A peer-reviewed version of this preprint was published in PeerJ on 20 July 2016.

<u>View the peer-reviewed version</u> (peerj.com/articles/2201), which is the preferred citable publication unless you specifically need to cite this preprint.

Coddington JA, Agnarsson I, Cheng R, Čandek K, Driskell A, Frick H, Gregorič M, Kostanjšek R, Kropf C, Kweskin M, Lokovšek T, Pipan M, Vidergar N, Kuntner M. 2016. DNA barcode data accurately assign higher spider taxa. PeerJ 4:e2201 <u>https://doi.org/10.7717/peerj.2201</u>

- 1 2
- DNA barcode data accurately identify higher taxa
- Jonathan A. Coddington *¹, Ingi Agnarsson ^{1,5}, Ren-Chung Cheng ², Klemen Čandek ², Amy Driskell ¹, Holger Frick ³, Matjaž Gregorič ², Rok Kostanjšek ⁴, Christian Kropf ³, Matthew Kweskin ¹, Tjaša Lokovšek ², Miha Pipan ^{2,6}, Nina Vidergar ², Matjaž Kuntner *^{1,2} 3
- 4
- 5
- 6
 - ¹National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- 7 8 ² EZ Lab, Institute of Biology at Research Centre of the Slovenian Academy of Sciences and
- 9 Arts, Ljubljana, Slovenia
- ³ Department of Invertebrates, Natural History Museum Bern, Switzerland 10
- ⁴ Department of Biology, University of Ljubljana, Slovenia 11
- ⁵ Department of Biology, University of Vermont, Burlington, VT, USA 12
- 13 ⁶ Currently at: Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA,
- 14 United Kingdom
- 15

*Authors for correspondence 16

- 17 Jonathan A. Coddington, Department of Entomology, National Museum of Natural History,
- Smithsonian Institution, Washington, D.C. 20013-7012, USA, coddington@si.edu 18
- 19 and
- Matjaž Kuntner, Research Centre, Slovenian Academy of Sciences and Arts, Novi trg 2, P.O. 20
- 21 Box 306, SI-1001, Ljubljana, Slovenia, kuntner@gmail.com

22 23 Funding

- 24 This work was made possible by a Swiss Contribution to the enlarged EU grant to M.
- 25 Kuntner and C. Kropf and the Laboratories of Analytical Biology, National Museum of
- 26 Natural History, Smithsonian Institution.
- 27
- 28 Keywords: taxonomic impediment, genus, family, genome, Global Genome Initiative,
- 29 Smithsonian.
- 30

NOT PEER-REVIEWED

31 Abstract

- 32 The use of unique DNA sequences as a method for taxonomic identification is no longer
- 33 fundamentally controversial, even though debate continues on the best markers, methods, and
- 34 technology to use. Although both existing databanks such as GenBank and BOLD, as well as
- 35 reference taxonomies, are imperfect, in best case scenarios "barcodes" (whether single or multiple, organelle or nuclear, loci) clearly are an increasingly fast and inexpensive method 36
- 37 of identification, especially as compared to manual identification of unknowns by
- 38 increasingly rare expert taxonomists. Because most species on Earth are undescribed, a
- 39 complete reference database at the species level is impractical in the near term. The question
- 40 therefore arises whether unidentified species can, using DNA barcodes, be accurately
- 41 assigned to more inclusive groups such as genera and families-taxonomic ranks of
- putatively monophyletic groups for which the global inventory is more complete and stable. 42
- 43 We used a carefully chosen test library of CO1 sequences from 49 families, 313 genera, and
- 44 816 species of spiders to assess the accuracy of genus and family-level identifications. We
- 45 used BLAST queries of each sequence against the entire library and got the top ten hits
- 46 resulting in 8160 hits. The percent sequence identity was reported from these hits (PIdent,
- range 75-100%). Accurate identification (PIdent above which errors totaled less than 5%) 47
- 48 occurred for genera at PIdent values > 95 and families at PIdent values > 91, suggesting these
- 49 as heuristic thresholds for generic and familial identifications in spiders. Accuracy of
- 50 identification increases with numbers of species/genus and genera/family in the library;
- 51 above five genera per family and fifteen species per genus all identifications were correct. 52
- We propose that using percent sequence identity between conventional barcode sequences
- 53 may be a feasible and reasonably accurate method to identify animals to family/genus. 54
- However, the quality of the underlying database impacts accuracy of results; many outliers in 55 our dataset could be attributed to taxonomic and/or sequencing errors in BOLD and
- 56 GenBank. It seems that an accurate and complete reference library of families and genera of
- 57 life *could* provide accurate higher level taxonomic identifications cheaply and accessibly,
- 58 within years rather than decades.
- 59

NOT PEER-REVIEWED

60 Introduction

61

62 Accurate identification of biological specimens has always limited the application of

- 63 biological data to important societal problems. Obstacles are well-known and difficult: the
- vast majority of species are undescribed scientifically (Erwin 1982; May 1992; Mora et al.
- 65 2011); some unknown but large fraction of higher taxa are not monophyletic (Goloboff et al.
- 66 2009; Pyron & Wiens 2011); many species can only be identified if certain life stages are
- available (e.g. adults (Coddington & Levi 1991)), classical data sources such as morphology
- 68 imperfectly track species identity; the discipline of taxonomy continues to dwindle; the
- 69 classical taxonomic process of identification is mostly manual and cannot scale to provide the 70 amounts of data required for real-time decisions such as environmental monitoring, invasive
- 71 species, climate change, etc.
- 72 DNA sequence data potentially can eliminate most of these obstacles. DNA barcoding uses a
- fragment of the mitochondrial gene cytochrome c oxidase subunit I (CO1) as a unique species
- 74 diagnosis/identification tool in the animal kingdom (Hebert et al. 2003), with analogous
- single to several locus protocols applied for vascular plants, ferns, mosses, algae and fungi
- 76 (Chase & Fay 2009; Kress & Erickson 2007; Liu et al. 2010; Nitta 2008; Saunders 2005),
- protists (Scicluna et al. 2006), and prokaryotes (Barraclough et al. 2009). Due to relative ease
- and inexpensive sequencing, DNA barcoding is a popular tool in species identification and
- taxonomic applications (e.g. Doña et al. 2015; Xu et al. 2015), and the method is no longer
- 80 fundamentally controversial at the species level (Čandek & Kuntner 2015; Anslan &
- 81 Tedersoo 2015; Pentinsaari et al. 2014; Wang et al. 2015).
- 82 While most species remain undescribed the situation is not so dire for larger monophyletic
- 83 groups such as clades accorded the Linnean ranks of genus or family. In assessing the state of
- 84 knowledge about biodiversity, it is important to distinguish between the first scientific
- discovery of an exemplar of a lineage, and phylogenetic understanding of that lineage.
 Phylogenetic understanding—both tree topology and consequent taxonomic changes, and
- Phylogenetic understanding—both tree topology and consequent taxonomic changes, are
 research programs with no clear end in sight. Linnean rank is partially arbitrary, and one
- expects that the number of higher taxa will probably increase over time as understanding
- improves. Discovery, however, can have an objective definition: the year of the earliest
- 90 formal taxonomic description of a member of the lineage or taxonomic group in which it is
- 91 currently included. By this definition the earliest possible discovery of an animal lineage is
- 92 1758 (Linné 1758), or in the case of spiders, 1757 (Clerck 1757).
- 93 More illuminating are the latest discoveries of lineages with the rank of family within larger
- 94 clades, because the data tell us something about progress towards broad scale knowledge of
- 95 biodiversity. The most recent discovery of a family of birds, for example is the Broad-billed
- 96 Sapayoa, *Sapayoa aenigma* Hunt, 1903 (Sapayoaidae). The most recently discovered
- 97 mammal family is Kitti's hog-nosed bat, *Craseonycteris thonglongyai* Hill, 1974
- 98 (Craseonycteridae). For flowering plants, it is *Gomortega keule* (Molina) Baill, 1972
- 99 (Gomertegaceae). For bees, it is *Stenotritus elegans* Smith, 1853 (Stenotritidae). For spiders,
- 100 a megadiverse and poorly known group, it is *Trogloraptor marchingtoni* Griswold, Audisio
- 101 & Ledford, 2012 (Trogloraptoridae), but the second most recent discovery of an
- 102 unambiguously new spider family was in 1955 (Gradungulidae). Figure 1 illustrates the
- 103 tempo of first discovery of families for these five well-known clades. At the family level,
- 104 these curves are essentially asymptotic, implying that science is close to completing the
- 105 inventory of clades ranked as families for these large lineages. On the other hand, for
- 106 Bacteria and Archaea (Figure 1), as one would expect, the curve is not asymptotic at all but
- 107 sharply increasing; prokaryote discovery and understanding is obviously just beginning.

NOT PEER-REVIEWED

- 108 In fact, although many new eukaryote families are named every year, the vast majority of
- 109 these new names result from advances in phylogenetic understanding, not biological 110 discovery of major new forms of life. The last ten years of Zoological Record suggests that
- roughly 5-10 truly new families are discovered per year.
- roughly 5-10 truly new families are discovered per year.
- 112 In the context of the above question—approximate taxonomic identification of organisms
- 113 using DNA sequences—these data suggest that our knowledge of major clades of life is
- 114 approaching completion. The Global Genome Initiative (GGI; http://www.mnh.si.edu/ggi/) of
- 115 the Smithsonian Institution via the GGI Knowledge Portal (http://ggi.eol.org/) has tabulated a
- 116 complete list of families of life, which total 9,642—on the whole a surprisingly small
- 117 number. 10,000 barcodes, more or less, seems like a feasible goal. If we were able to
- assemble a complete database of DNA sequences at the family level, would it suffice to
- 119 identify any eukaryote on Earth to the family level?
- 120 While the literature on species identification success of DNA barcodes comprises thousands
- 121 of studies, only a few have tested their effectiveness at the level of higher taxonomic units. In
- 122 the seminal paper on DNA barcodes Hebert et al. (2003) established that animal CO1
- 123 sequences can roughly assign taxa to phyla (96% success) or orders (100% success).
- 124 However, their test was based on a neighbor joining tree-building approach, and it remained
- 125 unknown if sequence data itself, i.e. percent identity among taxa, can be used in this way.
- 126 Similarly, Nagy et al. (2012) showed that DNA barcoding in reptiles usually correctly
- 127 assigned barcodes to species, genus and family. Their approach was phylogenetic: they tested
- 128 whether including a sequence in tree building rendered the higher group non-monophyletic,
- 129 which would imply failure. Finally, Wilson et al. (2011) provided a similar tree based test in
- sphingid moths, and established reliabilities of correct generic and subfamily taxonomic
- assignments between 74 and 90% using a liberal, and only 66-84% using a strict, tree-based
- 132 criterion. These authors argued that tree-based methods perform better than sequence
- 133 comparison methods, but that reliability, of course, depends on the library completeness.
- 134 Our project not only contributes original DNA barcode data for Central European spiders, but
- also works in synergy with the GGI towards a permanent preservation of genomic
- 136 biodiversity: the formation of a collection of deeply frozen spider tissues and their DNA. We
- 137 provide: 1) tissues of reliably identified species of Central European spiders permanently
- 138 frozen in ethanol, and their vouchers photographed and deposited in public museums; 2)
- 139 permanently frozen genomic DNA of these species; 3) publicly accessible DNA barcodes for
- 140 these species (genetic sequence of cytochrome oxidase I CO1) as public identification tool
- 141 (Hebert et al. 2003), freely available to facilitate organism identification, taxonomy, ecology
- 142 and conservation.
- 143 In addition, this project addresses to what extent higher level taxonomic units such as the
- 144 Linnean family can be reliably identified using barcodes of unknown spiders, and specifically
- asks what percent sequence identity in BLAST results is necessary to correctly identify
- 146 unknown taxa to genus and/or family. We ask what is the percent sequence identity value
- 147 above which 5% or less of higher level (genus/family) taxonomic identifications are incorrect
- and if the frequency of correct identifications correlated with the number of taxa in the
- 149 database.
- 150

