1	Integration of biochar and chemical fertilizer to enhance quality of soil and
2	wheat crop (Triticum aestivum L.)
3	Running title: Effect of biochar and fertilizer on soil
4	Usman Khalid Chaudhry ^{1*} , Salman Shahzad ¹ , Muhammad Nadir Naqqash ² , Abdul Saboor ¹ , Sana
5	Yaqoob ¹ , Muhammad Salim ² and Muhammad Khalid ¹
6	¹ Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
7 8 9	² Department of Plant production and technologies, Faculty of Agricultural Sciences and Technology, Niğde University, Niğde, Turkey
10	
11	
12	
13	
14	Corresponding author:
15	Usman Khalid Chaudhry
16	Institute of Soil and Environmental Sciences,
17	University of Agriculture, Faisalabad, Pakistan
18	Tel: +92-300-7890455
19	Email: <u>ukojla0455@gmail.com</u>
20	

21 Abstract

22 A wide variety of soil amendments like manures, compost, humic acid and bio-sorbents 23 have been used to make nutrients available to crops as well as to protect them from toxic 24 elements. Among soil amendments, biochar has been known to improve soil crumping, soil 25 nutrients' availability to plants and ultimately the yield of crops. A field experiment was conducted by using biochar prepared from *Dalbergia sissoo* Roxb. wood by brick batch process. 26 Two doses of biochar were applied to soil 0 and 12 t ha⁻¹. Fertilizer rates used in the experiments 27 were 25% recommended doses of fertilizers (RDF), 50% RDF, 75% RDF and 100% RDF alone 28 29 & with biochar applied under two factorial randomized complete block design in natural field conditions (RDF of NPK fertilizer is 120-60-60 kg ha⁻¹). Soil physico-chemical properties viz., 30 31 bulk density, particle density, porosity, pH, electrical conductivity, organic matter, soil organic 32 carbon, total nitrogen, available phosphorus, available potassium, soil organic carbon, soil 33 microbial biomass carbon and soil microbial biomass nitrogen were measured from the soil 34 samples collected from 0-30 cm depth. All these parameters varied significantly among the 35 treatments. A combined treatment of biochar and 50% of the recommended dose of NPK was 36 most effective for soil conditioning. Agronomic parameters were also measured by standard 37 methods. Due to chelation of heavy metal ions and availability of nutrients to the soil, yield of 38 the crop may significantly increase due to cumulative treatment of fertilizer and biochar but upto 39 a certain limit.

40

Key words: Biochar, Soil organic matter, Wheat, Natural Conditions

41 Introduction

Heavy metal deposition in plant and soils could be attributed to the municipal wastes,
industrial effluents and also wax layer characteristics on the leaf (Khalil et al., 2011; Murtaza et
al., 2003). However most of heavy metal toxicity to plants is attributed by soils (Younis et al.,
2015). High metal concentrations plant toxicity can result in disturbing metabolism and
photosynthesis (Zhao & Bi, 1999)

Soil organic matter (SOM) have significant effect on soil physico-chemical health,
sequestration of carbon, controlling land erosion and protecting land from degradation (Galantini
& Rossel, 2005). Soil microbial biomass carbon (SMBC), microbial activity and mineral
transport are significantly affected by SOM (Carter et al., 1991). Organic matter decompositions
are certainly rapid in tropic and arid to semiarid regions because of high decomposition rates and
mineralization of SOM (Haron et al., 1997).

53 Addition of soil amendments helps to retain nutrients in soil. Biochar is more effective 54 than other organic amendments in retaining and making nutrients available to plants for a long 55 time. Among soil organic amendments, biochar is considered more stable nutrient source than 56 others (Chen et al., 2007). Biochar is the product of thermal decomposition of organic materials 57 under oxygen stress conditions and high temperature. It is applied to soil to achieve 58 environmental benefits, like decreasing CO_2 gas emissions (Lehmann & Joseph, 2009). Its 59 application to soil is an approach to decrease CO_2 emissions and to mitigate global climate 60 change (Woolf et al., 2010). Its surface area and complex pore structure are hospitable to bacteria 61 and fungi that plants need to absorb nutrients from the soil. Moreover, biochar is a more stable nutrient source than compost and manure (Cheng et al., 2006). Properties of biochar depend 62

upon the selection of biomass for biochar production which in turn decides the carbon (C) inputs in soil (Jeffery et al., 2013). Biochar produced at low temperature are more prone to rapid degradation in soil than those that produced at higher temperature and generally biochar produced from grasses are more degradable than that produced from hard wood (Zimmerman et al., 2011). Organic carbon contents in biochar have been reported up to 90%, depending upon its feedstock which enhances carbon sequestration in soil (Yin & Xu, 2009).

Biochar application on soil and crop as well as its effect on the nitrogen (N) cycle also proved helpful (Anderson et al., 2011). Biochar have potential to improve the growth and action of microorganisms which are directly or indirectly involved in soil N cycling. So, due to the activation of microorganisms it can mineralize complex soil organic carbon (SOC), and can enhance the effect of biochar application effect on native SOC (Belay-Tedla et al., 2009). Biochar application could also increase net microbial immobilization of inorganic N because biochar comprise by small labile C fractions with high C:N ratio (Deluca et al., 2009).

