e., Journal13

of Personality and Social Psychology, JPSP; Journal of Experimental Psychology: General, JEPG;14

Psychological Science, PS), which could be explained by research biases. A bump has occurred when15

p-values just below .05 are more prevalent than smaller p-values. The observation of a bump was one16

of several signals of a crisis of confidence in research findings in psychological science (Pashler and17

Wagenmakers, 2012; Ferguson, 2015). Leggett et al. (2013) later corroborated this bump of p-values for18

JPSP and JEPG, and observed that it was larger in 2005 than in 1965. Considering that research biases19

can lead to overemphasis on statistical significance, this result suggested that the state of psychology may20

have even deteriorated over the years. Additional corroboration in samples of published articles from21

various fields was provided by Head et al. (2015), who documented the bump of p-values below .05 in22

1,048,575 articles across 16 disciplines including psychology. Ginsel et al. (2015) found similar biased23

reporting of p-values in medical abstracts, but noted the variety of potential causes (e.g., publication bias,24

fraud, selective reporting).25

At the same time, other studies failed to find a bump of p-values below .05 (Jager and Leek, 2014;26

Krawczyk, 2015; Vermeulen et al., 2015). Reanalysis of data from Masicampo and Lalande (2012) and27

Head et al. (2015) indicated that the original results may have been confounded by publication bias28

and tendencies to round p-values (Lakens, 2015b; Hartgerink, 2015). Publication bias refers to the fact29

that the probability of getting published is higher for statistically significant results than for statistically30

nonsignificant results (Gerber et al., 2010; Franco et al., 2014). Publication bias only changes the p-value31

distribution above .05 and cannot cause a bump. Krawczyk (2015) analyzed a sample of around 5,00032

psychology articles and found no bump in p-values that were recalculated on the basis of reported test33

statistics and degrees of freedom (cf. Bakker and Wicherts, 2011). However, he did observe a bump34
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for reported p-values. As such, this highlights an important difference between reported p-values and35

recalculated p-values, and stresses the need to distinguish both types of results when studying signs of36

questionable research practices.37

In this paper we differentiate between two forms of peculiar prevalence of p-values just below .05; a38

bump and monotonic excess. Monotic excess signifies a higher than expected frequency of p-values just39

below .05, but in the absence of a bump, as in Figure 1b below.40

In light of the aforementioned conflicting findings and interpretations, the present paper attempts to41

answer two questions: (1) Does a bump or monotonic excess of p-values below .05 exist in psychology?42

and (2) Did evidence for a bump increase over time in psychology? We chose to focus on psychology43

because of the availability of an extensive database on statistical results in psychology (used in Nuijten44

et al., 2015) and because discussions on research practices are particularly salient in this discipline (e.g.,45

Pashler and Wagenmakers, 2012; John et al., 2012; Simmons et al., 2011; Wagenmakers et al., 2012;46

Asendorpf et al., 2013).47

First we clarify how the two research questions relate to questionable research practices (QRPs). QRPs48

are defined as practices that are detrimental to the research process (Panel on Scientific Responsibility49

and the Conduct of Research, 1992), with a recent focus on those which ”increase the likelihood of50

finding support for a false hypothesis” (p.524 John et al., 2012). Several QRPs related to significance51

testing are known to affect p-values of statistical tests and consequently the decisions based on these52

tests. Specifically, particular QRPs may yield results that are just significant and can create a bump53

of p-values, such as ad hoc exclusion of outliers (Bakker and Wicherts, 2014), repeatedly sampling54

new participants and checking the results (i.e., data peeking, Armitage et al., 1969), including various55

combinations of covariates until a significant result is reached, or operationalizing a measure in different56

ways until significance is reached (Simmons et al., 2011).57

These QRPs have been used by many researchers at least once in their career. For instance, data58

peeking and the ad hoc exclusion of outliers were admitted by 63% and 38% of psychological researchers,59

respectively (John et al., 2012). On the other hand, other QRPs mainly yield very small and (clearly)60

significant p-values, such as analyzing multiple conditions or correlated variables and selecting only the61

smallest p-value out of this set of analyses (van Aert et al., 2015; Ulrich and Miller, 2015) and do not lead62

to a bump. To summarize, different QRPs may differently affect the distribution of statistically significant63

p-values.64

In the absence of QRPs, the distribution of significant p-values can be expected to have a certain shape.65

Under the null-hypothesis all p-values are equally probable (i.e., follow a uniform distribution). If there66

is truly an effect, smaller p-values are more likely than larger p-values (i.e., the distribution decreases67

monotonically in the p-value). Consequently, because some hypotheses are false and some are true, the68

distribution of observed p-values arises from a mixture of uniform and right-skewed distributions and69

should also decrease monotonically.1 Deviation from a monotonically decreasing distribution (i.e., a70

bump) could indicate evidence of QRPs that aim to obtain just significant results. Hence answering our71

research questions of whether a bump exists and whether this bump changed over time may also inform72

us on the prevalence of these particular QRPs and its development over time.73

However, there are at least two problems with using p-value distributions to examine the prevalence74

of QRPs. First, as we previously argued, not all QRPs lead to a bump of p-values just below .05. Hence,75

examining the distribution of p-values just below .05 will not inform us on the prevalence of QRPs that do76

not aim to obtain just significant results but yield mainly small and clearly significant p-values (van Aert77

et al., 2015; Ulrich and Miller, 2015). Second, the QRPs yielding just significant results do not necessarily78

result in a non-monotonic p-value distribution, that is, a distribution with a bump. For instance, consider79

Figure 1 that shows the result of simulations done for data peeking, which is known to result in mainly80

just significant p-values (Armitage et al., 1969; Lakens, 2015b; Wagenmakers, 2007). The dashed lines in81

both panels correspond to 20 million simulated p-values under the null-hypothesis and a medium effect82

size (d = .5), respectively, in a two-sample t-test with 24 participants per group. The solid lines show83

the distributions of 20 million simulated p-values under these same effect sizes and designs, but after a84

maximum of three rounds of data peeking with each round adding 1/3 of the original sample size. Figure 185

illustrates that data peeking may result in non-monotonic excess (i.e., bump; left panel), but can also cause86

1One exception to this rule is when the alternative hypothesis is wrongly specified, that is, if the true effect size is negative

whereas the alternative hypothesis states that the true effect is positive. In this case the distribution of the p- value is left-skewed and

monotonically increasing.
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monotonic excess (right panel), even if all researchers use data peeking. Specifically, if all underlying87

effects are genuinely and substantially different from zero (right panel), data peeking will generally not88

lead to a bump below .05. In the present paper, we therefore examine the peculiar prevalence of p-values89

just below .05 by both investigating the presence of a bump and monotonic excess in distributions of90

statistically significant results.91

Figure 1. Distributions of 20 million p-values each, when d = 0 (bump; left) and d = .5 (monotonic

excess; right), given data peeking (solid) or no data peeking (dashed). Simulations were run for

two-sample t-tests with nk = 24. For data peeking, a maximum of three rounds of additional sampling

occurred if the result was nonsignificant, with each round adding 1/3 of the original sample size.