151 Materials & Methods

- 152
- 153 Specimen processing and imaging

NOT PEER-REVIEWED

- We used automated and manual sampling methods for collecting spiders in the field in numerous localities in Slovenia and Switzerland. Faunistic and sampling details are published elsewhere (Čandek et al. 2013; see also 2015 corrigendum). Collected spiders were fixed in absolute ethanol immediately after being caught and the ethanol was replaced on the following day. Spiders were frozen at -80°C, same day, or as soon as possible. In the
- 159 laboratory they were expertly identified, labeled, photographed and processed for DNA
- 160 extraction and sequencing. Voucher specimens (voucher codes starting with 0078) are
- 161 deposited at National Museum of Natural History, Smithsonian Institution (Washington D.C.,
- 162 USA), with duplicates (voucher codes starting with ARA) at Naturhistorisches Museum der
- 163 Burgergemeinde Bern (Switzerland) and EZ LAB, ZRC SAZU (Ljubljana, Slovenia).
- 164
- Voucher images are published along with their barcodes (see Table 1) at http://ezlab.zrcsazu.si/dna (Supplemental Figure 1).
- 167
- 168 Tissues
- 169 After specimen identification and processing, up to four legs (or in the case of very small
- individuals the whole prosoma) of a spider were removed and stored in fresh absolute ethanol
- in cryovials. Part of the tissue was used for DNA isolation while the other part remains
- permanently frozen at -80 °C at GGI facilities. The maintenance and use of these materials
- abides by the international legal standards and conventions of the biological genetic heritage
- 174 (The Access and Benefit Sharing agreement as part of the 2010 Nagoya protocol).
- 175
- 176 *Molecular procedures*
- 177 At Laboratories of Analytical Biology (National Museum of Natural History, Smithsonian
- 178 Institution, hereafter LAB), specimens were extracted using the AutoGenPrep phenol-
- 179 chloroform automated extractor (AutoGen). Samples were digested overnight in buffer
- 180 containing proteinase-k before extraction. At EZ Lab, specimens (codes starting with ARA)
- 181 were extracted using the Mag MAXTM Express magnetic particle processor Type 700 with
- 182 DNA Multisample kit (Applied Biosystems, Foster City, CA) following the manufacturer's
- 183 protocols.
- 184
- 185 At EZ Lab PCR was carried out using mainly primers LCO1490 and HCO2198 (Folmer et al.
- 186 1994). Standard reaction volume was 35 μ L containing 2.3 mM MgCl₂ (Promega), 0.15 mM
- 187 each dNTP (Biotools), 0.4 μ M of each primer, 0.2 μ L 10 mg/mL BSA (Promega), 0.2 μ L
- 188 GoTaqFlexi polymerase (Promega) and 2 μ L DNA. PCR cycling conditions were as follows:
- an initial denaturation step of 2 min at 94° C followed by 35 cycles of 40 sec at 94° C, 1 min
- 190 at $48^{\circ}-52^{\circ}$ C, 1 min at 72° C, with final extension at 72° C for 3 min. Additional primers were
- used for PCR for a few problematic specimens: dgLCO1490 and dgHCO2198 (Meyer &
- Paulay 2005) and the reverse primer Chelicerate-R2 (Barrett & Hebert 2005). Cycling
- 193 parameters for difficult specimens were: 20 cycles of usual cycling protocol (above) followed
- by 15 cycles of 1.5 min at 94° C, 1.5 min at 52° C and 2 min at 72° Cm version 5.6.6 (Kearse
- et al. 2012). EZ Lab PCR products were sequenced at Macrogen Inc. (Amsterdam,
- 196 Netherlands), and the sequences were edited and processed in Geneious Pro version 5.6.6197 (Kearse et al. 2012).
- 198
- 199 At LAB, PCR was carried out using the primer pair LCO1490 (Folmer et al. 1994) and
- 200 Chelicerate R-2 (Barrett & Herbert 2005). A 10 µL reaction mix contained 2.5 mM MgCl₂,
- $201 \quad 0.3 \ \mu\text{M}$ of each primer, 0.5 mM dNTPs, and 5 units of Biolase DNA polymerase (Bioline).
- 202 PCR cycling conditions were as follows: 35 cycles of 30 sec at 95° C, 30 sec at 48° C, 45 sec
- 203 at 72° C. PCR products were cleaned with ExoSAP-IT (Affymetrix), sequenced using Big

Dyes (Life Technologies) and run on a 3730x1 DNA sequencer (Applied Biosystems).
 Sequences were examined using Sequencher 5.01 (Gene Codes).

206

207 Barcode library

208 209

While we targeted 649 bp long DNA barcodes we also submitted (Table 1) 18 shorter 210 fragments (>570 bp) as per requirements of The Barcode of Life Data System BOLD systems 211 (Ratnasingham & Hebert 2007). We combined the 298 species barcodes from this study with 212 publically available Araneae sequences from BOLD retrieved 4 December 2013, for a total of 213 816 species sequences, which formed the test library for this study. Sequences from BOLD 214 were initially included if the sequence length was at least 600 bases and identification was to 215 species. We further filtered and curated the data to exclude sequences whose identification 216 was anonymous or by non-arachnologists, diverged dramatically from all other spider 217 sequences, or for other reasons the sequences were not deemed to be reliable. We did not, 218 however, assess the accuracy of every sequence, as it is well known that both BOLD and 219 GenBank contain errors of various kinds, and we wanted our test library to reflect real world 220 conditions. A single sequence was used per species, resulting in 816 species representing 313

- 221 genera and 49 families. Eighteen sequences were singletons at the family level; the maximum 222 number of species per family was 224. 157 sequences were singletons at the genus level; the
- 223 maximum number of species per genus was 34.
- The standalone BLAST+ suite 2.2.28 (Altschul et al. 1990; Zhang et al. 2000) was used to
- create a custom BLAST database from these sequences. Each sequence was then queried
- against the full set using blastn (MegaBLAST task, minimum e value of 1e-10, maximum of
- top ten hits other than the hit of the query to itself). For each hit the percent of identical
- nucleotides in the aligned region (PIdent) was calculated by BLAST. Custom Python scripts
 (GitHub https://github.com/mkweskin/spider-blast) were used to parse the results, removing
- (GitHub https://github.com/mkweskin/spider-blast) were used to parse the results, removing
 the match of the query to itself and to score whether hits matched the genus and family of the
- 231 query sequence or not. Obviously, if the generic identification matched, the family
- identification also matched; families therefore always match more often than genera.
- 233 On the other hand, singleton generic sequences cannot match correctly at the genus level,
- and, likewise, singleton family sequences cannot match correctly at the family level. We
- included singletons as targets in order to model more realistically BLAST searches against
- the BOLD database (many sequences in BOLD are higher level singletons), and also to test
- more strongly the ability of sequences with two or more species per either genus or family to
- match correctly. Including 18 singleton family sequences and 157 singleton genus sequences,
- the usefulness of barcodes as supraspecific identification aids
- 240 the usefulness of barcodes as supraspecific identification aids.
- However, because the 18 unique family sequences must fail at both the family and genus
- 242 levels, and the 157 unique genus level sequences must fail at the genus level, these necessary
- failures were not included in the overall assessments of the ability of barcode sequences to
- 244 provide accurate identifications at supraspecific levels.
- 245

246Results

- The 816 query sequences returned 8160 total hits (Supplemental Table 1). PIdent scores
- ranged from 75% to 100%. Figure 2 shows the frequency distributions of PIdent values of
- correct and incorrect identifications at the genus and family rank.

NOT PEER-REVIEWED

- 1. 95% of incorrect genus identifications were below PIdent = 95 when all hits for all 250 251 queries are included, which suggests the latter value as a heuristic threshold to delimit incorrect from correct identifications (for these data). For only the highest rank hits 252 253 whose PIdent \geq 95, 98% of genus identifications were correct.
- 254 2. 95% of incorrect family identifications were below PIdent = 91 when all hits for all 255 queries are included, which suggests the latter value as a heuristic threshold to delimit 256 incorrect from correct identifications (for these data). For only the highest rank hits 257 whose PIdent \geq 91, 97% of family identifications were correct.
- 258 3. Library accuracy is crucial, but sequencing, labelling, and identification errors are 259 difficult to detect *a priori*. The highest ranked incorrect family identification was 260 Steatoda grossa (Theridiidae) to Meta menardi (Tetragnathidae), at PIdent = 96. 261 Further study of the *M. menardi* sequence shows that the BOLD record is probably a mislabeled Steatoda. The first true incorrect family identification occurs at a PIdent 262 value of 88: the best hit for Octonoba (Uloboridae) is Amaurobius (Amaurobiidae). 263
 - 4. For the 136 genera with at least two species in the library, 76% (n=103) best matched congeners. Thirty-three failed, perhaps because sequences were incorrectly identified taxonomically, or the sequence itself may be erroneous.
 - 5. The distributions of PIdents for correct family and genus identifications differ significantly from the distributions of incorrect identifications (Figure 2).
- 269 6. Plotted against increasing numbers of species/genus, and genera/family, the 270 proportion of top ten PIdent values that exceed the above suggested threshold values increases. Roughly speaking, 15 species per genus, and 5 genera per family, are 272 sufficient to ensure that best hits represent correct identifications (Figure 3).