Wheat (*Triticum aestivum* L.) is a major cereal crop and staple food in Pakistan. Wheat has the prime importance in all agricultural policies of the government. It contributes around 10.1% value addition in agriculture with 2.2% share in GDP of Pakistan (Economic survey of Pakistan, 2015). Based upon the significance of wheat and biochar this experiment was conducted to find out the cumulative effect of biochar along with different rates of fertilizer improves on SOM pools by improving microbial biomass accumulation, its effect on soil physico-chemical properties and yield of wheat crop.

83 Materials and methods

84 Experimental site and climate

A field experiment was conducted to study the influence of biochar and chemical fertilizer on soil physical and chemical parameters. Its effect on growth and yield of wheat crop (*Triticum aestivum* L.) was also studied at the farm of Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan (31.25° N, 73.09° E). Two factorial randomized complete block design was used for this study. Soil of the experimental area was classified as a well-drained hafizabad loam, mixed, semi-active, iso-hyperthermic typic calciargids having pH value of 7.8.

92 Field experiment

93 Field was ploughed and prepared before application of biochar and fertilizer. Soil 94 composite samples were taken at random with auger before sowing and at harvest from (0-30 cm)95 depth) from each experimental unit. The soil samples were air dried, ground, well mixed and 96 passed through a 2 mm sieve and analyzed for different characteristics. All macro-nutrients i.e. 97 nitrogen, phosphorus and potassium (NPK) and biochar amendments were applied in respective 98 experimental unit plots at different doses and mixed thoroughly. Recommended dose for 99 nitrogen, phosphorus and potassium is 120 kg/ha, 60 kg/ha and 60 kg/ha, respectively which was 100 referred as F₄. Urea was used as a nitrogen source, while SSP was used as phosphorus and SOP 101 was used as potassium sources. Five different levels viz., 0%, 25%, 50% and 75% of the 102 recommended dose of NPK, and the original recommended dose of NPK were used in the 103 experiment. Different doses applied in each plot were: no NPK at 0% level referred as F_0 ; 104 nitrogen (30 Kg/ha), phosphorus (15 Kg/ha) and potassium (15 Kg/ha) were used at 25% level of 105 the recommended dose referred as F₁. Similarly nitrogen (60 Kg/ha), phosphorus (30 Kg/ha) and 106 potassium (30 Kg/ha) were used at 50% level of the recommended dose referred as F₂; while 107 nitrogen (90 Kg/ha), phosphorus (45 Kg/ha) and potassium (45 Kg/ha) were used at 75% level of

108 the recommended dose referred as F_3 . Recommended dose for nitrogen, phosphorus and 109 pottasium was referred as F₄. Recommended rate of biochar was 12 ha⁻¹ so two levels of biochar 110 were used in the experiment which were referred as $B_0(0\%)$ and B_1 (recommended dose). All the 111 possible combinations of fertilizer and biochar gave rise to ten treatments i.e. B_0F_0 , B_0F_1 , B_0F_2 , B₀F₃, B₀F₄, B₁F₀, B₁F₁, B₁F₂, B₁F₃ and B₁F₄. Each treatment was replicated four times. Size of 112 each experimental unit was $3.66 \times 2.44 \text{ m}^2$. Wheat crop (cultivar "Faisalabad-2008") was sown 113 114 using manual hand drill at the rate of 50 kg per acre in each experimental unit. Recommended 115 cultural and plant protection measures were adopted. The crop was grown up to maturity and the 116 following parameters were recorded.

117 **Biochar production**

Wood of *Dalbergia sissoo* was selected as feedstock. Feedstock was pyrolyzed using brick batch process (Brown, 2009) with estimated pyrolysis temperature of 500°C and residence time of 6 hours. After that biochar was ground and sieved through 2 mm sieve and stored in plastic bags.

122 Physicochemical characterization of Biochar

The pH and electrical conductivity (EC) of biochar in distilled water (1:20, w/v) was measured by the use of pH and EC meters. Ash contents were determined according to D-3173 method (ASTM, 2006). For this purpose, soil sample (1.0 g) added in the ceramic crucible and spread evenly. The oven was run at the rate of 5 K / min to 106 °C to constant mass. Then temperature was increased with 5 K / min to 550 °C. This temperature was hold for 30 minute till constant mass. The ash content was determined by the formula: 129 130

131

% Ash = $\frac{\text{Weight}_{crucible + ash} - \text{Weight}_{crucible}}{\text{Oven Dry Weight}} \times 100$

132

133 A Vario Micro Cube Elemental Analyzer was used for carbon, hydrogen and nitrogen 134 (CHN) analysis. Soil sample (100 mg) of the pre-dried and crushed sample was weighed directly 135 (relative precision 0.1%) into a tin capsule. After that the capsule was closed and put in the 136 machine for measurement. The CHN analyzer determines the carbon content, the hydrogen 137 content and the nitrogen content in mass percent (ASTM, 2006). Phosphorus in the biochar 138 sample was determined by colorimetric method. Spectrophotometer was used for analysis. 139 Amount of light absorbed by the solution at wavelength 410 nm was measured and compared 140 with standard curve (Olsen & Sommers, 1982). Potassium was determined using flame 141 photometer. For that a series of standards of KCl were prepared and standard curve was drawn. 142 Flame photometer reading was compared with standard curve graph and potassium was 143 determined (Richards, 1954). Cation exchange capacity (CEC) was determined by saturating 144 biochar (4g) with 1 N solution of CH₃COONa (pH 8.2). Afterwards, it was washed thrice with 145 ethanol and finally extracted with 1 N solution of CH₃COONH₄ (pH 7.0). Sodium in the extract 146 was determined with the help of PFP-7 flame photometer using Na^+ filter (Rhoades, 1982; 147 Richards, 1954). The CEC was calculated from following formula:

148
149 CEC (cmol_c kg⁻¹) =
$$\frac{\text{Na} (\text{mmol}_{c} \text{L}^{-1})}{1000}$$
 x $\frac{100}{\text{Weight of biochar}}$ x 100

Bulk density of biochar was determined by core sampler's method as described by (Blake & Hartage, 1986). The core sampler was filled and pressed with sample. Volume of the sample was determined after 10 times compression by means of falling. Lid of core was

NOT PEER-REVIEWED

Peer Preprints

154 closed carefully. Biochar was oven dried at 105°C to a constant weight, cooled and weighed. 155 Biochar volume was then taken equal to inner volume of the core sampler $(\pi r^2 h)$. 156 (Mass of oven dried Biochar) 157 Bulk density = (Volume of Biochar including pore spaces) 158 159 Biochars particle density was determined by using pycnometer method (Blake, 1965). 160 A known mass of biochar was put into 100 ml volumetric flask which was then placed into 161 the pycnometer. After that we poured the water into the pycnometer up to the mark. Known 162 mass of water (equal to the volume of the water) was poured into the flask. Biochar partial 163 volume was determined by subtracting the volume of the water poured from 100 ml. 164 (Mass of oven dried Biochar) 165 Particle density = -166 (Volume of Biochar excluding pore spaces) 167 Soil sampling 168 A composite soil sample at the depth of 0-30 cm was obtained from 3 sub samples 169 collected using a core sampler from each treatment plot. Soil samples were collected after the 170 harvesting of crop at three points from each treatment plot. Samples for each depth were 171 composited, placed in tagged plastic bags and dried at room temperature. These samples were air 172 dried grinded and sieved through 2 mm sieve in the laboratory for physio-chemical analysis. 173 Soil analysis 174 Soil bulk density, particle density and CEC was determined as for measuring biochar 175 bulk density, particle density and CEC analysis. Soil porosity (%) was calculated by using the 176 following formula (Blake & Hartage, 1986).

177(Bulk density)178Porosity (
$$\phi$$
) = $[1 - \frac{}{}$ (Particle density)179(Particle density)

Soil organic carbon was determined at up to 30 cm depths by titration method following
the method described by (Ryan et al., 2001). Soil pH and EC was determined by pH meter and
EC (dS m⁻¹) was measured by using Jenway Conductivity meter Model-4070 (Mckeague, 1978;
Mclean, 1982). Formula for determination of EC is given below:

184
$$K = \frac{1.4118 \, dSm^{-1}}{EC \, of \, 0.01 \, NKCl(dSm^{-1})}$$

185 The SMBC and SMBN were determined by fumigation-extraction method (Brookes et 186 al., 1985; Vance et al., 1987). Briefly, soil samples were fumigated with chloroform to the extent 187 to kill all microbes present in the soil sample. The fumigated samples were inoculated with 1.0 g 188 of unfumigated same soil sample. Both fumigated and unfumigated soil samples were incubated 189 in the presence of NaOH solution. The amount of CO2 evolved was measured by titrating the NaOH solution against standard HCl solution. The amount of mineral N was also measured both 190 191 in fumigated and unfumigated samples. The amount of MBC and MBN were calculated as 192 described by (Shah et al., 2010)

193 Plant sampling and analysis

194 Plant height, spike length, number of tillers, number of spikelets, biomass yield, grain 195 weight and harvest index were measured from an area of $1 \times 1 \text{ m}^2$. At maturity, wheat was 196 harvested from an area of $1 \times 1 \text{ m}^2$ per plot. The fresh weight was determined in the field. The 197 samples of grains and straws were kept at 65 °C for 48 h, and then their dry weight was obtained.

198 Statistical analysis

NOT PEER-REVIEWED

Peer Preprints

199 Statistical analysis of the data was carried out using two factorial RCBD. Analysis of

200 variance and post ANOVA analysis was carried out on Statistix 8.1. (Analytical software. 2005)

201 **Results**

202 Different parameters of biochar and soil without biochar before starting the experiment 203 are given in table 1 and table 2.

204 Soil pH

Soil pH was significantly different among soil samples of different treatments. Highest soil pH (8.06 ± 0.01) was found in the experimental unit having B₁F₂ treatment while the lowest was found in B₀F₄i.e. 7.59±0.02 (P=0.004, F=7.73, DF=24) (Table 3).

208 Electrical Conductivity

Similarly, soil EC also varied significantly in soil samples obtained from different treatments. Highest EC i.e. 0.52 ± 0.02 dSm⁻¹ was found in B₁F₁ and the lowest was in B₀ F₁ viz. 0.29 ± 0.00 dSm⁻¹ (P=0.00, F=47.79, DF=24) (Table 3).