In answering our research questions, whether a bump or monotonic excess exist and whether the bump92

changed over time, we improve previous studies on four dimensions. First, we eliminate the distortive93

effects of publication bias on the p-value distribution by inspecting only statistically significant results.94

Second, we use a large dataset on p-values from entire articles instead of only p-values from abstracts95

(as in Jager and Leek, 2014; de Winter and Dodou, 2015). Third, we distinguish between reported and96

recalculated p-value distributions for the same set of test results and show that this distinction affects97

answers to the two questions because of common mismatches (Bakker and Wicherts, 2011). Fourth, we98

fit analytic models to p-value distributions to investigate for monotonic excess, where previous research99

only investigated whether there was non-monotone excess (i.e., a bump).100

Publication bias distorts the p-value distribution, but distortions caused by this bias should not be101

confounded with distortions caused by QRPs. Publication bias refers to the selective publication of102

disproportionate amounts of statistically significant outcomes (Gerber et al., 2010; Franco et al., 2014).103

Publication bias contributes to a higher frequency of p-values just below .05 relative to the frequency104

of p-values just above .05, but only does so by decreasing the frequency of p-values larger than .05.105

Masicampo and Lalande (2012) and de Winter and Dodou (2015) indeed found this relatively higher106

frequency, which is more readily explained by publication bias, which affects the distribution of p-values107

larger than .05. QRPs that lead to a bump affect only the distribution of p-values smaller than .05 (Lakens,108

2015b). We focus only on the distribution of significant p-values, because this distribution is affected by109

QRPs that cause a bump or monotonic excess and not, or to a much lesser extent, by publication bias.110

The second extension is the use of more extensive data for psychology than previously used to inspect111

QRPs that cause a bump or monotonic excess, improving our ability to examine the prevalence of QRPs.112

Masicampo and Lalande (2012) and Leggett et al. (2013) manually collected p-values from a relatively113

small set of full research articles (i.e., 3,627 and 3,701), whereas Jager and Leek (2014) and de Winter114

and Dodou (2015) used automated extraction of p-values from only the abstracts of research papers.115

However, p-values from abstracts are not representative for the population of p-values from the entire116

paper (Benjamini and Hechtlinger, 2014; Ioannidis, 2014), even though some have argued against this117
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(Pautasso, 2010). Our large scale inspection of full-text articles is similar to papers by Head et al. (2015)118

and Krawczyk (2015), but with the addition of being able to recalculate all p-values from the test statistics119

extracted from the text.120

Third, we examine the prevalence of QRPs that cause a bump or monotonic excess by investigating121

both reported and the accompanying recalculated p-values. Previous studies do not fully compare results122

from reported p-values and recalculated p-values. This distinction is relevant, because reported p-values123

are subject to reporting bias such as rounding errors, particularly relevant around the .05 threshold. Such124

reporting biases result in inaccurate p-value distributions. For example, there is evidence that reporting125

errors that affect statistical significance occur in approximately 10-15% of papers in psychology (i.e.,126

gross inconsistencies Bakker and Wicherts, 2011; Garcı́a-Berthou and Alcaraz, 2004; Nuijten et al., 2015;127

Veldkamp et al., 2014). The advantage of analyzing recalculated p-values is that they contain more128

decimals than typically reported and correct reporting errors. Some previous studies analyzed reported129

p-values (de Winter and Dodou, 2015; Jager and Leek, 2014; Head et al., 2015), whereas others looked130

at recalculated p-values (Masicampo and Lalande, 2012) or a mix of reported and recalculated (Leggett131

et al., 2013). Only Krawczyk (2015) used both reported and recalculated p-values for a subset of the132

data, and they found that the peculiar prevalence below .05 disappeared when the recalculated data were133

used. Hence, this distinction between reported and recalculated p-values allows us to distinguish between134

peculiarities due to reporting errors and peculiarities due to QRPs such as data peeking.135

Fourth, we examine the prevalence of p-values just below .05 by taking into account various models136

to test and explain characteristics of p-value distributions. We applied tests and fitted models to p-values137

below .05, in two ways. We first applied the non-parametric Caliper test (Gerber et al., 2010) comparing138

frequencies of p-values in an interval just below .05 to the frequency in the adjacent lower interval; a139

higher frequency in the interval closest to .05 is evidence for QRPs that seek to obtain just significant140

results. The Caliper test has also been applied to examine publication bias, by comparing just significant141

to just nonsignificant p-values (Kühberger et al., 2014), and to detect QRPs (Head et al., 2015). However,142

the Caliper test can only detect a a bump but not monotonic excess, as illustrated by the distributions of143

p-values in Figure 1. Therefore, we also attempted to model the distribution of significant p-values in144

order to investigate for all forms of excess (i.e., both a bump and monotonic excess), and illustrate the145

results and difficulties of this approach.146

In short, this paper studies the distribution of significant p-values in four ways. First, we verified147

whether a bump is present in reported p-values just below .05 with the Caliper test. Second, to examine148

how reporting errors might influence p-value distributions around .05, we analyzed only the recalculated149

p-values corresponding to those reported as .05. Third, we used the Caliper test to examine if a bump150

effect is present in recalculated p-values and whether evidence for a bump changed over time. Finally,151

we modeled the distribution of significant recalculated p-values in an attempt to also detect a monotonic152

excess of p-values below .05.153

DATA AND METHODS154

Data155

We investigated the p-value distribution of research papers in eight high impact psychology journals (also156

used in Nuijten et al., 2015). These eight journals were selected due to their high-impact across different157

subfields in psychology and their availability within the Tilburg University subscriptions. This selection158

also encompasses the journals covered by Masicampo and Lalande (2012) and Leggett et al. (2013). A159

summary of the downloaded articles is included in Table 1.160

Journal Acronym Timespan Articles downloaded Articles with extracted results (%) APA results extracted

Developmental Psychology DP 1985-2013 3,381 2,607 (77%) 37,658

Frontiers in Psychology FP 2010-2013 2,126 702 (33%) 10,149

Journal of Applied Psychology JAP 1985-2013 2,782 1,638 (59%) 15,134

Journal of Consulting and Clinical Psychology JCCP 1985-2013 3,519 2,413 (69%) 27,429

Journal of Experimental Psychology General JEPG 1985-2013 1,184 821 (69%) 18,921

Journal of Personality and Social Psychology JPSP 1985-2013 5,108 4,346 (85%) 101,621

Public Library of Science PLOS 2000-2013 10,303 2,487 (24%) 31,539

Psychological Science PS 2003-2013 2,307 1,681 (73%) 15,654

Total 30,710 16,695 (54%) 258,105

Table 1. Articles downloaded, articles with extracted APA results, and number of extracted APA test

results per journal.
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For these journals, our sample included articles published from 1985 through 2013 that were available161

in HTML format. For the PLOS journals, HTML versions of articles were downloaded automatically162

with the rplos package (v0.3.8; Chamberlain et al., 2015). This package allows an R user to search163

the PLOS database as one would search for an article on the website.2 We used this package to retrieve164

search results that include the subject ‘psychology’ for (part of) an article. For all other journals, HTML165

versions of articles were downloaded manually by the first author.166

APA test results were extracted from the downloaded articles with the R package statcheck (v1.0.1;167