273 274 Discussion

275

264

265 266

267

268

271

276 We show that standard DNA barcodes can accurately identify unknown specimens to genus 277 and family level given sufficient sequence identity and sufficient taxonomic representation in 278 the database. Accurate identification (PIdent above which less than 5% of identifications 279 were incorrect) occurred for genera at PIdent values > 95 and families at PIdent values \geq 91, 280 suggesting these as heuristic thresholds for generic and familial identifications in spiders 281 (shaded in Figure 2). Accuracy of identification increases with numbers of species/genus and 282 genera/family; above five genera per family and 15 species per genus all identifications were 283 correct (Figure 3).

284 The accurate identification of specimens remains a critical challenge for megadiverse groups 285 such as arthropods, most other invertebrates, plants, fungi, protists etc. Morphological 286 identification to species, or even more inclusive taxonomic ranks like genera and families, in 287 many cases requires extensive training, and for most groups taxonomic expertise is limited 288 and dwindling-the so called 'taxonomic impediment' (Rodman & Cody 2003). DNA 289 barcodes have been proposed as convenient tools to overcome this impediment by making 290 identification a purely technical procedure available to any interested researcher or even 291 'citizen scientists'. However, the accuracy of such a tool strongly depends on the scope and 292 quality of the barcode library (Smit et al. 2013). Currently available data on databanks like 293 BOLD and GenBank are extensive for some groups, yet the vast majority of species on earth 294 have not yet been barcoded, much less discovered and described taxonomically-each of 295 these tasks is enormous. Even for existing barcoding data, the majority of sequences lack 296 taxonomic identification, limiting their utility (e.g. only 58% of Araneae in BOLD are 297 identified to species, and of those many are not correctly identified, as shown in our results; 298 see also Shen et al. 2013). Therefore, the identification of unknown specimens through

Peer| PrePrints | https://doi.org/10.7287/peeri.preprints.1633 1 CC-BY 4.0 Open Access | rec: 7 Jan 2016, publ: 7 Jan 2016

NOT PEER-REVIEWED

- 299 blasting against BOLD or GenBank will be inaccurate if the databases lack close hits or
- 300 contain errors. While the ideal database would allow species-level identification by
- 301 containing barcodes from expertly identified and vouchered specimens of all species, we
- 302 hypothesized that rapid surveys of well-known biotas can help quickly to build valuable tools
- 303 allowing identification of larger clades such as genera and families.
- 304 Although we were careful to screen available barcode sequences from BOLD to produce a
- test library with as few errors as possible, it is certainly possible that errors remained, either
- 306 due to mistakes in the lab or taxonomic identifications of vouchers. For example, *Meta* 207 max m k (Tetra crackidee) blacts day <math>S(r + k - k) = (T + k - k) + (D + k
- 307 *menardi* (Tetragnathidae) blasted to *Steatoda grossa* (Theridiidae) at PIdent = 96, and
 308 BLAST searches on GenBank suggest this *Meta* sequence is actually a *Steatoda*. Likewise
- 308 BLAST searches on GenBank suggest this *Meta* sequence is actually a *Steatoda*. Likewise, 309 the linyphiids *Agyneta orites* and *Incestophantes frigidus* sequences were identical; one of
- 310 these records is probably wrong. These sorts of errors bias identifications and limit utility of
- barcodes. Other examples of identical barcode sequences were all congeners, and therefore
- are less likely to involve errors but could indicate faults in taxonomy: *Arctosa maculata* and
- 313 A. fulvolineata, Bolyphantes luteolus and B. alticeps, Pardosa alacris and P. trifrons, and
- 314 *Pityohyphantes tacoma* and *P. cristatus*. Likewise the genus *Neriene* (Linyphidae) seems
- 315 non-monophyletic and identifications were thus not accurate.
- 316

317 Conclusions

318

319 These results suggest that accurate identification of unknown taxa to the genus and family

- 320 level is feasible through DNA barcoding. Database quality is crucial. Numbers of potential
- 321 matches at generic and familial ranks also affect the probability that an unknown sequence
- 322 will blast best to the correct family or genus. Unlike the inventory of species, discovery of
- 323 family-level clades of life also seems far advanced—few eukaryotic families, apparently,
- remain to be discovered. Taken together, these results suggest that barcode-targeted
- 325 sequencing of exemplars from all families of life (and most genera, if possible) should be an
- important scientific priority. It would enable approximate taxonomic identification of anyorganism anywhere on Earth by rapid, cheap, purely technical procedures requiring no
- 327 organish anywhere on Earth by rapid, cheap, purely technical procedures requiring no 328 specialist knowledge—certainly an important milestone in the on-going attempt to discover,
- 329 classify, and understand the Earth's biota.
- 330

331 Acknowledgements

- Portions of the laboratory and/or computer work were conducted in and with the support of the LAB facilities of the National Museum of Natural History
- the L.A.B. facilities of the National Museum of Natural History.
- 334

335 References336

- Altschul SF, Gish W, Miller W, Myers EW, and Lipman DJ. 1990. Basic local alignment
 search tool. *Journal of Molecular Biology* 215:403-410.
- Anslan S and Tedersoo L. 2015. Performance of cytochrome c oxidase subunit I (COI),
 ribosomal DNA Large Subunit (LSU) and Internal Transcribed Spacer 2 (ITS2) in
 DNA barcoding of Collembola. *European Journal of Soil Biology* 69:1-7.
- 342 Barraclough TG, Hughes M, Ashford-Hodges N, and Fujisawa T. 2009. Inferring
- evolutionarily significant units of bacterial diversity from broad environmental
 surveys of single-locus data. *Biology Letters* 5:425-428.

245	Dense DDU and ULA of DDN 2005, U. of fair and the share have have den Construction
345 346	Journal of Zoology-Revue Canadienne De Zoologie 83:481-491.
347	Čandek K. Gregorič M. Kostanišek R. Frick H. Kronf C. and Kuntner M. 2013. Targeting a
348	portion of central European spider diversity for permanent preservation. <i>Biodiversity</i>
349	Data Journal 1:e980
350	Čandek K. Gregorič M. Kostanišek R. Frick H. Kronf C and Kuntner M. 2015. Corrigendum:
351	Targeting a portion of central European spider diversity for permanent preservation
352	Riodiversity Data Journal 3:e4301
353	Čandek K and Kuntner M. 2015. DNA barcoding gap: Reliable species identification over
354	morphological and geographical scales. <i>Molecular Ecology Resources</i> 15:268–277.
355	Chase MW, and Fay MF. 2009. Barcoding of plants and fungi. <i>Science</i> 325:682-683.
356	Clerck C. 1757. Aranei Suecici, descriptionibus et figuris oeneis illustrati.ad genera
357	subalterna redacti speciebus ultra LX determinati. Svenska Spindlar.uti sina hufvud-
358	slagter undelte samt. Stockholmiae: [Publ. not given].
359	Coddington JA, and Levi HW. 1991. Systematics and evolution of spiders (Araneae). Annual
360	Review of Ecology and Systematics 22:565-592.
361	Doña J. Diaz-Real J. Mironov S. Bazaga P. Serrano D and Jovani R. 2015. DNA barcoding
362	and minibarcoding as a powerful tool for feather mite studies. <i>Molecular Ecology</i>
363	<i>Resources</i> 15:1216–1225.
364	Erwin TL. 1982. Tropical forests: Their richness in Coleoptera and other arthropod species.
365	The Coleopterists Bull 36(1):74-75.
366	Folmer O, Black M, Hoeh W, Lutz R, and Vrijenhoek R. 1994. DNA primers for
367	amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan
368	invertebrates. <i>Molecular Marine Biology and Biotechnology</i> 3:294-299.
369	Goloboff PA, Catalano SA, Mirande JM, Szumik CA, Arias JS, Kallersjo M, and Farris JS.
370	2009. Phylogenetic analysis of 73 060 taxa corroborates major eukaryotic groups.
371	<i>Cladistics</i> 25:211-230.
372	Hebert PDN, Cywinska A, Ball SL, and DeWaard JR. 2003. Biological identifications
373	through DNA barcodes. Proceedings of the Royal Society of London Series B-
374	Biological Sciences 270:313-321.
375	Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A,
376	Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, and Drummond A. 2012.
377	Geneious Basic: An integrated and extendable desktop software platform for the
378	organization and analysis of sequence data. <i>Bioinformatics</i> , 28, 1647-1649.
379	Kress WJ, and Erickson DL. 2007. A two-locus global DNA barcode for land plants: the
380	coding rbcL gene complements the non-coding trnH-psbA spacer region. Plos One 2.
381	Linné C. 1758. Systema Naturae per regna tria naturae, secundum
382	classes,ordines,genera,species cum characteribus differentiis,synonymis,locis. Editio
383	decima, reformata. Holmiae, tomus 1; 1-821: [Publ. not given].
384	Liu Y, Yan HF, Cao T, and Ge XJ. 2010. Evaluation of 10 plant barcodes in Bryophyta
385	(Mosses). Journal of Systematics and Evolution 48:36-46.
386	May RM. 1992. How many species inhabit the earth. Sci Am Oct. 1992:42-48.
387	Meyer CP, and Paulay G. 2005. DNA barcoding: Error rates based on comprehensive
388	sampling. Plos Biology 3:2229-2238.
389	Mora C, Tittensor DP, Adl S, Simpson AG, and Worm B. 2011. How many species are there
390	on Earth and in the ocean? Plos Biology.
391	Nagy ZT, Sonet G, Glaw F, and Vences M. 2012. First large-scale DNA barcoding
392	assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly
393	designed COI primers. <i>Plos One</i> 7.