212 Cation exchange capacity

213 Regarding cation exchange capacity (CEC), a bell shaped trend was observed i.e. 214 increase in value to optimum and then decline. Highest soil CEC viz. 24.26 ± 0.04 cmol_c kg⁻¹ was 215 observed in B₁F₂ and the lowest was in B₀F₃ i.e. 17.27 ± 0.01 cmol_c kg⁻¹ (P=0.04, F=1.02, DF=24) 216 (Table 3).

217 Organic matter

218 Organic matter contents were directly proportional with the amount of biochar while 219 inversely proportional to the amount of fertilizer. Highest organic matter contents $(1.07\pm0.02\%)$

220	were calculated from the treatment receiving biochar amendments alone i.e. B_0F_1 and lowest
221	organic matter contents (0.58±0.01%) were found in B_0F_4 (P=0.00, F=155.34, DF=24) (Table 3).
222	Soil microbial biomass carbon
223	The SMBC was directly proportional to the amount of fertilizer and biochar. Concluding,
224	highest SMBC (245.20 \pm 0.38) was calculated in B_1F_4 and lowest amount of SMBC
225	(136.63 ± 0.82) was found in B ₀ F ₀ (P=0.00, F=113.86, DF=24) (Table 3).
226	Soil microbial biomass nitrogen
227	The SMBN was directly proportional to the amount of biochar (only). Highest SMBN
228	calculated was in treatment B_1F_1 i.e. 77.17±0.26 mg/kg and lowest SMBN was in B_0F_0 i.e.

229 44.13±0.42 mg/kg (P=0.00, F=96.19, DF=24) (Table 3).

230 Plant height

Plant height increased with increase in biochar and fertilizer upto an extent after that they depicted less or even negative effect on plant height. Highest plant height was found in B_1F_2 viz. 107.75±1.44 cm m⁻², while lowest plant height was found in B_0F_1 i.e. 99.35±1.65 cm m⁻² (P=0.04, F=2.79, DF=24) (Table 4).

235 Spike length

Like that of plant height, spike length also increased with increase in biochar and fertilizer upto an extent after that less or even negative effect was observed. Highest spike length was recorded in B_1F_2 i.e. 10.65 ± 0.18 cm m⁻² and lowest spike length viz. 8.10 ± 0.42 cm m⁻² was observed in B_0F_0 (P=0.02, F=3.30, DF=24) (Table 4).

240 Number of tillers

A fashion similar to plant height and spike length, was observed in case of number of tillers. Highest numbers of tillers i.e. $592.13\pm0.45m^{-2}$ were counted from the treatment plot B_1F_2 while lowest numbers of tillers viz. $419.95\pm0.51m^{-2}$ were found in B_0F_1 (P=0.00, F=14.31, DF=24) (Table 4).

245 Number of spikelets

Though numbers of spikelets were directly proportional to combined treatment of biochar and fertilizer but upto an extent. Highest number of spikelets $27.07\pm0.42 \text{ m}^{-2}$ were recorded in B₁F₃ while the minimum number of spikelets $20.125\pm0.43 \text{ m}^{-2}$ were found in B₀F₁ (P=0.00, F=11.64, DF=24) (Table 4).

250 Biomass yield

A trend similar to plant height was also found in biomass yield i.e. increased to an extent with increase in amount of combined treatment of biochar and fertilizer. Highest biomass yield i.e. 14.65 ± 0.40 t ha⁻¹ was calculated from the experimental plot treated with B₁F₃ and lowest was in B₀F₁ (9.80±0.42 t ha⁻¹) (P=0.00, F=789.16, DF=24) (Table 4).

255 Grain weight

Grain weight, also, increased to an extent with increase in amount of combined treatment of biochar and fertilizer. Grain weight was highest i.e. 3.68 ± 0.05 t ha⁻¹ in plot treated with B₁F₃ treatment which gradually decreased to minimum in B₀F₀ (2.60±0.04 t ha⁻¹) (P=0.00, F=213.64, DF=24) (Table 4).

260 Harvest Index

Harvest index firstly increased up to certain limit i.e. B_1F_2 where $0.32\pm0.02\%$ was observed which afterwards decreased to minimum i.e. $0.20\pm0.03\%$ in plot treated with B_1F_4 (P=0.00, F=2051.00, DF=24) (Table 4).