Epskamp and Nuijten, 2015). The only requirement for this package to operate is a supply of HTML (or168

PDF) files of the articles that are to be scanned and statcheck extracts all test results reported according169

to the standards of the American Psychological Association (APA; American Psychological Association,170

2010). This format is defined as test results reported in the following order: the test statistic and degrees171

of freedom (encapsulated in parentheses) followed by the p-value (e.g., t(85) = 2.86, p = .005). This172

style has been prescribed by the APA since at least 1983 (American Psychological Association, 1983,173

2001), with the only relevant revision being the precision of the reported p-value, changing from two174

decimal places to three decimal places in the sixth edition from 2010. statcheck extracts t, F , χ2, Z175

and r results reported in APA style. Additional details on the validity of the statcheck package can be176

found in Nuijten et al. (2015).177

From the 30,710 downloaded papers, statcheck extracted 258,105 test results. We removed 55178

results, because these were impossible test results (i.e., F(0,55) = ... or r > 1). The final dataset thus179

included 258,050 test results. The extracted test results can have four different formats, where test results180

or p-values are reported either exactly (e.g., p = .042) or inexactly (e.g., p < .05). Table 2 shows the181

composition of the dataset, when split across these (in)exactly reported p-values and (in)exactly reported182

test results.183

Exact test statistic Inexact test statistic

Exact p-value 68,776 274 69,050 (27%)

Inexact p-value 187,617 1,383 189,000 (73%)

256,393 (99.36%) 1,657 (0.64%) 258,050 (100%)

Table 2. Composition of extracted APA test results with respect to exact and inexact reporting of

p-values or test statistics.

From this dataset, we selected six subsets throughout our analyses to investigate our research questions184

regarding a bump below .05. We analyzed (i) all reported p-values (N = 258,050) for a bump in their185

distribution just below .05. Subsequently we analyzed (ii) only exactly reported p-values (N = 69,050).186

It is possible that reporting or rounding errors have occurred among the reported p-values. To investigate187

the degree to which this happens at p = .05, we analyzed (iii) exactly reported test statistics that are188

accompanied by an exactly reported p-value of .05 (i.e., p = .05). This subset contains 2,470 results. To189

debilitate rounding errors and other factors influencing the reporting of p-values (e.g., Ridley et al., 2007),190

we also investigated the recalculated p-value distribution with (iv) p-values that were accompanied by191

exactly reported test statistics (N = 256,393). To investigate whether evidence for a bump differs for192

inexactly and exactly reported p-values, (v) 68,776 exactly reported test statistics with exactly reported193

p-values were analyzed. Finally, we used (vi) all recalculated p-values in 0-.05 for t, r, and F(d f1 = 1)194

values to model the effect size distribution underlying these p-values to investigate evidence of both a195

bump and monotonic excess.196

Methods197

We used the Caliper test and two new measures to examine if the observed p-value distribution shows198

evidence for a bump or monotonic excess below .05. We applied the two measures to the observed199

p-value distribution and we examined their performance to detect a bump or monotonic excess using a200

simulation study on data peeking. Data peeking was chosen because it is one of the most frequently used201

and well-known QRPs. Below, we explain the Caliper test, how the p-value distributions are modeled202

with the two new measures, and describe the design of the simulation study in more detail.203

2We note there are minor differences in the number of search results from the PLOS webpage and the rplos package for equal

searches. This is due to differences in the default search database for the webpage and the package. For technical details on this

issue, see https://github.com/ropensci/rplos/issues/75
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Caliper test204

In order to test for a bump of p-values just below .05, we applied the Caliper test (e.g., Gerber et al., 2010;205

Kühberger et al., 2014). This proportion test compares the frequencies of p-values in two intervals, such206

as the intervals .04-.045 and .045-.05. Let Pr denote the proportion of p-values of the interval .045-.05.207

Then, independent of the population effect sizes underlying the p-values, Pr should not be higher than .5208

in any situation because the p-value distribution should be monotone decreasing. Hence Pr > .5 signifies209

a bump of p-values just below .05.210

We carried out one-tailed binomial proportion tests, with H0 : Pr ≤ .5 and H1 : Pr > .5. For example,211

if 40 and 60 p-values are observed in the intervals .04-.045 and .045-.05, respectively, then Pr = .6 and212

the binomial test results in p-value = .0284, suggesting evidence for a bump below .05. We applied the213

Caliper test to the reported p-values (subsets one through three as described in the previous section) and214

recalculated p-values (subsets four and five), both for the entire dataset and each of the eight psychology215

journals.216

The Caliper test requires specifying the width of the intervals that are to be compared. For reported217

p-values, which are frequently rounded to two-decimal values, we selected the intervals (.03875-.04] and218

[.04875-.05) because there is a strong preference to report p-values to the second decimal in research219

papers (see also Hartgerink, 2015). For recalculated p-values we used the same interval width as used by220

Masicampo and Lalande (2012) and Leggett et al. (2013), which is .00125, corresponding to a comparison221

of intervals (.0475-.04875] and [.04875-.05). Note that rounding is not a problem for recalculated p-values.222

Considering that some journals might show small frequencies of p-values in these intervals, we also223

carried out Caliper tests with interval widths of .0025, .005, and .01. Note that, on the one hand, increasing224

interval width increases the statistical power of the Caliper test because more p-values are included in225

the test, but on the other hand also decreases power because Pr is negatively related to interval width226

whenever p-values correspond to tests of non-zero population effects. In other words, a bump just below227

.05 will tend more and more towards a monotonically decreasing distribution as the binwidth increases.228

To verify if evidence for a bump of p-values increased over time, we fitted a linear trend to proportion229

Pr of the Caliper test with binwidths .00125, .0025, .005, and .01. We computed these proportions for230

each year separately, for both the total dataset and per journal. Time was centered at the start of data231

collection, which was 1985 except for PLOS (2000), PS (2006; due to 0 p-values in the considered232

interval for preceding years), and FP (2010). The value .5 was subtracted from all Pr values, such that the233

intercept of the trend corresponds to the bump of p-values at the start of data collection, where 0 means234

no bump. A positive linear trend signifies an increase in the bump of p-values below .05 over time.235

Measures based on p-value distributions236

Figure 1 demonstrates that data peeking has a different effect on the p-value distribution depending on237

the true effect size. The distribution after data peeking does not monotonically increase for d = 0 (left238

panel), whereas it does increase monotonically for d = 0.5 (right panel). Consequently, the Caliper test239

will signal a bump of p-values for d = 0 (i.e., it will detect a bump), but not for d = 0.5.240

We examined how we may be able to detect both a bump and monotonic excess of p-values below241

.05. Figure 1 indicates that, for p-values close to zero (e.g., ≤ .00125) the p-value distributions with242

data peeking (solid lines) closely match the p-value distributions without data peeking (dashed lines). In243

other words, data-peeking in studies with initially nonsignificant p-values rarely results in tiny significant244

p-values, but more often in p-values larger than .00125. The basic idea of this analysis is therefore to245

estimate the ‘true’ effect size distribution using only these tiny p-values (i.e., ≤ .00125), assuming that246

none or a very small proportion of these p-values were affected by by data-peeking.247