NOT PEER-REVIEWED

394	Nitta JH. 2008. Exploring the utility of three plastid loci for biocoding the filmy ferns
395	(Hymenophyllaceae) of Moorea. <i>Taxon</i> 57:725-736.
396	Pentinsaari M, Hebert PDN and Mutanen M. 2014. Barcoding beetles: A regional survey of
397	1872 species reveals high identification success and unusually deep interspecific
398	divergences. PLoS ONE 9(9):e108651
399	Pyron RA, and Wiens JJ. 2011. A large-scale phylogeny of Amphibia including over 2800
400	species, and a revised classification of extant frogs, salamanders, and caecilians.
401	Molecular Phylogenetics and Evolution 61:543-583.
402	Ratnasingham S, and Hebert PDN. 2007. BOLD: The Barcode of Life Data System
403	(www.barcodinglife.org). Molecular Ecology Notes 7:355-364.
404	Rodman JE, and Cody JH. 2003. The taxonomic impediment overcome: NSF's partnerships
405	for enhancing expertise in taxonomy (PEET) as a model. Systematic Biology 52:428-
406	435.
407	Saunders GW. 2005. Applying DNA barcoding to red macroalgae: A preliminary appraisal
408	holds promise for future applications. Philosophical Transactions of the Royal Society
409	B-Biological Sciences 360:1879-1888.
410	Scicluna SM, Tawari B, and Clark CG. 2006. DNA barcoding of Blastopystis. Protist
411	157:77-85.
412	Shen YY, Chen X and Murphy RW. 2013. Assessing DNA barcoding as a tool for species
413	identification and data quality control. <i>PLoS ONE</i> 8(2):e57125.
414	Smit J, Reijnen B, and Stokvis F. 2013. Half of the European fruit fly species barcoded
415	(Diptera, Tephritidae); a feasibility test for molecular identification. ZooKeys
416	365:279-305.
417	Wang XB, Deng J, Zhang JT, Zhou QS, Zhang YZ and Wu SA. 2015. DNA barcoding of
418	common soft scales (Hemiptera: Coccoidea: Coccidae) in China. Bulletin of
419	Entomological Research 105(5):545-554.
420	Wilson JJ, Rougerie R, Schonfeld J, Janzen DH, Hallwachs W, Hajibabaei M, Kitching IJ,
421	Haxaire J, and Hebert PDN. 2011. When species matches are unavailable are DNA
422	barcodes correctly assigned to higher taxa? An assessment using sphingid moths. Bmc
423	Ecology 11:18-Article No.: 18.
424	Xu X, Liu F, Chen J, Li D and Kuntner M. 2015. Integrative taxonomy of the primitively
425	segmented spider genus Ganthela (Araneae: Mesothelae: Liphistiidae): DNA
426	barcoding gap agrees with morphology. Zoological Journal of the Linnean Society
427	175:288–306.
428	Zhang Z, Schwartz S, Wagner L, and Miller W. 2000. A greedy algorithm for aligning DNA
429	sequences. Journal of Computational Biology 7:203-214.
430	
431	
432	

438 contained species) of families for six major clades of life, 1758-2010.

439

440

NOT PEER-REVIEWED

441 442

Figure 2. Frequency distributions of correct and incorrect identifications by percent sequence
identity (PIdent) for the top ten and/or best hits at the genus and family level. Shaded areas
include hits where no more than 5% of identifications were incorrect.

446 447

455 456

457 Table 1. Original sequences this project submitted to BOLD. Legend: MNH, SI = National Museum of Natural History, Smithsonian Institution; EZ LAB = Evolutionary Zoology Lab, 458

ZRC SAZU; NMBE = Naturhistorisches Museum der Burgergemeinde Bern; SVN = 459

- 460 Slovenia; CHE = Switzerland; MYS = Malaysia.
- 461

			BOLD	BOLD	Voucher	
Family	Genus	Species	specimen	sequence	stored	Collected
-		-	page	page	at	In
Theridiidae	Sardinidion	blackwalli	00786271	SPSLO321-13	MNH, SI	SVN
Philodromidae	Philodromus	albidus	00786272	SPSLO312-13	MNH, SI	SVN
Gnaphosidae	Drassodes	pubescens	00786273	SPSLO291-13	MNH, SI	SVN
Gnaphosidae	Micaria	pulicaria	00786274	SPSLO293-13	MNH, SI	SVN
Thomisidae	<i>Xysticus</i>	erraticus	00786275	SPSLO322-13	MNH, SI	SVN
Gnaphosidae	Gnaphosa	bicolor	00786276	SPSLO292-13	MNH, SI	SVN
Linyphiidae	Agyneta	saxatilis	00786277	SPSLO298-13	MNH, SI	SVN
Gnaphosidae	Zelotes	apricorum	00786278	SPSLO295-13	MNH, SI	SVN
Gnaphosidae	Trachyzelotes	pedestris	00786279	SPSLO294-13	MNH, SI	SVN
Salticidae	Pseudeuophrys	lanigera	00786280	SPSLO316-13	MNH, SI	SVN
Segestriidae	Segestria	senoculata	00786281	SPSLO317-13	MNH, SI	SVN
Salticidae	Heliophanus	auratus	00786282	SPSLO315-13	MNH, SI	SVN
Dictynidae	Argenna	subnigra	00786283	SPSLO288-13	MNH, SI	SVN
Clubionidae	Clubiona	pseudoneglecta	00786286	SPSLO286-13	MNH, SI	SVN
Dysderidae	Dysdera	adriatica	00786287	SPSLO289-13	MNH, SI	SVN
Theridiidae	Paidiscura	pallens	00786288	SPSLO319-13	MNH, SI	SVN
Lycosidae	Pardosa	hortensis	00786289	SPSLO307-13	MNH, SI	SVN
Theridiidae	Robertus	scoticus	00786290	SPSLO320-13	MNH, SI	SVN
Linyphiidae	Porrhomma	рудтаеит	00786292	SPSLO301-13	MNH, SI	SVN
Salticidae	Heliophanus	aeneus	00786293	SPSLO314-13	MNH, SI	SVN
Linyphiidae	Diplocephalus	crassilobus	00786294	SPSLO296-13	MNH, SI	SVN
Linyphiidae	Agyneta	simplicitarsis	00786295	SPSLO299-13	MNH, SI	SVN
Dysderidae	Dysdera	adriatica	00786296	SPSLO290-13	MNH, SI	SVN
Titanoecidae	Titanoeca	tristis	00786297	SPSLO324-13	MNH, SI	SVN
Tetragnathidae	Metellina	merianae	00786298	SPSLO318-13	MNH, SI	CHE
Linyphiidae	Tenuiphantes	mengei	00786301	SPSLO300-13	MNH, SI	CHE
Thomisidae	<i>Xysticus</i>	kochi	00786303	SPSLO323-13	MNH, SI	SVN
Agelenidae	Malthonica	silvestris	00786304	SPSLO283-13	MNH, SI	SVN
Linyphiidae	Tenuiphantes	cristatus	00786305	SPSLO302-13	MNH, SI	CHE
Amaurobiidae	Amaurobius	ferox	00786307	SPSLO284-13	MNH, SI	SVN
Lycosidae	Pardosa	ferruginea	00786309	SPSLO306-13	MNH, SI	CHE
Lycosidae	Pardosa	oreophila	00786310	SPSLO308-13	MNH, SI	CHE
Lycosidae	Pardosa	proxima	00786311	SPSLO309-13	MNH, SI	SVN
Lycosidae	Arctosa	maculata	00786312	SPSLO305-13	MNH, SI	SVN
Salticidae	Evarcha	michailovi	00786313	SPSLO313-13	MNH, SI	SVN
Araneidae	Hypsosinga	sanguinea	00786314	SPSLO285-13	MNH, SI	SVN
Lycosidae	Pardosa	riparia	00786315	SPSLO310-13	MNH, SI	SVN
Linyphiidae	Pityohyphantes	phrygianus	00786316	SPSLO236-12	MNH, SI	CHE
Linyphiidae	Ceratinella	brevipes	00786317	SPSLO234-12	MNH, SI	CHE
Linyphiidae	Gonatium	rubellum	00786318	SPSLO212-12	MNH, SI	CHE
Linvphiidae	Mughiphantes	mughi	00786319	SPSLO227-12	MNH. SI	CHE
Liocranidae	Agroeca	brunnea	00786320	SPSLO247-12	MNH. SI	SVN
Lycosidae	Pardosa	oreophila	00786321	SPSLO254-12	MNH, SI	CHE
Linvphiidae	Mughiphantes	mughi	00786322	SPSLO217-12	MNH. SI	CHE
Araneidae	Hypsosinga	albovittata	00786323	SPSLO191-12	MNH. SI	CHE
Uloboridae	Uloborus	walckenaerius	00786324	SPSLO282-12	MNH, SI	SVN
Theridiidae	Steatoda	bipunctata	00786325	SPSLO276-12	MNH. SI	CHE
Araneidae	Zygiella	x-notata	00786326	SPSLO193-12	MNH. SI	CHE
Theridiidae	Épisinus	truncatus	00786327	SPSLO270-12	MNH, SI	CHE