264 **Discussion**

265	Biochar addition may cause significant decrease in bulk density (Laird et al., 2010; Jones
266	et al., 2010; Chen et al., 2011). This decreased bulk density may improve porosity and soil water
267	holding capacity (Briggs et al., 2005). Biochar application can significantly enhance the soil
268	meso-porosity at the expense of macro porosity in soil (Jones et al., 2010).
269	Many researchers had reported increase in soil pH due to biochar introduction (Laird et
270	al., 2010; Peng et al., 2011). Increase in pH increase not only improve soil health but also
271	improve plant growth due to higher availability of nutrients (Brady & Weil, 2008).
272	It was observed that with the aging of biochar soil EC improves and it decreases with
273	time. Application of biochar with high ash content increase soil EC (Renner, 2007).
274	Increase in soil meso-porosity or increased weathering at the expense of macro porosity
274 275	Increase in soil meso-porosity or increased weathering at the expense of macro porosity strongly influences CEC of soil (Cheng et al., 2006; Yamato et al., 2006), but it is not a fact in all
275	strongly influences CEC of soil (Cheng et al., 2006; Yamato et al., 2006), but it is not a fact in all
275 276	strongly influences CEC of soil (Cheng et al., 2006; Yamato et al., 2006), but it is not a fact in all types of soil or conditions (Novak et al., 2009).
275 276 277	strongly influences CEC of soil (Cheng et al., 2006; Yamato et al., 2006), but it is not a fact in all types of soil or conditions (Novak et al., 2009). Inorganic fertilization is necessary to obtain higher yields but it has very little positive
275 276 277 278	strongly influences CEC of soil (Cheng et al., 2006; Yamato et al., 2006), but it is not a fact in all types of soil or conditions (Novak et al., 2009). Inorganic fertilization is necessary to obtain higher yields but it has very little positive impact on organic matter. It may increase mineralization rate which cause decline in soil organic
275 276 277 278 279	strongly influences CEC of soil (Cheng et al., 2006; Yamato et al., 2006), but it is not a fact in all types of soil or conditions (Novak et al., 2009). Inorganic fertilization is necessary to obtain higher yields but it has very little positive impact on organic matter. It may increase mineralization rate which cause decline in soil organic matter (Lal, 2003). It may also favor positive response to improve microbial populations and
275 276 277 278 279 280	strongly influences CEC of soil (Cheng et al., 2006; Yamato et al., 2006), but it is not a fact in all types of soil or conditions (Novak et al., 2009). Inorganic fertilization is necessary to obtain higher yields but it has very little positive impact on organic matter. It may increase mineralization rate which cause decline in soil organic matter (Lal, 2003). It may also favor positive response to improve microbial populations and organic matter mineralization (Balesdent et al., 1998). However, biochar addition to soil is

283 Biochar has a habitable pore area therefore biochar is considered favorable for microbial 284 habitation (Strong et al., 1998). Accumulation of organic substances (biochar) at surface soil 285 provides a substrate for microorganism that result in higher rates of SMBC (Balota et al., 2004). 286 A cumulative application of biochar and inorganic fertilizer is more effective for 287 beneficial microbes in soil (Wardle et al., 2008; Brunn et al., 2011). 288 Plant height may increase due to more phosphorus availability, enhanced root growth and 289 increased nutrient adsorption (Hussain et al., 2006). It can also be attributed to improved 290 phosphorus availability (Asai et al., 2009; Abdullah et al., 2008). Biochar can increase crop 291 growth and productivity (Spokas et al., 2010). Spike length, plant height and tillers also increase

with increase of chemical fertilizers but upto a limit (Hussain et al., 2006; Asai et al., 2009).

Biochar also can significantly increase crop growth and productivity (Spokas et al., 2010).

Biochar addition may also increase biomass of crops (Van Zwieten et al., 2007). Nitrogen

fertilizer and biochar together can increase the wheat biomass and grain yield (Ayub et al., 2002;

Blackwell et al., 2010; Solaiman et al., 2010).

296

292

293

294

295

297

298 **References**

Abdullah GH, Khan IA, Khan SA, Ali H. 2008. Impact of planting methods and herbicides
on weed biomass and some agronomic traits of maize. *Pakistan* Journal of *Weed Science* Research 14:121-130.

- 302 Analytical software. 2005. Statistix 8.1 for windows Tallahassee, Florida: Analytical
 303 Software.
- Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock, RR.
 2011. Biochar induced soil microbial community change: Implications for biogeochemical
 cycling of carbon, nitrogen and phosphorus. *Pedobiologia* 54:309-320.

Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue
 Y, Shiraiwa T, Horie T. 2009. Biochar amendment techniques for upland rice production in
 Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. *Field Crops Research* 111:81-84.

- ASTM. 2006. Petroleum Products, Lubricants, and Fossil Fuels: Gaseous Fuels; Coal and
 Coke. ASTM Inter, West Conshohocken, PA.
- Ayub M, Nadeem MA, Shara MS, Mahmood N. 2002. Response of maize (*Zea mays* L)
 fodder to different levels of nitrogen and phosphorus. Asian. *Journal of Plant Sciences*1:352-354.
- Balesdent J, Besnard E, Arrouays D, Chenu C. 1998. The dynamics of carbon inparticle
 size fractions of soil in a forest-cultivation sequence. *Plant and Soil* 201:49-57.

Balota EL, Colozzi A, Andrade DS, Dick RP. 2004. Long-term tillage and crop rotation
effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. *Soil and Tillage Research* 77:137-145.

