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ABSTRACT

We give an analytic derivation of kernel of dynamic support vector machine
(DSVM). We show them for the cases of stochastic and deterministic changes.
For the stochastic case, Gaussian kernel is naturally derived. For the deter-
ministic case, the kernel is derived in the form of traveling wave. We also give
comments from physical viewpoints in the context of information geometry.
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1 Introduction

After the invention of support vector machine (SVM) [1], this method has been

widely spread and used in many areas. One of the extension is the application to

dynamic data. The classification of dynamic data is an important to solve actual

problems. Dynamic SVM (DSVM) has been proposed in a simple extension of

basic SVM [2, 3]. As further extension of SVM, support vector regression was

proposed and it is used with practical purpose, such as demand forecasting [4].

In this paper, we extend the SVM framework to the classification problems of

dynamic data with the other nature: though their changes are time-dependent,

but they behave stochastically or deterministically. Our extension derives ker-

nels in analytic forms within a criterion of Bellman principle. For stochastic

case, Gaussian kernel is naturally derived. For deterministic case, the kernel

takes the form of traveling wave.

This paper is organized as follows. In section two, we review basic SVM

algorithms. In section three, we give algorithmic introduction of existing works

of dynamic SVM. Section four is a main part of current paper. We give the

derivations of kernel of DSVM for stochastic and deterministic cases. Section five

is devoted for theoretical comments. We give comments mainly with physical

viewpoints, there. Section six is conclusions.

2 Support Vector Machine

2.1 Basic SVM

A reference for this part is [5]. Suppose that the input space ∈ Rn and a set of

data x1, . . . ,xr are given. The identifier function is given as,

f(x) = wTx− b. (1)

The coefficient w is a weight and b is a non-negative bias. d − 1 dimensional

hypersurface identifier that satisfies f(x) = 0 is described as

{x ∈ : (wTx) + b = 0}. (2)

When training data (x1, y1), . . . , (xl, yl), xi ∈ , yi ∈ {±1}, i = 1, . . . , l are given

and consider the problem to identify the identifier function,

fw,b = sgn ((w · x) + b) (3)
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that satisfies

fw,b(xi) = yi, i = 1, . . . , l. (4)

For this identifier function, we set the constraints of following equation,

yi(w
Txi + b) ≤ 1, i = 1, . . . , l. (5)

In this case, the distance between the identifier surface (margin) and these hyper

surface is 1
||w|| . So the problem to find the parameters that maximize margin,

results in finding the parameters that minimize the objective function:

τ(w) =
1

2
||w||2 (6)

under the constraint of eq. (5). We introduce the Lagrange multipliers αi(≥ 0)

and rewrite the objective function as

L(w, b, α) =
1

2
||w||2 −

l∑
i=1

αi{yi((wTxi) + b)− 1}. (7)

From partial differentiation with respect to w and b, we obtain.

w =
l∑

i=1

αiyixi, (8)

0 =
l∑

i=1

αiyi. (9)

Substituting these to the objective function gives the dual problem:

LD(α) =
l∑

i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjx
T
i xj , (10)

under the constraints,
l∑

i=1

αiyi = 0. (11)

0 ≤ αi, i = 1, . . . , l. (12)

w is obtained from optimal α by using eq. (8) and b is given as

b = −1

2
(wTx+1 + wTx−1), (13)

here, x+1, x−1 are support vectors belonging to the class 1,−1.
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To solve the non-linear problems, we introduce non-linear mapping function.

Using the non-linear function ϕ(x), if the inner product between x1 and x2 is

represented as

ϕ(x1)
Tϕ(x2) = K(x1, x2), (14)

we obtain the optimal non-linear mapping, instead of calculating characteristics

ϕ(x1), ϕ(x2). We call such K as kernel. The frequently used kernels are the

following:

polynomial kernel

K(x1, x2) = (1 + xT
1 x2)

p (15)

Gaussian kernel

K(x1, x2) = exp

(
−||x1 − x2||2

2σ2

)
(16)

Sigmoid kernel

K(x1, x2) = tanh(axT
1 x2 − b) (17)

Using kernel, the objective function is represented as

LD(α) =
∑N

i=1 αi − 1
2

∑N
i,j=1 αiαjtitjϕ(x

T
i )ϕ(xj)

=
∑N

i=1 αi − 1
2

∑N
i,j=1 αiαjtitjK(xi, xj), (18)

and the optimal identifier function is obtained as

f(x) = sign

(
l∑

i=1

αiyiϕ(xi)
Tϕ(x) + b

)

= sign

(
l∑

i=1

αiyiK(xi, x) + b

)
(19)