TABLES

NOT PEER-REVIEWED

Linyphiidae	Agnyphantes	expunctus	00786328	SPSLO203-12	MNH, SI	CHE
Theridiidae	Enoplognatha	latimana	00786329	SPSLO269-12	MNH, SI	CHE
Araneidae	Neoscona	adianta	00786330	SPSLO192-12	MNH, SI	SVN
Linvphiidae	Gonatium	rubens	00786331	SPSLO213-12	MNH. SI	CHE
Salticidae	Evarcha	arcuata	00786332	SPSL0259-12	MNH SI	CHE
Nemesiidae	Nemesia	nannonica	00786333	SPSL 0311-13	MNH SI	SVN
Theridiidae	Robertus	mediterraneus	00786334	SPSL 0275 12	MNH SI	CHE
Lyaosidaa	Avetona	fulvolineata	00786334	SI SLO275-12 SPSL 0250 12	MNH SI	SVN
Lycosidae	Arciosa	juivolineala	00780330	SFSL0250-12	MINH, SI	SVIN
Lycosidae	Paraosa .		00780337	SPSL0251-12	MINH, SI	SVIN
Salticidae	Macaroeris	niaicolens	00786338	SPSL0262-12	MNH, SI	SVN
Linyphildae	Ostearius	melanopygius	00786339	SPSL0122-12	MNH, SI	SVN
Theridiidae	Theridion	betteni	00786340	SPSLO277-12	MNH, SI	CHE
Linyphiidae	Palliduphantes	pallidus	00786341	SPSL0233-12	MNH, SI	CHE
Linyphiidae	Lepthyphantes	leprosus	00786342	SPSLO214-12	MNH, SI	SVN
Linyphiidae	Tenuiphantes	alacris	00786343	SPSLO241-12	MNH, SI	CHE
Lycosidae	Trochosa	spinipalpis	00786344	SPSLO137-12	MNH, SI	SVN
Dictynidae	Dictyna	uncinata	00786345	SPSLO197-12	MNH, SI	SVN
Theridiidae	Asagena	phalerata	00786346	SPSLO156-12	MNH, SI	SVN
Thomisidae	<i>Xysticus</i>	audax	00786347	SPSLO180-12	MNH, SI	SVN
Salticidae	Hasarius	adansoni	00786348	SPSLO261-12	MNH, SI	SVN
Linyphiidae	Microlinyphia	impigra	00786350	SPSLO228-12	MNH, SI	CHE
Linvphiidae	Tiso	vagans	00786351	SPSLO246-12	MNH. SI	CHE
Linyphiidae	Obscurinhantes	obscurus	00786354	SPSL0231-12	MNH SI	CHE
Miturgidae	Cheiracanthium	mildei	00786355	SPSL 0139-12	MNH SI	SVN
Linyphiidae	Topuinhantas	jacksoni	00786356	SPSL 0242 12	MNH SI	CHE
Tetragnathidae	Motolling	sagmantata	00786357	SPSL 0152 12	MNH SI	SVN
Lyaosidaa	Dandosa	blanda	00786359	SI SLO152-12 SDSL 0252-12	MNH SI	
Themisidee	Furaosa Diana	linena	00786350	SFSL0235-12 SPSL 0174 12	MNIL SI	
Thomisidae	Diaea Totomon atlan	uvens	00786361	SPSL01/4-12 SPSL 0267 12	MINH, SI	SVIN
	Tetragnatha	pinicola	00786361	SPSL0207-12	MINH, SI	CHE
Salticidae	Salticus	scenicus	00786362	SPSL0265-12	MNH, SI	CHE
Hahniidae	Hahnia	difficilis	00786363	SPSLO202-12	MNH, SI	CHE
Theridiidae	Phylloneta	sisyphia	00786364	SPSL0274-12	MNH, SI	CHE
Lycosidae	Alopecosa	accentuata	00786365	SPSLO248-12	MNH, SI	CHE
Philodromidae	Philodromus	vagulus	00786366	SPSLO257-12	MNH, SI	CHE
Miturgidae	Cheiracanthium	erraticum	00786367	SPSLO138-12	MNH, SI	SVN
Araneidae	Agalenatea	redii	00786368	SPSLO095-12	MNH, SI	SVN
Dictynidae	Dictyna	arundinacea	00786369	SPSLO196-12	MNH, SI	CHE
Salticidae	Neon	reticulatus	00786370	SPSLO150-12	MNH, SI	SVN
Linyphiidae	Minicia	marginella	00786371	SPSLO120-12	MNH, SI	SVN
Thomisidae	<i>Xysticus</i>	desidiosus	00786372	SPSLO183-12	MNH, SI	SVN
Theridiidae	Theridion	varians	00786374	SPSLO173-12	MNH, SI	SVN
Lycosidae	Pirata	piraticus	00786375	SPSLO255-12	MNH, SI	CHE
Thomisidae	Xvsticus	macedonicus	00786376	SPSLO281-12	MNH. SI	CHE
Salticidae	Sibianor	aurocinctus	00786377	SPSLO266-12	MNH. SI	CHE
Clubionidae	Clubiona	reclusa	00786378	SPSL0195-12	MNH SI	CHE
Theridiidae	Platnickina	tincta	00786380	SPSL 0167-12	MNH SI	SVN
Salticidae	I tutnickina Icius	subinarmis	00786381	SPSL 01/8 12	MNH SI	SVN
Aranaidaa	Larinioidas	salonetarius	00786382	SPSL 0006 12	MNU SI	SVN
Linyphiidaa	Tonuinhantas	sciopeiarius	00786382	SFSL0090-12 SPSL0120-12	MNH SI	SVIN
Charbonidae	Tenuipnanies Missorie	lenuis	00786384	SPSL0129-12	MINH, SI	SVIN
Ghaphosidae	Micaria	aenea	00780384	SPSL0200-12	MINH, SI	
Lycosidae	Paraosa	agrestis	00786385	SPSL0154-12	MINH, SI	SVIN
Theridiidae	Episinus	angulatus	00786386	SPSL0159-12	MNH, SI	SVN
Thomisidae	Misumena	vatia	00786387	SPSL0175-12	MNH, SÍ	SVN
Lycosidae	Piratula	hygrophila	00786388	SPSLO135-12	MNH, SI	SVN
Amaurobiidae	Amaurobius	fenestralis	00786389	SPSLO189-12	MNH, SI	CHE
Mimetidae	Ero	furcata	00786390	SPSLO256-12	MNH, SI	CHE
Linyphiidae	Agyneta	innotabilis	00786393	SPSLO220-12	MNH, SI	CHE
Linyphiidae	Mermessus	trilobatus	00786395	SPSLO118-12	MNH, SI	SVN
Linyphiidae	Oedothorax	gibbifer	00786396	SPSLO232-12	MNH, SI	CHE
Linyphiidae	Bolyphantes	luteolus	00786397	SPSLO101-12	MNH, SI	CHE

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1633

NOT PEER-REVIEWED

Tetragnathidae Linyphiidae Theridiidae Lycosidae Clubionidae Hahniidae Linyphiidae Lycosidae Salticidae Linyphiidae Linyphiidae Linyphiidae Linyphiidae Linyphiidae Linvphiidae Linyphiidae Linyphiidae Linyphiidae Linyphiidae Linyphiidae Linyphiidae Linyphiidae Linyphiidae Linyphiidae Theridiidae Linyphiidae Linyphiidae Linyphiidae Salticidae Theridiidae Theridiidae Linyphiidae Linyphiidae Linyphiidae Linyphiidae Linyphiidae Theridiidae Linyphiidae Linyphiidae Linyphiidae Linyphiidae Lycosidae Lycosidae Theridiidae Thomisidae Clubionidae Salticidae Linyphiidae Linyphiidae Salticidae Linyphiidae Linyphiidae Linyphiidae Linyphiidae Theridiidae Theridiidae Thomisidae Gnaphosidae Linyphiidae Salticidae

Pachygnatha Maso Phylloneta Piratula Clubiona Antistea Tapinocyba Arctosa Evarcha Silometopus Porrhomma Agyneta Centromerus **Tenuiphantes** Mansuphantes Erigone Microlinyphia **Tenuiphantes** Agyneta Scotinotylus Pocadicnemis Pocadicnemis Agyneta Agyneta Neottiura Walckenaeria *Tenuiphantes* Walckenaeria Myrmarachne Robertus Robertus *Metopobactrus* Agyneta Caracladus Agyneta Scotinotylus Neottiura Agyneta Improphantes Ceratinella Centromerus Alopecosa Pardosa Crustulina Thomisus Clubiona Evarcha Entelecara Diplocephalus Pellenes *Microctenonyx* Agyneta **Bolyphantes** Micrargus Neottiura Eurvopis Heriaeus Aphantaulax Neriene Philaeus

degeeri sundevalli impressa knorri kulczynskii elegans affinis lutetiana falcata elegans pallidum rurestris subalpinus mengei fragilis remota pusilla tenebricola orites clavatus juncea pumila fuscipalpa cauta suaveolens antica jacksoni furcillata formicaria mediterraneus truncorum prominulus affinis zamoniensis alpica alpigena bimaculata conigera nitidus brevipes pabulator sulzeri bifasciata guttata onustus terrestris michailovi acuminata latifrons seriatus subitaneus gulosa alticeps herbigradus herbigrada flavomaculata hirtus cincta furtiva chrysops

	1.1.1.1		
00786399	SPSLO153-12	MNH, SI	SVN
00786400	SPSLO216-12	MNH, SI	CHE
00786401	SPSLO273-12	MNH, SI	CHE
00786402	SPSLO136-12	MNH, SI	SVN
00786404	SPSLO194-12	MNH, SI	CHE
00786405	SPSLO201-12	MNH, SI	CHE
00786406	SPSLO127-12	MNH, SI	CHE
00786407	SPSLO132-12	MNH, SI	SVN
00786408	SPSLO145-12	MNH, SI	SVN
00786409	SPSLO126-12	MNH, SI	CHE
00786410	SPSLO239-12	MNH. SI	CHE
00786411	SPSL0117-12	MNH SI	CHE
00786412	SPSL0208-12	MNH SI	CHE
00786413	SPSL0200-12 SPSL0243-12	MNH SI	CHE
00786415	SPSL 0114-12	MNH SI	CHE
00786416	SPSL 0107 12	MNH SI	CHE
00786417	SPSL 0225 12	MNU SI	
00786417	SFSL0223-12 SDSL0244-12	MNII, SI	
00786418	SPSL0244-12	MINH, SI	
00786419	SPSL0221-12	MINH, SI	
00786420	SPSL0240-12	MINH, SI	CHE
00786421	SPSL0237-12	MNH, SI	CHE
00786422	SPSL0238-12	MNH, SI	CHE
00786425	SPSLO218-12	MNH, SI	CHE
00786426	SPSLO204-12	MNH, SI	CHE
00786427	SPSLO164-12	MNH, SI	SVN
00786429	SPSLO130-12	MNH, SI	CHE
00786430	SPSLO128-12	MNH, SI	CHE
00786431	SPSLO131-12	MNH, SI	CHE
00786432	SPSLO149-12	MNH, SI	SVN
00786433	SPSLO168-12	MNH, SI	CHE
00786435	SPSLO169-12	MNH, SI	CHE
00786437	SPSLO119-12	MNH, SI	CHE
00786439	SPSLO115-12	MNH, SI	CHE
00786441	SPSLO102-12	MNH, SI	CHE
00786443	SPSLO116-12	MNH, SI	CHE
00786444	SPSLO125-12	MNH, SI	CHE
00786445	SPSLO163-12	MNH, SI	SVN
00786448	SPSLO100-12	MNH, SI	CHE
00786449	SPSLO109-12	MNH. SI	CHE
00786450	SPSLO103-12	MNH. SI	CHE
00786451	SPSLO207-12	MNH. SI	CHE
00786452	SPSL0249-12	MNH. SI	SVN
00786453	SPSL0252-12	MNH SI	SVN
00786454	SPSL0268-12	MNH SI	SVN
00786455	SPSL0280-12	MNH SI	SVN
00786457	SPSI 0098-12	MNH SI	SVN
00786458	SPSL 0260-12	MNH SI	SVN
00786460	SPSL 0210 12	MNH SI	CHE
00786461	SPSL 0200 12	MNU SI	
00786462	SFSL0209-12 SPSL 0262 12	MINH, SI	CHE SVN
00786462	SFSL0205-12	MINH, SI	CUE
00786464	SFSLU224-12	IVINE, SI	
00786464	SPSL0219-12	MINH, SI	CHE
00786465	SPSL0205-12	MINH, SI	CHE
00/86466	SPSL0223-12	MNH, SI	CHE
00786467	SPSL0272-12	MNH, SI	SVN
00786468	SPSLO271-12	MNH, SI	SVN
00786469	SPSLO278-12	MNH, SI	SVN
00786470	SPSLO199-12	MNH, SI	SVN
00786471	SPSLO229-12	MNH, SI	SVN
00786472	SPSLO264-12	MNH, SI	SVN