- Belay-Tedla A, Zhou X, Su B, Wan SQ, Luo YQ. 2009. Labile recalcitrant and microbial
 carbon and nitrogen pools of a tall grass prairie soil in the US Great Plains subjected to
 experimental warming and clipping. *Soil Biology and Biochemistry* 41:110-116.
- Blackwell P, Krull E, Butler G, Herbert A, Solaiman Z. 2010. Effect of banded biochar
 on dry land wheat production and fertilizer use in south-western Australia. *Soil Research*48:531-545.
- Blake GR, Hartage KH. 1986. Bulk density. In: Methods of Soil Analysis, Part 1. Physical
 and Mineralogical Methods. A. Klute (Ed.) Agronomy Monograph No. 9, 2nd Ed., Madison,
 WI, USA. 363-375.
- Blake GR. 1965. Particle density: In Methods of Soil Analysis, Part I, Agronomy, No. 9,
 C.A. Black (ed.), American Society of Agronomy Madison, Wise, 371-373.
- Brady NC, Weil RR. 2008. The Nature and Properties of Soils, 14th edition Pearson
 Prentice Hall.
- Briggs CM, Breiner JM, Graham RC. 2005. Contributions of Pinus Ponderosa Charcoal to
 Soil Chemical and Physical Properties. In the ASACSSA-SSSA International Annual
 Meetings Salt Lake City, USA.
- Brookes PC, Landman A, Pruden G, Jenkinson DS. 1985. Chloroform fumigation and the
 release of soil nitrogen: a rapid direct extraction method to measure microbial biomass
 nitrogen in soil. *Soil Biology and Biochemistry*. 17:837-842.
- Brown RC. 2009. Biochar production technology. Centre for sustainable environment
 Technical Department of Mechanical Engineering. M.S. Thesis, Iowa State University USA.
- Brunn WE, Ambus P, Egsgaard H, Nielsen HH. 2012. Effects of slow and fast pyrolysis
 biochar on soil C and N turnover. *Soil Biology and Biochemistry* 46:73-79.
- 344 Carter MR. 1999. Ninhydrin-reactive N released by the fumigation-extraction method as a
 345 measure of microbial biomass under field conditions. *Soil Biology and Biochemistry* 23:139 346 143.

347 Chen HX, Du ZL, Guo W, Zhang Q. 2011. Effects of biochar amendment on cropland soil
348 bulk density, cation exchange capacity, and particulate organic matter content in the North
349 China. *Chinese* Journal of *Applied Ecology* 22:2930-2934.

- 350 Chen KY, Van ZL, Meszaros I, Downie A, Joseph S. 2007. Agronomic values of green
 351 waste biochar as a soil amendment. *Australian Journal of Soil Research* 45:629-634.
- Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH. 2006. Oxidation of black
 carbon by biotic and abiotic processes. *Organic Geochemistry* 37:1477-1488.
- 354 Deluca TH, MacKenzie MD, Gundale MJ. 2009. Biochar effects on soil nutrient
 355 transformations. In: Lehmann, J. and Joseph, S. (Eds), Biochar for Environmental
 356 Management. Earthscan, London 251-270.
- Galantini J, Rosell R. 2005. Long term fertilization effects on soil organic matter quality
 and dynamics under different production systems in semiarid pampean soils. *Soil Tillage Research* 87:72-79.
- Haron K, Brookes PC, Anderson JM, Zakaria ZZ. 1997. Microbial biomass and soil
 organic matter dynamics in oil palm plantations, west Malaysia. *Soil Biology and Biochemistry* 30:547-552.
- Hussain N, Khan AZ, Akbar H., Akhtar S. 2006. Growth factors and yield of maize as
 influenced by phosphorus and potash fertilization. *Sarhad Journal of Agriculture* 22:579-583
- Jeffery S, Bezemer TM, Cornelissen G. 2013. The way forward in biochar research:
 targeting trade-offs between the potential wins. *Global Change Biology and Bioenergy* 98:1011–1213.
- Jones BEH, Haynes RJ, Phillips IR. 2010. Effect of amendment of bauxite processing
 sand with organic materials on its chemical, physical and microbial properties.
 Journal of Environmental Management 91:2281-2288.
- 371 Khalil S, Kakar MK. 2011. Agricultural use of untreated urban wastewater in Pakistan.
 372 Asian *Journal of Agriculture and Rural Development* 1:21-26.

Kumar S, Masto RE, Ram LC, Sarkar P, George J, Selvi VA. 2013. Biochar preparation
 from parthenium hysterophorus and its potential use in soil application. *Ecological Engineering* 55: 67-72.

Laird DA, Fleming F, Davis DD, Horton R, Wang BQ, Karlen DL. 2010. Impact of
biochar amendments on the quality of a typical midwestern agricultural soil. *Geoderma*.
158:443-449.

Lal R. 2006. Enhancing crop yields in the developing countries through restoration of soil
organic carbon pool in agricultural lands. *Land Degradation and Development*. 17:197–209.

381 Lehmann J, Joseph S. 2009. Biochar for environmental management: science and
 382 technology, Earthscan, London.

Liu E, Yan C, Mei X, He W, Bing SH, Ding L, Liu S, Fan T. 2010. Long-term effect of
 chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest
 China. *Geoderma*. 158:173-180.

386 Mckeague JA. 1978. Manual on soil sampling and methods of analysis. 2nd ed. Canadian
 387 Society of Soil Science, AAFC, Ottawa, Ontario, Canada.

Mclean, EO. 1982. Soil pH and lime requirement. In A.L. Page (ed.), Method of soil
analysis, Part 2: chemical and microbiological properties. *American Society of Agronomy*Madison, WI, USA.199-224.

Murtaza G, Ghafoor A, Qadir M, Rashid MK. 2003. Accumulation and bioavailability of
 Cd, Co and Mn in soils and vegetables irrigated with city effluent. *Pakistan Journal of Agricultural Sciences* 40:18-24.

Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS. 2009.
Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil. *Soil Science*174:105-112.

397 Olsen SR, Sommers LE. Phosphorus. 1982. In A.L. Page (ed.). Methods of soil analysis,
398 Agron. No. 9, Part 2: Chemical and microbiological properties, 2nd ed., American Society of
399 Agronomy, Madison, WI, USA 403-430.

- 400 Pakistan Economic Survey. 2015. Ministry of Finance, Agriculture and Livestock, Federal
 401 Bureau of Statistics, Islamabad, Pakistan.
- 402 Peng X, Ye LL, Wang CH, Zhou H, Sun B. 2011. Temperature and duration dependent
 403 rice straw derived biochar: Characteristics and its effect on soil properties of an ultisol in
 404 southern China. *Soil Tillage Research* 112:159-166.
- 405 **Renner R. 2007.** Rethinking biochar. *Environmental Science and Technology* **41**:5932-5933.

406 Rhoades, JD. 1982. Cation exchange capacity. In A.L. Page (ed.). Methods of soil analysis,
407 Agron. No. 9, Part 2: Chemical and microbiological properties. American Society of
408 Agronomy Madison, WI, USA, 149-157.

- 409 Richards LA. 1954. Diagnosis and improvement of saline and alkali soils. USDA Agric.
 410 Handbook 60. Washington, DC.
- 411 **Ryan J, Estefan G, Rashid A. 2001.** Soil and Plant Analysis Laboratory Manual. 2nd Ed.
 412 International Center for Agricultural Research in the Dry Areas (ICARDA). Alleppo, Syria.
 413 46–48.
- Shah Z, Ahmad RS, Rahman HU. 2010. Soil microbial biomass and activities as
 influenced by green manure legumes and N fertilizer in rice–wheat system. *Pakistan Journal*of Botany 42:2589–2598.
- Solaiman ZM, Blackwell P, Abbott LK, Storer P. 2010. Direct and residual effect of
 biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. *Australian Journal of Soil Research* 48:546–554.
- 420 Spokas KA, Baker, JM, Reicosky DC. 2010. Ethylene: potential key for biochar
 421 amendment impacts. *Plant and Soil* 333:443–452.

422	Strong DT, Sale PWG, Helyar KR. 1998. The influence of the soil matrix on nitrogen
423	mineralisation and nitrification. The pore system as a framework for mapping the
424	organisation of the soil matrix. Australian Journal of Soil Research 36: 855–872.

- 425 Van Zwieten L, Chan KY, Meszaros I, Downie A, Joseph S. 2007. Agronomic values of
 426 greenwaste biochar as a soil amendment. *Australian Journal of Soil Research* 45:629.
- 427 Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil
 428 microbial biomass C. *Soil Biology and Biochemistry* 19: 703–707.
- Wardle DA, Nilsson MC, Zackrisson O. 2008. Fire-derived charcoal causes loss of forest
 humus. *Science* 320:629.
- Woolf D, Amonette J, Perrott FAS, Lehmann J, Joseph S. 2010. Sustainable biochar to
 mitigate global climate change. *Nature Communications* 1:1–9.
- 433 Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M. 2006. Effects of the
 434 application of charred bark of *Acacia mangium* on the yield of maize, cowpea and peanut,
 435 and soil chemical properties in South Sumatra, Indonesia. *Soil Science* and *Plant Nutrition*436 52:489–495.
- 437 Yin C, Xu KZ, 2009. Biochar: nutrient properties and their enhancement. In: Lehmann, J,
 438 Joseph S. (Eds.). Biochar for Environmental Management. Earthscan, USA.
- Younis U, Qayyum MF, Shah M, Danish S, Shahzad AN, Malik SA, Mahmood S. 2015.
 Growth survival and heavy metal (Cd and Ni) uptake of spinach (Spinacia oleracea) and
 fenugreek (Trigonella corniculata) in a biochar-amended sewage irrigated contaminated soil. *Journal* of *Plant Nutrition* and *Soil Science* 178:209–217.
- Zhao B, Bi H. 1999. Research advances on toxicology of heavy metals in plant cells. J Zibo
 University 1:86-88.
- Zimmerman AR, Gao B, Ahn MY. 2011. Positive and negative carbon mineralization
 priming effects among a variety of biochar-amended soils. *Soil Biology and Biochemistry*447 4:1169-1179.

			450	
Biochar parameter	UNIT	VALUE		
рН	-	8.85		
EC	$dS m^{-1}$	0.738		
CEC	cmol _c kg ⁻¹	132.8		
Bulk density (ρ_b)	Mg m ⁻³	0.38		
Particle density	Mg m ⁻³	1.58		
(ρ_p)				
Porosity	%	75.95		
Ash contents	%	27.2		
Total carbon	%	49.71		
Total hydrogen	%	8.05		
Total nitrogen	g kg ⁻¹	1.03		
Total phosphorus	g kg ⁻¹	2.06		
Total potassium	g kg ⁻¹	9.21		