We examined the performance of two measures to detect a bump or monotonic excess of p-values248

below .05. The first method compares the effect sizes estimated on p-values smaller than .00125 to effect249

sizes estimated using all p-values smaller than .05. The idea of this first method is that increasing the250

frequency of just-significant p-values decreases the effect size estimate. Indeed, the more right-skewed251

the p-value distribution, the higher the effect size estimate when keeping constant studies’ sample sizes252

(Simonsohn et al., 2014; van Assen et al., 2015). According to the first method, there is evidence253

suggestive of data peeking (or other QRPs leading to a bump of p-values just below .05) if the effect size254

estimate is considerably lower when based on all p-values than when based on only p-values ≤ .00125.255

The second method yields a measure of excess of p-values just below .05, for either a bump or

monotonic excess, by comparing the observed frequency of p-values in the interval .00125-.05 to the
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predicted frequency of p-values in that interval. This prediction is based on the effect size estimated using

the p-values smaller than .00125. If the ratio of observed over expected p-values is larger than 1, referred

to as statistic D, then this could indicate data peeking. Statistic D is calculated as

D =
po
.00125

1− po
.00125

× 1− pe
.00125

pe
.00125

(1)

with po
.00125 and pe

.00125 representing the proportion of p-values lower than .00125 observed and expected,256

respectively. Note that D is an odds ratio.257

Modeling p-value distributions258

For both measures from the previous section the expected p-value distribution needs to be derived and

compared to the observed p-value distribution. The observed p-value distribution of the psychology data

is based on all exactly reported statistics with test statistics t, r, and F(1,d f2), because these readily

provide the same effect measure. We used the Fisher transformed correlation, ρF , as effect size measure.

The distribution of the Fisher transformed correlation is approximated well by the normal distribution,

with Fisher transformation

ρF =
1

2
ln(

1+ r

1− r
) (2)

and standard error 1√
N−3

or 1√
d f2−1

. F(1,d f2) and t values can be transformed to correlations using

r =

F×d f1
d f2

F×d f1
d f2

+1
(3)

where F = t2.259

The expected p-value distribution was estimated under the assumption that the true effect size,

Fisher transformed correlation ρF , is normally distributed with µρF
and standard deviation τρF

. The two

parameters were estimated by minimizing the χ2-statistic

χ
2
j−1 =

J

∑
j=1

(r f o
j − r f e

j )
2

r f e
j

(4)

with r f o and r f e being the relative frequency of observed and expected p-values in interval j, respectively.

Minimization was done with the optim() function in R, where τ̂ was truncated to be positive. Interval

j is defined as (I j−1, I j) = (( j−1)x, jx)), with width x = .00025 whenever only the significant p-values

lower than .00125 were modeled (resulting in 5 intervals); .00125 when modeling all significant p-

values (i.e., p ≤ .05, 40 intervals); .025 when modeling all p-values (also 40 intervals). The relative

frequencies are conditional probabilities. For instance, r f o
2 is the proportion of observed p-values in

interval (I1 = .00025, I2 = .0005) whenever p-values lower than .00125 are examined. Expected relative

frequency r f e
j is computed as

r f e
j =

K

∑
k=1

P(I j−1 ≤ pk ≤ I j|Nk; ρ̂F ; τ̂ρF
)

K

∑
k=1

P(pk ≤ IJ |Nk; ρ̂F ; τ̂ρF
)

(5)

with the summation over all K significant test statistics. P corresponds to the probability that a p-value of260

study k (i.e., pk) is in a certain interval, which depends on the study sample size Nk and the two estimated261

parameters of the effect size distribution (i.e., ρ̂F , τ̂ρF
).262

Design of simulation study263

To examine the potential of the two measures to detect data peeking, their performance was examined264

on simulated data with and without data peeking. We used a two-group between-subjects design with265

24 participants per group (nk = 24), and compared their means using a t-test. The performance of both266

measures was examined as a function of true effect size µ (0; 0.2; 0.5; 0.8) and heterogeneity τ (0; 0.15).267
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In the data peeking conditions, data were simulated as follows: means and variances per group were268

simulated and a two-sample t-test was conducted. If this t-test was statistically significant (i.e., p ≤ .05),269

the p-value was stored, otherwise the data peeking procedure was started. In this data peeking procedure,270

one-third of the original sample size was added to the data before conducting another two-sample t-test.271

This data peeking procedure was repeated until a statistically significant result was obtained or three272

rounds of additive sampling had taken place (see osf.io/x5z6u for simulation functions). The simulations273

were stopped if 1,000,000 studies with a p-value below .1 were obtained for each combination of µ and τ .274

RESULTS AND DISCUSSION275

In this section, we report the results of our analyses in the following order for the subsets: all reported276

p-values (258,050 results), exactly reported p-values (69,050 results), p-values erroneously reported as277

equal to .05 (2,470 results), all recalculated p-values based on exactly reported test statistics (256,393278

results), recalculated p-values based on exactly reported test statistics and exactly reported p-values279

(68,776 results), and the modeling of p-value distributions based on recalculated p-values 0-.00125 and280

0-.05 (54,561 results and 127,509, respectively). These analyses apply the Caliper test to investigate281

evidence of a possible bump below .05. Subsequently, the results of the two measures are presented based282

on all recalculated p-values.283

Reported p-values284

Figure 2 shows the distribution for all reported p-values (i.e., 258,050; white bars) and exactly reported p-285

values (i.e., 69,050; blue bars). Results of the Caliper test indicate (i) there is a bump just below .05 when286

considering all reported p-values in bins .03875-.04 versus .04875-.05, N = 45,667,Pr = 0.905, p < .001287

and (ii) there is still a bump, but less so, when considering only exactly reported p-values in these bins,288

N = 4,900,Pr = 0.547, p < .001. The difference in bumps between these two subsets can be explained289

by the amount of p-values that are reported as < .05, which is 86% of all p-values reported as exactly290

equal to .05 and 14% of all reported p-values.291

Figure 2. Distributions of all reported p-values (white) and exactly reported p-values (blue) across eight

psychology journals. Binwidth = .00125.