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1633 6 | CC-BY 4.0 Open Access | rec: 7 Jan 2016, publ: 7 Jan 2016

NOT PEER-REVIEWED

Dictynidae	Lathys	humilis	00786473	SPSL0198-12	MNH SI	SVN
Linynhiidae	Caracladus	avicula	00786474	SPSL 0206-12	MNH SI	CHE
Dhilodromidao	Dhilodnomus	nulahallus	00786475	SPSL 0072 12	MNU SI	SVN
	Provent and a dire		00786475	SFSL0072-12 SPSL0165-12	MINE, SI	SVIN
Theridiidae	Parasteatoaa	iunata	00786476	SPSL0105-12	MINH, SI	SVIN
Thomisidae	Xysticus	lanio	00/864//	SPSL0185-12	MNH, SI	SVN
Thomisidae	Xysticus	tenebrosus	00786478	SPSL0187-12	MNH, SI	SVN
Theridiidae	Crustulina	scabripes	00786479	SPSLO089-12	MNH, SI	SVN
Theridiidae	Theridion	pinastri	00786480	SPSLO172-12	MNH, SI	SVN
Araneidae	Zilla	diodia	00786481	SPSLO097-12	MNH, SI	SVN
Theridiidae	Heterotheridion	nigrovariegatum	00786482	SPSL0161-12	MNH. SI	SVN
Thomisidae	Xysticus	acerbus	00786483	SPSL 0179-12	MNH SI	SVN
Thomisidae	Tmarus	nigar	00786484	SPSL 0179 12	MNU SI	SVN
Thomisidae	1 marus S	piger	00786485	SFSL0176-12 SPSL 0177-12	MINE, SI	SVIN
	Synema N	globosum	00780485	SPSL01//-12	MINH, SI	SVIN
Thomisidae	Xysticus	kempeleni	00/86486	SPSL0184-12	MNH, SI	SVN
Pisauridae	Pisaura	mirabilis	00786487	SPSLO144-12	MNH, SI	SVN
Theridiidae	Episinus	maculipes	00786488	SPSLO160-12	MNH, SI	SVN
Theridiidae	Steatoda	triangulosa	00786489	SPSLO171-12	MNH, SI	SVN
Linyphiidae	Nematogmus	sanguinolentus	00786490	SPSLO162-12	MNH, SI	SVN
Philodromidae	Philodromus	dispar	00786492	SPSLO142-12	MNH. SI	SVN
Philodromidae	Tihellus	macellus	00786493	SPSL0074-12	MNH SI	SVN
Zoridae	Tora	spinimana	00786404	SPSL 000/ 12	MNH SI	SVN
Soltioidoo	Lolionhanna	spinimunu kookii	00786405	SI SLO074-12	MNIL SI	SVIN
	Hellophanus	коспи 	00780493	SFSL0076-12	MINH, SI	SVIN
Salticidae	Marpissa	nivoyi	00/86496	SPSL0081-12	MNH, SI	SVN
Sparassidae	Micrommata	virescens	00786497	SPSL0086-12	MNH, SI	SVN
Araneidae	Cercidia	prominens	00786498	SPSLO021-12	MNH, SI	SVN
Thomisidae	Ozyptila	nigrita	00786499	SPSLO093-12	MNH, SI	SVN
Philodromidae	Philodromus	praedatus	00786500	SPSLO071-12	MNH, SI	SVN
Pholcidae	Psilochorus	simoni	00786501	SPSLO076-12	MNH, SI	SVN
Lycosidae	Hogna	radiata	00786502	SPSL0065-12	MNH SI	SVN
Salticidae	Fyarcha	iucunda	00786503	SPSL 0077-12	MNH SI	SVN
Salticidae	Dellenes	sariatus	00786504	SPSL 0082 12	MNU SI	SVN
Chambasidaa	Tellenes Dugggggdag	lamidoaua	00786505	SFSL0082-12	MNII, SI	SVIN
	Drassoaes	lapiaosus	00780303	SPSL0099-12	MINH, SI	SVIN
Theridiidae	Dipoena	melanogaster	00/86506	SPSL0090-12	MNH, SI	SVN
Salticidae	Saitis	barbipes	00786507	SPSL0083-12	MNH, SI	SVN
Thomisidae	Ebrechtella	tricuspidata	00786508	SPSLO092-12	MNH, SI	SVN
Lycosidae	Alopecosa	trabalis	00786509	SPSLO064-12	MNH, SI	SVN
Salticidae	Heliophanus	flavipes	00786510	SPSLO147-12	MNH, SI	SVN
Dictynidae	Dictyna	civica	00786511	SPSLO036-12	MNH, SI	SVN
Salticidae	Leptorchestes	berolinensis	00786512	SPSL0079-12	MNH. SI	SVN
Philodromidae	Philodromus	cesnitum	00786513	SPSL 0070-12	MNH SI	CHE
I modifiliade	Pardosa	nalustris	00786514	SPSL 0067 12	MNH SI	SVN
Thereidiidee	Fu on loon ath a		00786515	SI SLOU07-12 SDSL 0159 12	MNIL SI	SVIN
	Enopiognaina	ovala	00780313	SPSL0138-12	MINH, SI	SVIN
Liocranidae	Liocranum	rupicola	00/86516	SPSL0061-12	MNH, SI	SVN
Salticidae	Heliophanus	cupreus	00/86518	SPSL0146-12	MNH, SI	SVN
Miturgidae	Cheiracanthium	punctorium	00786519	SPSLO140-12	MNH, SI	SVN
Tetragnathidae	Tetragnatha	pinicola	00786520	SPSLO155-12	MNH, SI	SVN
Scytodidae	Scytodes	thoracica	00786521	SPSLO085-12	MNH, SI	SVN
Thomisidae	Ozvptila	atomaria	00786522	SPSLO176-12	MNH. SI	CHE
Salticidae	Marnissa	muscosa	00786523	SPSL0080-12	MNH SI	SVN
L vcosidae	Aulonia	alhimana	00786524	SPSL 0133-12	MNH SI	SVN
Saltigidag	Sittions	municola	00786525	SPSL 0094 12	MNU SI	
			00780525	SFSL0064-12	MINH, SI	
Linyphildae	Linypnia	nortensis	00786526	SPSL0112-12	MINH, SI	2 A IN
Lycosidae	Alopecosa	pulverulenta	00786527	SPSL0063-12	MNH, SÍ	SVN
Linyphiidae	Tenuiphantes	flavipes	00786528	SPSLO060-12	MNH, SI	SVN
Lycosidae	Pardosa	cf. lugubris	00786529	SPSLO066-12	MNH, SI	CHE
Philodromidae	Thanatus	formicinus	00786530	SPSLO073-12	MNH, SI	SVN
Theridiidae	Parasteatoda	tepidariorum	00786531	SPSLO091-12	MNH, SI	SVN
Theridiidae	Enoplognatha	afrodite	00786532	SPSL0157-12	MNH. SI	SVN
Linyphiidae	Dinlostvla	concolor	00786533	SPSI 0049-12	MNH SI	SVN
Tetramathidae	Tetraonatha	niorita	00786534	SPSI 0088 12	MNH SI	SVN
renagnannuae	1 CH UZHUHU	mgruu		51 51 0000-12	1VII VII, OI	O VIN