448 Table 1. Analysis of different parameters of biochar449

Soil parameter	UNIT	VALUE	
Texture class	-	Loam	
Bulk density (ρ_b)	Mg m ⁻³	1.42	
Particle density (ρ_p)	Mg m ⁻³	2.61	
Porosity	%	45.59	
рН	-	7.83	
EC	$dS m^{-1}$	0.41	
CEC	cmol _c kg ⁻¹	17.30	
Organic matter	%	0.69	
Soil Microbial Biomass carbon	mg kg ⁻¹	136.6	
Soil Microbial Biomass nitrogen	mg kg ⁻¹	44.13	

459 **Table 2.** Pre soil analysis of different soil parameters

U	Table 3. Soli chemical parameters recorded at different combined applications of chemical fertilizers and blochar							
Sr. No. Treatments					Soil chemical	l parameters		
		-	Organic matter	Soil microbial	Soil microbial	CEC	pН	EC
			(%)	biomass carbon	biomass nitrogen	cmol _c kg ⁻¹		dSm^{-1}
				mg/kg	mg/kg			
	1	$B_0 F_1$	0.65±0.03fg	138.85±0.61h	58.13±0.43e	17.35±0.01c	7.70±0.02c	0.29±0.00f
	2	$B_0 F_2$	0.64±0.02gh	157.15±0.86g	63.12±0.44d	17.34±0.00c	7.67±0.02bc	0.37±0.01d
	3	$B_0 F_3$	$0.62 \pm 0.03 h$	167.75±0.91f	49.14±0.40h	17.27±0.01c	7.61±0.02b	0.34±0.02e
	4	$B_0 F_4$	$0.58 \pm 0.01 h$	170.88±0.82e	51.12±0.46g	19.03±0.01b	7.59±0.02bc	0.38±0.01b
	5	$B_1 F_0$	1.07±0.02a	230.20±0.82d	53.75±0.32f	24.20±0.01a	7.89±0.01bc	$0.48 \pm 0.02b$
	6	$B_1 F_1$	0.98±0.01b	235.20±0.77c	77.17±0.26a	24.02±0.01a	7.99±0.02ab	0.52±0.01d
	7	$B_1 F_2$	0.88±0.01c	238.93±0.69b	75.05±0.21b	24.26±0.04a	8.06±0.01a	0.38±0.02d
	8	$B_1 F_3$	0.76±0.02d	240.80±0.66b	68.07±0.22c	24.05±0.04a	7.97±0.02ab	0.37±0.03d
	9	$B_1 F_4$	0.72±0.03e	245.20±0.38a	64.08±0.22d	24.08±0.03a	7.93±0.11b	0.39±0.02a
	10	$B_0 F_0$	$0.69{\pm}0.01f$	136.63±0.82i	44.13±0.42i	17.30±0.04c	7.87±0.04bc	0.41±0.00c

460 **Table 3.** Soil chemical parameters recorded at different combined applications of chemical fertilizers and biochar

461 * Mean values followed by the different letter in the same column are statistically different ($P \le 0.05$)

462

463	Table 4. Different a	agronomic parameters	s recorded at different	combined applications of ch	emical fertilizers and biochar

464 * Mean values followed by the different letter in the same column are statistically different ($P \le 0.05$)

Sr. No. Treatments		Agronomic parameters						
		Plant Height	Spike Length	No of Tillers	Spikelets (S)	Biomass	Grain	Harvest
		cm				Yield	Weight	Index
1	$B_0 F_1$	99.35±1.65c*	8.12±0.42d	419.95±0.51h	20.125±0.43g	9.80±0.42h	2.66±0.12gh	0.27±0.01b
2	$B_0 F_2$	101.18±1.06bc	9.22±0.41c	458.58±0.93g	21.45±0.41f	10.65±0.41g	$2.85 \pm 0.04 f$	$0.27 \pm 0.02b$
3	$B_0 F_3$	105.63±1.02am	9.01±0.41c	484.38±0.84f	23.10±0.42de	11.37±0.39f	3.05±0.04e	0.26±0.03c
4	$B_0 F_4$	99.63±2.02c	9.03±0.41c	512.23±0.45d	24.45±0.41c	13.27±0.40c	3.29±0.04d	0.25±0.02e
5	$B_1 F_0$	101.73±0.73bc	8.35±0.45bc	512.13±0.44d	26.05±0.39ab	13.72±0.41b	3.52±0.04c	0.26±0.02d
6	$B_1 F_1$	104.65±1.34ab	10.17±0.42b	496.50±0.45e	22.02±0.40ef	12.15±0.41e	3.28±0.04d	0.27±0.03bc
7	$B_1 F_2$	107.75±1.44a	10.65±0.18a	592.13±0.45a	24.05±0.45cd	13.13±0.41c	3.58±0.04b	0.32±0.02a
8	$B_1 F_3$	107.65±1.79a	10.5±0.45a	540.13±0.45c	27.07±0.42a	14.65±0.40a	3.68±0.05a	0.32±0.04a
9	$B_1 F_4$	105.10±0.72ab	8.47±0.12d	516.23±0.45d	25.07±0.47bc	12.72±0.42d	$2.77 \pm 0.04 h$	$0.20{\pm}0.03g$
10	$B_0 F_0$	100.68±1.26c	8.10±0.42d	550.13±0.46b	25.07±0.81bc	13.05±0.41c	$2.60{\pm}0.04$ fg	$0.21 \pm 0.04 f$

465

466