To investigate whether this observed bump below .05 across exactly reported p-values originates from292
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one or multiple journals, we performed the Caliper test on the exactly reported p-values per journal. Table293

3 shows the results for these tests. The results indicate that there is sufficient and reliable evidence for294

a bump below .05 (i.e., Pr > .5) for the journals DP and JPSP and sufficient evidence, but debatable295

reliability for JAP, where the results depend on the binwidth. However, the other five journals show no296

evidence for a bump below .05 in exactly reported p-values at all. In other words, the bump below .05 in297

exactly reported p-values is mainly driven by the journals DP, JAP, and JPSP.298

Binwidth 0.00125 0.0025 0.005 0.01

x N Pr p x N Pr p x N Pr p x N Pr p

All 2,682 4,900 0.547 < .001 2,881 5,309 0.543 < .001 3,308 6,178 0.535 < .001 4,218 8,129 0.519 < .001

DP 319 531 0.601 < .001 336 567 0.593 < .001 383 653 0.587 < .001 464 843 0.55 0.002

FP 96 193 0.497 0.557 105 227 0.463 0.884 141 304 0.464 0.906 215 458 0.469 0.912

JAP 78 131 0.595 0.018 82 137 0.599 0.013 85 154 0.552 0.113 101 183 0.552 0.092

JCCP 246 517 0.476 0.874 267 562 0.475 0.889 308 641 0.48 0.848 395 823 0.48 0.882

JEPG 147 285 0.516 0.318 159 310 0.513 0.346 195 375 0.52 0.235 258 509 0.507 0.395

JPSP 1,252 2,097 0.597 < .001 1,310 2,207 0.594 < .001 1,408 2,399 0.587 < .001 1,623 2,869 0.566 < .001

PLOS 307 649 0.473 0.921 366 760 0.482 0.854 489 1,000 0.489 0.766 744 1,558 0.478 0.964

PS 237 497 0.477 0.859 256 539 0.475 0.886 299 652 0.459 0.984 418 886 0.472 0.957

Table 3. Caliper test for exactly reported p-values per journal for different binwidths. x = frequency of

p-values in .05 minus binwidth through .05, N = total frequency of p-values across both intervals in the

comparison, Pr = x/N, p = p-value of the binomial test. Significant results (α = .05, one-tailed)

indicating excess of p-values just below .05 and are reported in bold.

The Caliper test results for reported p-values indicate two things: (i) inexactly reported p-values299

severely distort the p-value distribution, and (ii) a bump below .05 is also found when only considering300

exactly reported p-values. Because inexact reporting of p-values causes excess at certain points of the301

p-value (e.g., the significance threshold .05; Ridley et al., 2007), we recommend only inspecting exactly302

reported p-values when examing p-value distributions.303

Considering only exactly reported p-values, there is sufficient evidence for a bump below .05 in the304

journals DP, JAP, and JPSP, but not in the remaining five journals (i.e., FP, JCCP, JEPG, PLOS, PS). A305

tentative explanation of the bump of p-values just below .05 for DP, JAP, and JPSP may be that QRPs that306

aim to obtain barely significant results are more frequent in the fields of these journals. However, another307

explanation may be that scientists in these fields are more prone to exactly report p-values just below .05308

(e.g., to emphasize they are really smaller than .05) than p-values considerably smaller than .05.309

Recalculated p-value distributions310

Recalculated when reported p = .05311

Results for reported p-values remain inconclusive with regard to the distribution of p-values, due to312

potential rounding or errors (Bakker and Wicherts, 2011; Nuijten et al., 2015; Veldkamp et al., 2014).313

Rounding and errors could result in an over-representation of p-values ≤ .05. To investigate the plausibility314

of this notion, we inspected recalculated p-values when p = .05 was reported. Figure 3 indicates that315

p-values that were reported as .05 show remarkable spread when recalculated, which indicates that the316

reported p-value might frequently be rounded or incorrect, assuming that the reported test statistics are317

correct. More specifically, 67.45% of p-values reported as .05 were larger than .05 when recalculated and318

32.55% were smaller than .05. This percentage does not greatly vary across journals (range 58.8%-73.4%319

compared to 67.45%). Taking into account rounding possibilities (i.e., widening the range of correct320

p-values to .045-.055), these percentages become 13.81% and 7.85%, respectively, meaning that at least321

21.66% of the p-values reported as .05 was incorrectly reported. In comparison, p-values reported as322

p = .04, p = .03, or p = .02 show smaller proportions of downward rounding when compared to p = .05323

(i.e., 53.33%, 54.32%, 50.38%, respectively compared to 67.45%). When taking into account potential324

rounding errors in the initial reporting of p-values, the discrepancy remains but to a smaller extent (i.e.,325

11.74%, 9.57%, 8.03%, respectively compared to 13.81%). These results provide direct evidence for326

the QRP ”incorrect rounding of p-value” (John et al., 2012), which contributes to a bump or monotonic327

excess just below .05.328

The discrepancy between recalculated p-values and p-values reported as equal to .05 highlights329

the importance of using recalculated p-values when underlying effect distributions are estimated as in330

p-uniform and p-curve (van Assen et al., 2015; Simonsohn et al., 2014). When interested in inspecting the331

p-value distribution, reported p-values can substantially distort the p-value distribution, such that results332
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Figure 3. Distribution of recalculated p-values where the p-value is reported as p = .05. 9.7% of the

results fall outside the range of the plot, with 3.6% at the left tail and 6.1% at the right tail. Binwidth =

.00125

become biased if we rely solely on the reported p-value. Such a discrepancy indicates potential rounding333

of p-values, erroneous reporting of p-values, or strategic reporting of p-values. The p-value distortions334

can be (partially) corrected for by recalculating p-values based on reported test statistics. Additionally,335

potential distortions to the distribution at the third decimal place due to the rounding of p-values to the336

second decimal (Hartgerink, 2015) is also solved by recalculating p-values. We continue with recalculated337

p-values in our following analyses.338

Recalculated p-values339

Figure 4 shows the distribution of all recalculated p-values (i.e., set of 256,393 results) and of recalculated340

p-values whenever the reported p-value is exact (i.e., set of 68,776 results). The recalculated p-value341

distribution is markedly smoother than the reported p-value distribution (see Figure 2) due to the absence342

of rounded p-values.343

After inspecting all recalculated p-values, we did not observe a bump just below .05, N = 2,808,Pr =344

.5, p = 0.508. When we analyzed the recalculated p-values per journal (Table 4), there is no evidence345

for a bump below .05 in any of the journals. Additionally, we inspected all recalculated p-values that346

resulted from exactly reported p-values. For this subset we did observe a bump below .05, N = 809,Pr =347

0.564, p = 0.000165 (blue histogram in Figure 4) for the smallest binwidth (i.e., .00125), but this effect348

was not robust across larger binwidths, as shown in Table 5. This table also specifies the results for a349

bump below .05 per journal, with sufficient evidence of a bump only in JPSP. This finding, however, was350

only observed for binwidths .00125 and .0025, not for larger binwidths. Considering the results from351

the recalculated p-values, there is sparse evidence for the presence of a bump below .05, opposed to352

widespread evidence (Masicampo and Lalande, 2012; Leggett et al., 2013; Head et al., 2015). Moreover,353

interpretation of the bump for JPSP is not straightforward; it may also be that authors of JPSP are more354

prone to report exact test statistics if the p-value is just below .05 than whenever p-values are considerably355

smaller than .05.356
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Figure 4. Recalculated p-values for exactly reported test statistics (white bars), and recalculated

p-values for exactly reported test statistics where p-values are also exactly reported (blue bars). Binwidth

= .00125

Excessive significance over time357

The regression results of the development of a bump below .05 over time, based on recalculated p-values,358

are shown in Table 6. Results indicate that there is no evidence for a linear relation between time in years359

and the degree to which a bump of p-values below .05 is present across the different binwidths (only360

results for binwidth .00125 are presented; results for the other binwidths available at http://osf.io/96kbc/).361

Conversely, for PLOS there is some evidence for a minor increase of a bump throughout the years362