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1633

NOT PEER-REVIEWED

Thomisidae	Xysticus	lineatus	00786535	SPSLO186-12	MNH, SI	SVN
Tetragnathidae	Metellina	mengei	00786536	SPSLO087-12	MNH, SI	CHE
Thomisidae	Xysticus	cristatus	00786537	SPSLO182-12	MNH, SI	SVN
Lycosidae	Alopecosa	taeniata	00786538	SPSLO062-12	MNH. SI	CHE
Philodromidae	Philodromus	aureolus	00786539	SPSLO069-12	MNH. SI	SVN
Gnaphosidae	Zelotes	latreillei	00786540	SPSL0047-12	MNH. SI	SVN
Lycosidae	Xerolycosa	nemoralis	00786541	SPSL 0068-12	MNH SI	CHE
Thomisidae	Xvsticus	hifasciatus	00786543	SPSI 0181-12	MNH SI	SVN
Linynhiidae	Floronia	bucculanta	00786545	SPSL 0051 12	MNU SI	SVN
Liloporidae	Huntiotas	paradorus	00786546	SFSL0051-12 SPSL0198-12	MNH SI	SVIN
Linumhiidaa	Limplices	paradoxus tui an oul ania	00786547	SFSL0100-12 SPSL 0056 12	MNUL SI	SVIN
Distantia	Linyphia	iriangularis	00780347	SPSL0030-12	MINH, SI	SVIN
Dictynidae	Cicurina	cicur	00786548	SPSL0035-12	MNH, SI	SVN
Theridiidae	Similidion	simile	00786549	SPSLO1/0-12	MNH, SI	SVN
Dictynidae	Lathys	humilis	00786550	SPSL0037-12	MNH, SI	SVN
Anyphaenidae	Anyphaena	sabina	00786551	SPSLO010-12	MNH, SI	SVN
Araneidae	Araneus	angulatus	00786552	SPSLO013-12	MNH, SI	SVN
Gnaphosidae	Callilepis	schuszteri	00786553	SPSLO041-12	MNH, SI	SVN
Araneidae	Hypsosinga	pygmaea	00786555	SPSLO024-12	MNH, SI	SVN
Gnaphosidae	Drassyllus	villicus	00786556	SPSLO042-12	MNH, SI	SVN
Agelenidae	Allagelena	gracilens	00786557	SPSLO001-12	MNH, SI	SVN
Clubionidae	Clubiona	neglecta	00786558	SPSLO033-12	MNH, SI	SVN
Corinnidae	Phrurolithus	minimus	00786559	SPSLO034-12	MNH, SI	SVN
Filistatidae	Filistata	insidiatrix	00786560	SPSLO040-12	MNH, SI	SVN
Araneidae	Araneus	sturmi	00786561	SPSLO017-12	MNH. SI	SVN
Agelenidae	Coelotes	terrestris	00786563	SPSL0003-12	MNH SI	SVN
Gnaphosidae	Nomisia	exornata	00786564	SPSL0044-12	MNH SI	SVN
Linyphiidae	Gonatium	hilare	00786565	SPSL 0053-12	MNH SI	SVN
Clubionidae	Clubiona	aermanica	00786566	SPSL 0032-12	MNH SI	SVN
Linyphiidae	Erontinelling	frutatorum	00786567	SPSI 0052-12	MNH SI	SVN
Aranaidaa	A nameus	glaine	00786568	SI SLO032-12 SPSL 0012-12	MNH SI	SVIN
Linumhiidaa	Araneus Magalanthumhantag		00786560	SFSL0012-12 SPSL 0057 12	MNUL SI	SVIN
	Megalepinyphantes	couinus	00786570	SPSL0057-12 SPSL0011-12	MINH, SI	SVIN
Araneidae	Acutepetra	ceropegia	00786570	SPSL0011-12	MNH, SI	SVN
Amaurobiidae	Amaurobius	erberi	00/865/1	SPSLO007-12	MNH, SI	SVN
Araneidae	Araneus	quadratus	00786572	SPSL0016-12	MNH, SI	SVN
Araneidae	Cyclosa	conica	00786573	SPSLO022-12	MNH, SI	SVN
Agelenidae	Agelena	labyrinthica	00786574	SPSLO002-12	MNH, SI	SVN
Araneidae	Araneus	marmoreus	00786575	SPSLO015-12	MNH, SI	SVN
Gnaphosidae	Scotophaeus	scutulatus	00786576	SPSLO046-12	MNH, SI	SVN
Araneidae	Cercidia	prominens	00786577	SPSLO020-12	MNH, SI	SVN
Gnaphosidae	Haplodrassus	silvestris	00786578	SPSLO043-12	MNH, SI	SVN
Araneidae	Gibbaranea	bituberculata	00786579	SPSLO023-12	MNH, SI	SVN
Atypidae	Atypus	piceus	00786580	SPSLO031-12	MNH, SI	SVN
Dysderidae	Dasumia	canestrinii	00786581	SPSLO038-12	MNH, SI	SVN
Araneidae	Parazygiella	montana	00786582	SPSLO028-12	MNH, SI	SVN
Agelenidae	Tegenaria	atrica	00786583	SPSLO006-12	MNH, SI	SVN
Anyphaenidae	Anyphaena	accentuata	00786584	SPSL0009-12	MNH, SI	SVN
Amaurobiidae	Amaurobius	iugorum	00786585	SPSL0008-12	MNH. SI	SVN
Agelenidae	Inermocoelotes	anonlus	00786586	SPSL 0005-12	MNH SI	SVN
Linynhiidae	Dranatisca	socialis	00786587	SPSL 0050 12	MNH SI	SVN
Gnaphosidae	Zelotes	subtarranaus	00786588	SPSL 0048 12	MNH SI	
Aramaidaa	Leioies	subierraneus hausaanishi	00780588	SFSL0046-12	MNUL SI	CHE
Araneidae	Argiope	bruennichi	00780389	SPSL0019-12	MINH, SI	SVIN
Araneidae	mangora	acalypha	00786590	SPSL0026-12	MINH, SI	5VN
Araneidae	Leviellus	thorelli	00786591	SPSL0025-12	MNH, SI	SVN
Gnaphosidae	Phaeocedus	braccatus	00786592	SPSL0045-12	MNH, SÍ	SVN
Araneidae	Araneus	diadematus	00786593	SPSLO014-12	MNH, SI	SVN
Araneidae	Nuctenea	umbratica	00786594	SPSLO027-12	MNH, SI	SVN
Araneidae	Araniella	cucurbitina	00786596	SPSLO018-12	MNH, SI	SVN
Araneidae	Singa	nitidula	00786597	SPSLO029-12	MNH, SI	SVN
Linyphiidae	Kaestneria	dorsalis	00786598	SPSLO054-12	MNH, SI	SVN
Agelenidae	Histopona	torpida	00786599	SPSLO004-12	MNH, SI	SVN

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1633

NOT PEER-REVIEWED

Araneidae	Araneus	angulatus	ARA0001	SPSLO326-13	EZ LAB	SVN
Linyphiidae	Linyphia	triangularis	ARA0004	SPSLO327-13	EZ LAB	SVN
Theridiidae	Steatoda	bipunctata	ARA0029	SPSLO328-13	EZ LAB	SVN
Araneidae	Araneus	marmoreus	ARA0030	SPSLO329-13	EZ LAB	SVN
Thomisidae	Ebrechtella	tricuspidata	ARA0033	SPSLO330-13	EZ LAB	SVN
Salticidae	Evarcha	falcata	ARA0037	SPSLO331-13	EZ LAB	SVN
Tetragnathidae	Tetragnatha	nigrita	ARA0041	SPSL0332-13	EZLAB	SVN
Theridiidae	Theridion	varians	ARA0043	SPSL 0333-13	EZLAB	SVN
Theridiidae	Steatoda	triangulosa	AR 40046	SPSI 0334-13	EZLAB	SVN
Aranaidaa	Argiona	hruannichi	ARA0040	SPSI 0335 13	EZLAB	SVN
Arancidae	Argnous	diadomatus	ARA0040	SI SLO335-13		SVIN
Mitaneidae	<i>Chains and include</i>	alaaemalus	ARA0050	SFSL0330-13		SVIN
Niturgidae	<i>Cheiracanthium</i>	punctorium	ARA0050	SPSL0337-13	EZ LAB	SVIN
Sanicidae	Evarcha	arcuata	ARA0062	SPSL0338-13	EZLAB	SVIN
Agelenidae	Histopona	torpida	ARA0063	SPSL0339-13	EZLAB	SVN
Lycosidae	Pardosa	cf. lugubris	ARA0065	SPSLO340-13	EZLAB	SVN
Agelenidae	Tegenaria	atrica	ARA0076	SPSLO341-13	EZ LAB	SVN
Thomisidae	Misumena	vatia	ARA0081	SPSLO342-13	EZ LAB	SVN
Gnaphosidae	Scotophaeus	scutulatus	ARA0082	SPSLO343-13	EZ LAB	SVN
Araneidae	Mangora	acalypha	ARA0107	SPSLO344-13	EZ LAB	SVN
Araneidae	Araneus	sturmi	ARA0108	SPSLO345-13	EZ LAB	SVN
Amaurobiidae	Amaurobius	erberi	ARA0120	SPSLO347-13	EZ LAB	SVN
Filistatidae	Filistata	insidiatrix	ARA0122	SPSLO348-13	EZ LAB	SVN
Theridiidae	Episinus	truncatus	ARA0132	SPSLO349-13	EZ LAB	SVN
Theridiidae	Enoplognatha	afrodite	ARA0135	SPSLO350-13	EZ LAB	SVN
Theridiidae	Theridion	pinastri	ARA0136	SPSLO351-13	EZ LAB	SVN
Theridiidae	Crustulina	scabrines	ARA0137	SPSLO352-13	EZ LAB	SVN
Linvphiidae	Neriene	furtiva	ARA0145	SPSL0353-13	EZLAB	SVN
Linyphiidae	Neriene	radiata	ARA0152	SPSL0354-13	NMBE	CHE
Gnaphosidae	7elotes	subterraneus	AR A0156	SPSI 0355-13	NMBE	CHE
Linynhiidae	Scotinotylus	alniaena	AR 40163	SPSI 0356-13	NMBE	CHE
Linyphildae	Frigonella	ianobilis	ARA0103	SPSI 0357 13	NMBE	CHE
Arapaidaa	Stroomiallus	stroami	ARA0104 ARA0160	ST SLO357-13		SVN
Atunidaa	Atopus	niceus	ARA0109	SI SLO330-13		SVIN
Crarbasidas	Alypus	piceus Laturillai	ARA01/4	SPSL0559-15		SVIN
Gnaphosidae	Zelotes		ARA0191	SPSL0300-13	EZ LAB	SVN
Zoridae	Zora	spinimana	ARA0192	SPSL0361-13	NMBE	CHE
Araneidae	Araneus	quadratus	ARA0198	SPSL0362-13	NMBE	CHE
Theridiidae	Robertus	lividus	ARA0201	SPSLO363-13	NMBE	CHE
Linyphiidae	Incestophantes	frigidus	ARA0211	SPSLO364-13	NMBE	CHE
Linyphiidae	Macrargus	rufus	ARA0213	SPSLO365-13	NMBE	CHE
Linyphiidae	Bolyphantes	luteolus	ARA0214	SPSLO366-13	NMBE	CHE
Linyphiidae	Agyneta	cauta	ARA0225	SPSLO367-13	NMBE	CHE
Linyphiidae	Caracladus	avicula	ARA0231	SPSLO368-13	NMBE	CHE
Agelenidae	Agelena	labyrinthica	ARA0239	SPSLO369-13	EZ LAB	SVN
Uloboridae	Hyptiotes	paradoxus	ARA0241	SPSLO370-13	EZ LAB	SVN
Clubionidae	Clubiona	terrestris	ARA0242	SPSLO371-13	EZ LAB	SVN
Lycosidae	Pardosa	riparia	ARA0243	SPSLO372-13	NMBE	CHE
Dysderidae	Dysdera	ninnii	ARA0244	SPSLO373-13	EZ LAB	SVN
Linvphiidae	Agvneta	affinis	ARA0245	SPSLO374-13	NMBE	CHE
Linyphiidae	Centromerus	subalpinus	ARA0250	SPSL0375-13	NMBE	CHE
Linyphiidae	Erigone	dentinalnis	ARA0256	SPSL0376-13	NMBE	CHE
Linyphiidae	Erigone	atra	ARA0257	SPSL 0377-13	NMBE	CHE
Linyphildae	Agyneta	fuscinalna	AR A0268	SPSI 0378-13	NMBE	CHE
Linyphildae	Micrarous	alninus	ARA0200	SPSI 0370 13	NMBE	CHE
Linyphildae	Mansunhantes	fragilis	ΔΡΛ0276	ST SEC377-13 SPSI A39A 12	NMRE	СИЕ
Themidiidae	Pohertus	jiuguis	AD 102/0	SI SLUSOU-13 SDSI 0201 12		
Linumbildae	KODEFIUS Mimuni alaa	iruncorum	AKAU28U	SPSLU381-13	NMDE	
The second	winyrioius Vaatie	pusilius	AKAU283	SPSLU382-13	INIVIDE	CHE
I nomisidae	Aysticus	uneatus	AKAU304	SPSLU383-13		2 V N
I heridiidae	Parasteatoda	tepidariorum	AKA0329	SPSL0384-13	EZLAB	SVN
Thomisidae	<i>Xysticus</i>	tenebrosus	ARA0332	SPSL0385-13	EZLAB	SVN
Gnaphosidae	Callilepis	schuszteri	ARA0333	SPSLO386-13	EZ LAB	SVN

NOT PEER-REVIEWED

Philodromidae	Tibellus	macellus	ARA0334	SPSLO387-13	EZ LAB	SVN
Lycosidae	Xerolycosa	nemoralis	ARA0335	SPSLO388-13	NMBE	CHE
Linyphiidae	Tenuiphantes	flavipes	ARA0336	SPSLO389-13	NMBE	CHE
Gnaphosidae	Drassyllus	villicus	ARA0337	SPSLO390-13	EZ LAB	SVN
Lycosidae	Aulonia	albimana	ARA0338	SPSLO391-13	EZ LAB	SVN
Agelenidae	Inermocoelotes	anoplus	ARA0339	SPSLO392-13	EZ LAB	SVN
Araneidae	Zilla	diodia	ARA0342	SPSLO393-13	EZ LAB	SVN
Theridiidae	Heterotheridion	nigrovariegatum	ARA0343	SPSLO394-13	EZ LAB	SVN
Philodromidae	Philodromus	nulchellus	ARA0344	SPSL0395-13	EZLAB	SVN
Lycosidae	Pardosa	blanda	ARA0345	SPSL0396-13	NMBE	CHE
Linvphiidae	Pityohyphantes	phrygianus	ARA0347	SPSL0397-13	NMBE	CHE
Lycosidae	Pardosa	oreophila	ARA0348	SPSL0398-13	NMBE	CHE
Lycosidae	Alopecosa	pulverulenta	ARA0349	SPSL0399-13	NMBE	CHE
Araneidae	Gibbaranea	bituberculata	ARA0350	SPSLO400-13	EZLAB	SVN
Philodromidae	Philodromus	vagulus	ARA0351	SPSLO401-13	NMBE	CHE
Linvphiidae	Neriene	clathrata	ARA0352	SPSLO402-13	EZ LAB	SVN
Araneidae	Leviellus	thorelli	ARA0353	SPSLO403-13	EZ LAB	SVN
Araneidae	Parazveiella	montana	ARA0354	SPSL0404-13	NMBE	CHE
Araneidae	Aculeneira	ceronegia	ARA0355	SPSL0405-13	NMBE	CHE
Araneidae	Cercidia	prominens	ARA0356	SPSLO406-13	EZLAB	SVN
Araneidae	Mangora	acalypha	ARA0357	SPSL0407-13	EZLAB	SVN
Linvphiidae	Gonatium	rubens	ARA0358	SPSL0408-13	NMBE	CHE
Linvphiidae	Nematogmus	sanguinolentus	ARA0359	SPSLO409-13	NMBE	CHE
Linvphiidae	Maso	sundevalli	ARA0360	SPSLO410-13	NMBE	CHE
Linyphiidae	Mughiphantes	muohi	ARA0361	SPSL0411-13	NMBE	CHE
Linyphiidae	Tapinocyba	affinis	ARA0362	SPSL0412-13	NMBE	CHE
Linvphiidae	Ceratinella	brevines	ARA0363	SPSLO413-13	NMBE	CHE
Sparassidae	Micrommata	virescens	ARA0365	SPSLO414-13	NMBE	CHE
Theridiidae	Neottiura	bimaculata	ARA0366	SPSLO415-13	NMBE	CHE
Theridiidae	Enoplognatha	ovata	ARA0367	SPSLO416-13	NMBE	CHE
Lycosidae	Hogna	radiata	ARA0368	SPSLO417-13	EZ LAB	SVN
Linyphiidae	Microlinyphia	impigra	ARA0369	SPSLO418-13	NMBE	CHE
Araneidae	Hypsosinga	sanguinea	ARA0370	SPSLO419-13	NMBE	CHE
Clubionidae	Clubiona	reclusa	ARA0371	SPSLO420-13	NMBE	CHE
Linyphiidae	Mughiphantes	cornutus	ARA0372	SPSLO421-13	NMBE	CHE
Tetragnathidae	Metellina	mengei	ARA0373	SPSLO422-13	NMBE	CHE
Linyphiidae	Tenuiphantes	jacksonoides	ARA0374	SPSLO423-13	NMBE	CHE
Linyphiidae	Panamomops	tauricornis	ARA0375	SPSLO424-13	NMBE	CHE
Thomisidae	Tmarus	piger	ARA0376	SPSLO425-13	EZ LAB	SVN
Salticidae	Sitticus	rupicola	ARA0378	SPSLO426-13	NMBE	CHE
Dictynidae	Dictyna	arundinacea	ARA0379	SPSLO427-13	NMBE	CHE
Araneidae	Cyclosa	conica	ARA0380	SPSLO428-13	NMBE	CHE
Araneidae	Agalenatea	redii	ARA0381	SPSLO429-13	EZ LAB	SVN
Salticidae	Heliophanus	cupreus	ARA0382	SPSLO430-13	NMBE	CHE
Pisauridae	Pisaura	mirabilis	ARA0383	SPSLO431-13	NMBE	CHE
Hahniidae	Antistea	elegans	ARA0384	SPSLO432-13	NMBE	CHE
Salticidae	Sibianor	aurocinctus	ARA0385	SPSLO433-13	NMBE	CHE
Linyphiidae	Gonatium	rubellum	ARA0386	SPSLO434-13	NMBE	CHE
Araneidae	Nuctenea	umbratica	ARA0387	SPSLO435-13	NMBE	CHE
Lycosidae	Trochosa	spinipalpis	ARA0388	SPSLO436-13	EZ LAB	SVN
Thomisidae	<i>Xysticus</i>	cristatus	ARA0389	SPSLO437-13	NMBE	CHE
Thomisidae	Synema	globosum	ARA0390	SPSLO438-13	NMBE	CHE
Liocranidae	Agroeca	brunnea	ARA0392	SPSLO439-13	EZ LAB	SVN
Araneidae	Araniella	opisthographa	ARA0393	SPSLO440-13	EZ LAB	SVN
Tetragnathidae	Metellina	merianae	ARA0394	SPSLO441-13	EZ LAB	SVN
Salticidae	Heliophanus	flavipes	ARA0396	SPSLO442-13	EZ LAB	SVN
Linyphiidae	Linyphia	hortensis	ARA0397	SPSLO443-13	NMBE	CHE
Linyphiidae	Oryphantes	angulatus	ARA0398	SPSLO444-13	NMBE	CHE
Hahniidae	Hahnia	difficilis	ARA0399	SPSLO445-13	NMBE	CHE
Philodromidae	Philodromus	cespitum	ARA0400	SPSLO446-13	EZ LAB	SVN

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.163320 | CC-BY 4.0 Open Access | rec: 7 Jan 2016, publ: 7 Jan 2016

NOT PEER-REVIEWED

Linyphiidae	Tiso	vagans	ARA0401	SPSLO447-13	NMBE	CHE
Thomisidae	Xysticus	audax	ARA0402	SPSLO448-13	EZ LAB	SVN
Linyphiidae	Agyneta	orites	ARA0403	SPSLO449-13	NMBE	CHE
Philodromidae	Philodromus	praedatus	ARA0404	SPSLO450-13	NMBE	CHE
Linyphiidae	Drapetisca	socialis	ARA0405	SPSLO451-13	EZ LAB	SVN
Lycosidae	Pardosa	palustris	ARA0406	SPSLO452-13	NMBE	CHE
Linyphiidae	Obscuriphantes	obscurus	ARA0407	SPSLO453-13	NMBE	CHE
Linyphiidae	Pocadicnemis	juncea	ARA0409	SPSLO454-13	NMBE	CHE
Linyphiidae	Minicia	marginella	ARA0410	SPSLO455-13	NMBE	CHE
Linyphiidae	Mughiphantes	mughi	ARA0411	SPSLO456-13	NMBE	CHE
Lycosidae	Pardosa	amentata	ARA0413	SPSLO457-13	NMBE	CHE
Linyphiidae	Tenuiphantes	tenebricola	ARA0414	SPSLO458-13	NMBE	CHE
Linyphiidae	Tenuiphantes	mengei	ARA0415	SPSLO459-13	NMBE	CHE
Theridiidae	Phylloneta	sisyphia	ARA0416	SPSLO460-13	NMBE	CHE
Linyphiidae	Tenuiphantes	cristatus	ARA0418	SPSLO461-13	NMBE	CHE
Linyphiidae	Agyneta	rurestris	ARA0419	SPSLO462-13	EZ LAB	SVN
Linyphiidae	Tenuiphantes	alacris	ARA0420	SPSLO463-13	NMBE	CHE
Linyphiidae	Centromerus	pabulator	ARA0421	SPSLO464-13	NMBE	CHE
Linyphiidae	Tiso	aestivus	ARA0422	SPSLO465-13	NMBE	CHE
Dictynidae	Dictyna	uncinata	ARA0423	SPSLO466-13	EZ LAB	SVN
Thomisidae	Thomisus	onustus	ARA0426	SPSLO467-13	EZ LAB	SVN
Agelenidae	Malthonica	silvestris	ARA0427	SPSLO468-13	EZ LAB	SVN
Theridiidae	Phylloneta	impressa	ARA0428	SPSLO469-13	NMBE	CHE
Linyphiidae	Agnyphantes	expunctus	ARA0429	SPSLO470-13	NMBE	CHE
Lycosidae	Pirata	piraticus	ARA0430	SPSLO471-13	NMBE	CHE
Tetragnathidae	Metellina	segmentata	ARA0431	SPSLO472-13	EZ LAB	SVN
Linyphiidae	Lepthyphantes	nodifer	ARA0433	SPSLO473-13	NMBE	CHE
Thomisidae	Xysticus	kochi	ARA0434	SPSLO474-13	EZ LAB	SVN
Linyphiidae	Tenuiphantes	jacksoni	ARA0435	SPSLO475-13	NMBE	CHE
Salticidae	Evarcha	michailovi	ARA0436	SPSLO476-13	EZ LAB	SVN
Theridiidae	Crustulina	guttata	ARA0437	SPSLO477-13	EZ LAB	SVN
Lycosidae	Alopecosa	trabalis	ARA0438	SPSLO478-13	EZ LAB	SVN
Salticidae	Pellenes	seriatus	ARA0439	SPSLO479-13	EZ LAB	SVN
Linyphiidae	Frontinellina	frutetorum	ARA0441	SPSLO480-13	EZ LAB	SVN
Theridiidae	Simitidion	simile	ARA0442	SPSLO481-13	EZ LAB	SVN
Liphistiidae	Liphistius	sp	ARA0240	SPSLO482-15	EZ LAB	MYS

462

463

464	SUPPLEMENTS (AVAILABLE ONLINE)
465	
466	Supplemental Figure 1. An example of a species page available online at http://ezlab.zrc-
467	sazu.si/dna.
468	
469	Supplemental Table 1. The results of the barcode matching test.
470	
471	
472	
473	