(b = .072, p = .039), but this result is not robust for binwidths .0025, .005, and .01. These results contrast363

with Leggett et al. (2013), who found a linear relation between time and the degree to which a bump364

occurred for JEPG and JPSP. Hence, our findings contend the increase of a bump below .05 for the period365

1965-2005 in psychology (Leggett et al., 2013). In other words, our results of the Caliper test indicate366

that, generally speaking, there is no evidence for an increasing prevalence of p-values just below .05 or of367

QRPs causing such a bump in psychology.368

Binwidth 0.00125 0.0025 0.005 0.01

x N Pr p x N Pr p x N Pr p x N Pr p

All 1,404 2,808 0.5 0.508 2,808 5,761 0.487 0.973 5,761 11,824 0.487 0.997 11,824 25,142 0.47 > .999

DP 184 382 0.482 0.779 382 829 0.461 0.989 829 1,710 0.485 0.9 1,710 3,579 0.478 0.996

FP 30 69 0.435 0.886 69 172 0.401 0.996 172 376 0.457 0.956 376 799 0.471 0.955

JAP 73 145 0.503 0.5 145 270 0.537 0.124 270 556 0.486 0.765 556 1,168 0.476 0.952

JCCP 160 308 0.519 0.265 308 633 0.487 0.763 633 1,267 0.5 0.522 1,267 2,706 0.468 > .999

JEPG 81 164 0.494 0.593 164 332 0.494 0.608 332 683 0.486 0.778 683 1,535 0.445 > .999

JPSP 640 1,268 0.505 0.379 1,268 2,557 0.496 0.668 2,557 5,174 0.494 0.802 5,174 10,976 0.471 > .999

PLOS 125 260 0.481 0.752 260 541 0.481 0.828 541 1,170 0.462 0.995 1,170 2,544 0.46 > .999

PS 111 212 0.524 0.268 212 427 0.496 0.577 427 888 0.481 0.88 888 1,835 0.484 0.919

Table 4. Caliper test for exactly recalculated p-values per journal for different binwidths. x = frequency

of p-values in .05 minus binwidth through .05, N = total frequency of p-values across both intervals in

the comparison, Pr = x/N, p = p-value of the binomial test. Significant results (α = .05, one-tailed)

indicating excess of p-values just below .05 and are reported in bold.
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Binwidth 0.00125 0.0025 0.005 0.01

x N Pr p x N Pr p x N Pr p x N Pr p

All 456 809 0.564 < .001 809 1,617 0.5 0.5 1,617 3,403 0.475 0.998 3,403 7,402 0.46 1

DP 46 87 0.529 0.334 87 185 0.47 0.811 185 358 0.517 0.281 358 756 0.474 0.932

FP 15 27 0.556 0.351 27 87 0.31 > .999 87 192 0.453 0.915 192 437 0.439 0.995

JAP 8 20 0.4 0.868 20 29 0.69 0.031 29 65 0.446 0.839 65 141 0.461 0.844

JCCP 43 78 0.551 0.214 78 161 0.484 0.682 161 364 0.442 0.988 364 780 0.467 0.971

JEPG 27 50 0.54 0.336 50 98 0.51 0.46 98 209 0.469 0.834 209 479 0.436 0.998

JPSP 184 305 0.603 <.001 305 547 0.558 0.004 547 1,117 0.49 0.764 1,117 2,451 0.456 > .999

PLOS 76 149 0.51 0.435 149 323 0.461 0.926 323 698 0.463 0.978 698 1,470 0.475 0.975

PS 57 93 0.613 0.019 93 187 0.497 0.558 187 400 0.468 0.912 400 888 0.45 0.999

Table 5. Caliper tests for exactly recalculated and exactly reported p-values per journal, including

alternative binwidths. x = frequency of p-values in .05 minus binwidth through .05, N = total frequency of

p-values across both intervals in the comparison, Pr = x/N, p = p-value of the binomial test. Significant

results (α = .05, one-tailed) indicating excess of p-values just below .05 and are reported in bold.

Timespan Coefficient Estimate SE t p

All 1985-2013 Intercept 0.007 0.017 0.392 0.698

All Years (centered) -0.001 0.001 -0.492 0.627

DP 1985-2013 Intercept -0.043 0.056 -0.769 0.448

DP Years (centered) 0.001 0.003 0.193 0.849

FP 2010-2013 Intercept -0.182 0.148 -1.233 0.343

FP Years (centered) 0.055 0.079 0.694 0.560

JAP 1985-2013 Intercept 0.041 0.081 0.504 0.619

JAP Years (centered) -0.001 0.005 -0.208 0.837

JCCP 1985-2013 Intercept 0.077 0.058 1.315 0.200

JCCP Years (centered) -0.006 0.004 -1.546 0.134

JEPG 1985-2013 Intercept -0.022 0.124 -0.176 0.862

JEPG Years (centered) 0.001 0.007 0.097 0.924

JPSP 1985-2013 Intercept -0.002 0.027 -0.062 0.951

JPSP Years (centered) 0.000 0.002 -0.005 0.996

PLOS 2006-2013 Intercept -0.382 0.114 -3.344 0.016

PLOS Years (centered) 0.072 0.027 2.632 0.039

PS 2003-2013 Intercept 0.081 0.078 1.045 0.323

PS Years (centered) -0.009 0.013 -0.669 0.520

Table 6. Linear regression coefficients as a test of increasing excess of p-values just below .05. Intercept

indicates the degree of excess for the first year of the estimated timespan (> 0 = excess). Significant

results (α = .05, two-tailed) are reported in bold.
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Results of two measures based on modeling p-value distributions369

Data of eight psychology journals370

Figure 5 depicts the observed p-value distribution and the expected p-value distribution corresponding to371

the fitted effect size distribution based on p-values ≤ .00125. Estimates for p-values ≤ .05 were effect372

size ρ̂F = 0 and heterogeneity τ̂ρF
= .183, and ρ̂F = .149 and τ̂ρF

= .106 for p-values ≤ .00125. Misfit373

between observed and expected p-value distribution for p ≤ .00125 was minor (χ2 = 4.1), indicating that374

the observed p-values ≤ .00125 were well approximated by the estimated effect size distribution.375

Figure 5. Observed proportions of p-values (circles) and expected proportions of p-values based on ρ̂F

and τ̂ρF
estimated from 0-.00125 (crosses).

Our first measure suggests practices leading to a monotonic excess of p-values below .05, because376

the estimated effect size based on all significant p-values (i.e., 0) is much smaller than the supposedly377

unbiased estimate based on only the very small p-values (i.e., .183). Moreover, assuming that effect378

sizes are normally distributed with ρF = 0 and τρF
= .183, combined with the degrees of freedom of the379

observed effects, implies that only 27.5% of all effects would be statistically significant. However, of all380

reported p-values, 74.7% were statistically significant, but this difference may at least partly be caused by381

other factors such as publication bias. It is highly unlikely that the average true effect size underlying382

statistically significant results in psychology is truly zero. It remains undecided, however, whether this383

very low estimate is mainly due to QRPs leading to a downward bias of the effect size estimate, or to a384

misspecification of the model, an issue we revisit later in the paper.385

For the second measure that compares the ratio of observed and expected p-values below .05, we386

found D = .701, which does not suggest data peeking but under-reporting of p-values (29.9%) in the387

p-value interval .00125-.05. The simulation results that follow below, however, demonstrated that the388

measure D performs badly under effect size heterogeneity. Since heterogeneity is underlying the observed389

data, we conclude that the measure D is not useful for investigating evidence of a bump or monotonic390

excess of p-values.391

Simulation study392

Table 7 shows the results of the two measures for data simulated with and without data peeking. The393

column headers show the mean (i.e., µ) and heterogeneity (i.e., τ) of the simulated conditions, with the394
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corresponding ρF and τρF
on the Fisher transformed correlation scale. The first set of rows shows the395

results for the data simulated without data peeking, of which we discuss the results first.396

τ = 0 τ = .15

p-values
µ = 0

ρF = 0

µ = .2
ρF = .099

µ = .5
ρF = .247

µ = .8
ρF = .390

µ = 0

ρF = 0

µ = .2
ρF = .099

µ = .5
ρF = .247

µ = .8
ρF = .390

Without

data peeking
0-1 ρ̂F 0 0.103 0.258 0.413 0 0.103 0.258 0.413

τ̂ρF
0 0 0 0 0.077 0.077 0.077 0.077

0-.05 ρ̂F 0 0.103 0.258 0.413 0 0.103 0.258 0.413

τ̂ρF
0 0 0 0.001 0.077 0.077 0.077 0.077

Misfit χ2 0 0 0 0 0 0 0 0

0-.00125 ρ̂F 0 0.103 0.258 0.413 0.1 0.107 0.259 0.413

τ̂ρF
0 0 0 0.001 0.025 0.076 0.077 0.077

Misfit χ2 0 0 0 0 0 0 0 0

D 1 1 1 1 1.205 1.006 1.003 1.001
With

data peeking
0-.05 ρ̂F 0 0 0.117 0.345 0 0 0.075 0.360

τ̂ρF
0 0 0 0.038 0 0.055 0.137 0.091

Misfit χ2 126,267.4 50,298.4 696.6 101.6 14,867.6 1,209.5 576.3 340.6

N 759,812 811,296 936,517 994,974 434,660 525,023 707,650 889,681

0-.00125 ρ̂F 0 0.075 0.218 0.366 0.066 0.161 0.283 0.402

τ̂ρF
0 0 0 0 0.036 0 0 0.012

Misfit χ2 6.9 3.2 7.1 11.8 2 1.9 2.6 2.1

N 9,729 21,576 95,615 350,482 14,791 34,530 124,991 366,875

D 1.977 1.976 1.835 1.166 1.628 1.620 1.472 1.164

Table 7. Results of parameter estimation of the distribution of effect sizes and measures of data peeking

as a function of population effect size (µ,ρF ), population heterogeneity (τ), and data peeking, for the

simulated data. Results are based on all p-values 0-1, p-values ≤ .05, and ≤ .00125. ρ̂F = estimated

population effect, τ̂ρF
= estimated population heterogeneity, misfit 0-.05 = misfit of estimates based on

p-values 0-.05, misfit 0-.00125 = misfit of estimates based on p-values 0-.00125 (bold indicates p < .05),

N = number of results included in estimation, D = comparison of observed- and expected p-value

frequencies.

The results for the data without data peeking inform us on (i) whether the effect size distribution397

parameters can accurately be recovered using only very small (≤ .00125) or small p-values (≤ .05), and398

(ii) if both measures accurately signal no data peeking. Note that ρF is slightly overestimated due to399

categorizing the p-value distribution into 40 categories: the estimates based on all p-values (i.e., ρ̂F , first400

row) are slightly larger than the population parameter (i.e., ρF , column headers).401

Answering the first question of accurate parameter estimates, whenever there is no heterogeneity402

(i.e., τρF
= 0) both ρF and τρF

are accurately recovered. When heterogeneity is non-zero, the parameters403

were also accurately recovered, but not when ρF = 0. Here, ρF was overestimated (equal to .1) and τρF
404

underestimated (.025 rather than the true .077), while at the same time the misfit was negligible.405

The latter result, that the effect is overestimated under heterogeneity when ρF = 0, is explained406

by the fact that a p-value distribution can accurately be modeled with an infinite range of negatively407

correlated values of ρF and τρF
. An increase in ρF yields a more right-skewed distribution, which is408

hardly distinguishable from the right-skewed distribution caused by an increase in τρF
. The similar effects409

of both parameters on the fitted p-value distribution already hint at potential problems for both measures,410

because performance of these measures is dependent on accurate estimates of these paramaters.411

With respect to the second question, whether the measures accurately signal the absence of data412

peeking, the first measure does so in both homo- and heterogeneous conditions, whereas the second413

measure correctly signals absence only under homogeneity. The first measure signals data peeking if the414

estimate of ρF is smaller when based on p ≤ .05 than on p ≤ .00125. Previously, we already noted that415

effect size estimates were identical to population effect sizes under homogeneity, and equal or larger416

when based on p ≤ .00125 under heterogeneity. This suggests that the first measure behaves well if there417

is no data peeking (but see the conclusion section). The second measure, D, performed well (i.e., was418

equal to 1) under homogeneity, but incorrectly suggested data peeking under heterogeneity. For instance,419

D = 1.205 for ρF = 0 and τ = .15, which suggests that 20.5% more p-values were observed in the interval420

.00125-.05 than were expected based on the ρ̂F estimate even though no data peeking occurred. The421

explanation for the breakdown of the performance of D is that the parameters of the effect size distribution422

were not accurately recovered, overestimating the average effect size and underestimating heterogeneity423

based on small p-values. This yields a lower expected frequency of higher p-values (between .00125 and424
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.05), thereby falsely suggesting data peeking.425

The last rows present the results obtained when data peeking does occur. First consider the estimates426

of ρF and the performance of the first measure of data peeking. The estimates of ρF confirm that data427

peeking results in underestimation, particularly if the average true effect size is not large (i.e., µ = .2 or428

.5). Moreover, downward bias of ρF decreases when it is estimated on p-values ≤ .00125 than on ≤ .05,429

accurately signaling data peeking with the first measure. For instance, if ρF = .099 and τ = 0, ρ̂F = .075430

when based on p-values ≤ .00125 and ρ̂F = 0 when based on p-values ≤ .05. Together with the good431

performance of this measure under no data peeking, these results suggest that the first measure may be432

useful to detect data keeping in practice.433

Consider the estimates of τρF
and the performance of D. Similar to conditions under no data peeking,434

heterogeneity is grossly underestimated when using p-values ≤ .00125. Hence D cannot be expected435

to perform well under data peeking. Although D-values seem to correctly signal data peeking in all436

conditions and decrease as expected when the effect size increases, these values do not correspond to437

the actual values of data peeking. For instance, consider the condition with µ = .5 and τρF
= .15; of the438

582,659 simulated p-values in interval .00125-.05, 106,241 p-values were obtained through data-peeking,439

which yields a true D = 1.223, which is very different from the estimated D = 1.472 in Table 7.440

Finally, consider the (mis)fit of the estimated p-value distribution. Despite the considerable downward441

bias in heterogeneity estimate τ̂ρF
, the simulated p-value distribution is mostly well approximated by442

the expected p-value distribution, as indicated by the small values of the χ2 statistic for p-values in443

0-.00125. Hence, good fit again does not imply accurate parameter estimates. The misfit of the estimated444

distribution for p-values ≤ .05 is indicated by large χ2-values, particularly when the p-value distribution445

is not monotonically decreasing (which is the case for, e.g., µ = 0).446

To conclude, this simulation study showed that under true homogeneity both measures of data peeking447

can accurately signal both absence and presence of data peeking. However, under true heterogeneity,448

heterogeneity is underestimated and the performance of D breaks down, while results suggest that449

comparing estimates of average effect size, the first measure, may still accurately signal both the absence450

and presence of data peeking.451

LIMATIONS AND CONCLUSION452

Before concluding, some limitations of our method to collect p-values need to be addressed. First,453

statcheck (Epskamp and Nuijten, 2015; Nuijten et al., 2015), the R package used to collect the454

observed data, extracts all APA test results reported in the text of an article, but not those reported in455

tables. Hence, our selection of results is potentially not representative of all reported results, but this456

most likely does not affect results. Second, our analysis assumed that test statistics other than p-values457

were accurately reported. If test statistics and degrees of freedom are incorrectly reported, recalculated458

p-values are wrong as well. We identified some erroneous test statistics (e.g., d f1 = 0 and r > 1), but459

do not know how often these errors occur and how they may have affected our results. We assumed that460

p-value errors were made due to the overemphasis on them in current day research.461

In light of conflicting findings and interpretations, we aimed to provide final answers to the questions462

(1) Does a bump or monotonic excess of p-values below .05 exist in psychology? and (2) Did evidence463

for a bump increase over time in psychology? Answering these research questions may inform us on464

the prevalence of QRPs and its development over time in psychology. Using statcheck, we extracted465

and analyzed 258,050 test results conforming to APA-style across 30,710 articles from eight high impact466

journals in psychology, and distinguished between results with inexactly reported p-values, exactly467

reported p-values, and recalculated p-values. The basic idea underlying our analyses is that QRPs distort468

the p-value distribution. We argued that only some QRPs yield an excess of p-values just below .05, and469

show that QRPs sometimes yield a bump and sometimes only monotonic excess of p-values just below470

.05. We used the Caliper test to test for a bump, and suggested two measures to examine monotic excess.471

Starting with the existence of a bump in psychology, we drew the following conclusions. First,472

inexactly reported p-values are not useful for analyses of p-value distributions. Second, a bump in exactly473

reported p-values indeed exists in psychology journals DP, JAP, and JPSP. QRPs leading to just significant474

p-values can explain these bumps, but we also cannot rule out the explanation that scientists in these475

particular journals are more prone to exactly report p-values just below .05 (e.g., to emphasize they are476

really smaller than .05) than p-values considerably smaller than .05. Third, contradicting Leggett et al.477

(2013), the bump and evidence of a bump in psychology did not increase over the years. Fourth, when478
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analyzing only the exactly reported p-values equal to .05, clear and direct evidence was obtained for the479

QRP ”incorrect rounding of p-value” (John et al., 2012). Evidence of this QRP, which contributed to480

the bump in exactly reported p-values in psychology, was found in all psychology journals. Fifth, after481

removing reporting errors and analyzing the recalculated reported p-values, evidence of a bump was482

found only for JPSP. Again, this may have been caused by QRPs or by scientists being more prone to483

report all test statistics when p-values are just below .05 than if they are considerable smaller than zero.484

The conclusions obtained with the two measures investigating monotonic and non-monotic excess are485

not satisfactory. First, performance of both measures is dependent on accurately recovering parameters486

of the effect size distribution, which turned out to be difficult; estimates of effect size heterogeneity487

and average effect size are highly correlated and unstable when based on only statistically significant488

findings. Second, simulations show that one of the measures, D, does not accurately assess the QRP data489

peeking when effect sizes are heterogeneous. Third, even though performance of the second measure490

(i.e., difference between effect sizes based on contaminated and supposedly uncontaminated p-values)491

is affected by estimation problems, it correctly signaled data peeking in the simulations. Fourth, when492

applying the second measure to the observed distribution of significant p-values in psychology, the493

measure found evidence of monotonic excess of p-values; the average effect size estimate based on all494

these p-values was 0, which seems very unrealistic, and suggests the use of QRPs in psychology leading495

to p-values just below .05.496

Notwithstanding the outcome of the second measure, suggesting QRPs that cause monotonic excess,497

we do not consider it as direct evidence of such QRPs in psychology. Lakens (p.3; 2015) suggests that ”it is498

essential to use a model of p-value distributions before drawing conclusions about the underlying reasons499

for specific distributions of p-values extracted from the scientific literature.” We explicitly modeled the500

effect size distribution and by using the degrees of freedom of test results also model the effect sizes’501

power and the p-value distribution. But we fear this is not and cannot be sufficient. First of all, we could502

not accurately recover the effect size distribution under heterogeneity in our simulation study, even if all503

assumptions of our model were met. This rendered measure D unfruitful when there is heterogeneity,504

and severely limits the usefulness of the second measure that compares estimated average effect sizes.505

Second, devising other models may yield other results and thereby other interpretations (Benjamini and506

Hechtlinger, 2014; Goodman, 2014; Lakens, 2015a; de Winter and Dodou, 2015).507

Results of all the aforementioned models are most likely not robust to violations of their assumptions.508

For instance, we assume a normal distribution of true effect sizes. This assumption is surely violated, since509

the reported p-values arise from a mixture of many different types of effects, such as very large effects510

(manipulation checks), effects corresponding to main hypotheses, and zero effects (’control’ variables).511

Additionally, consider the QRPs themselves; we examined the effect of only one QRP, data peeking, in512

one of its limited variants. Other QRPs exist that also increase the prevalence of p-values just below .05,513

such as multiple operationalizations of a measure and selecting the first one to be significant. Other QRPs514

even increase the frequency of very small p-values (van Aert et al., 2015). We deem it impossible to515

exhaustively model QRPs and their effects, considering the difficulties we show for a single QRP that is516

clearly defined. To conclude, we fear that Gelman and O’Rourke (2014) may be right when suggesting517

that drawing conclusions with regard to any QRP based on modeling p-value distributions obtained from518

automatically extracted results is unfruitful.519

On the other hand, we do recommend modeling effect size and p-value distributions of results520

that all intend to test the same hypothesis, to prevent contamination by irrelevant test results (Bishop521

and Thompson, 2015; Simonsohn et al., 2015). Examples of methods that focus on similar results are522

p-uniform (van Assen et al., 2015) and p-curve (Simonsohn et al., 2014), which model statistically523

significant statistics pertaining to one specific effect and estimate the effect size based on these statistics524

while correcting for publication bias. Further research should reveal if both methods can also be used525

to detect and correct for p-hacking in the context of estimating one particular effect size. Preliminary526

results suggest, however, that detection and correcting for p-hacking based on statistics alone is rather527

challenging (van Aert et al., 2015).528
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