3 Dynamic SVM

3.1 Dynamic SVM Criterion

In dynamic SVM criterion [2], they assume that data and parameters are dy-

namic, and they consider that these transit with conditional probabilities. They

assume a priori parametric distribution of the instances

ϕ(x|a, b, y; c) = const., yz(a, x) ≤ 1, (20)

exp(−c(1− yz(a, x))), yz(a, x) < 1. (21)
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The objective function is

J(a, b, δ1, . . . , δN |c) = aTa+ c
N∑
j=1

δj → min, (22)

subject to

yj(a
Ta+ b) ≤ 1− δj, δj ≤ 0, j = 1, . . . , N. (23)

The basic SVM criterion:

ϕ(x|at, bt, y; c) = const., yz(at, x) ≥ 1, (24)

exp(−c(1− yz(at, x))), yz(at, x) < 1, (25)

becomes following form for dynamic data,

J(at, bt, δt,j , t = 0, . . . , T ) = aT0 a0 +
1

d

T∑
t=1

(at − qat−1)
T (at − qat−1)

+
1

d′

T∑
t=1

(bt − bt−1)
2 +

T∑
t=1

Nt∑
j=1

δj,t (26)

→ min
[at,bt]Tt=1

yj,t(a
T
t xj,t + bt) ≤ 1− δj,t, δj,t ≤ 0, j = 1, . . . , Nt, t = 1, . . . , T

where z(x, at) = aTt x + b = 0. This is the dynamic SVM criterion. After this

prescription, they are considering the optimization by dynamic programming.

3.2 Distributing Kernel

The other approach to dynamic SVM is the assumption of distributing kernel

[3]. The problem is represented as follows,

maxW (α) =

nx∑
i=1

αi −
1

2

nx∑
i,j=1

αiαjyiyj exp

{
−|xi − xj |2

σiσj

}
, (27)

subject to

0 ≤ αi ≤ C,

nx∑
i=1

αiyi = 0. (28)

The identifier function is,

f(x) = sgn

[
nx∑
i=1

exp

{
−|xi − xj |2

σiσj

}
+ b∗

]
. (29)
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Although this is the same form with basic SVM, but the difference is the as-

sumption of data which follows dynamic process. The data transit from xi to

xj with the changes of time from i to j, following the distribution of

exp

{
−|xi − xj |2

σiσj

}
. (30)

4 Stochastic and Deterministic DSVMs

Here we consider the two types processes of dynamic data: stochastic and deter-

ministic. The former transit stochastically depending on time. The transition

of latter is deterministic, but it depends on time. We derive the appropriate

forms of kernel for each processes. For the stochastic case, Gaussian functional

form of Kernel is naturally derived. For deterministic case, it takes the form of

traveling wave.

4.1 Stochastic DSVM

4.1.1 Setting of Problem for Stochastic DSVM

We assume a stochastic behavior for data process as depicted in Fig. 1.

Figure 1: Stochastic DSVM

Our objective is detecting the change of tendency of stochastic process, rep-

resented as classification problem. The process changes as

xj = xi + dx, (31)
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and the inifinitismal change follows a stochastic process,

dx = µdt+ σdz, (32)

here dt is time difference and dz is standard Brownian motion. µ is growth rate

and σ is volatility. The objective function takes the following form,

LD(α) =

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjJ(xi, xj), (33)

4.1.2 Kernel of Stochastic DSVM

The optimization problem is equivalent to consider the following problem,

max [J(x, T )] (34)

Here, T is terminal time. By Bellman principle [6], solving this problem results

in solving the sub-problem,

J(x) = maxE(x;t)[J(x+ dx)]. (35)

Here, E(x;t) represents taking conditional expectation at (x, t). This equation

is transformed as

maxE(x;t)[J(x+ dx)− J(x)] = 0 (36)

For inifinitismal difference, this equation becomes,

J(x+ dx)− J(xt) = J ′(x)dx+
1

2
J ′′(x)dx2 + o(dt). (37)

By Ito’s lemma,

E(x;t)[J(x+ dx)− J(x)] = µJ ′(x)dx+
1

2
σ2J ′′(x)dt+ o(dt) (38)

This derives a diffusion equation such as

∂J(x)

∂t
− µ

∂

∂x
J(x)− 1

2
σ2 ∂2

∂x2
J(x) = 0 (39)

we obtain the solution of the following form (with the boundary condition

J(∞) = 0),

J(x) =
1

2
√

πσ2(t− µ2/2σ2)
exp

(
− (x− µ/σ2)2

4σ2(t− µ2/2σ2)

)
. (40)

6

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1624v1 | CC-BY 4.0 Open Access | rec: 5 Jan 2016, publ: 5 Jan 2016



If µ = 0, then

J(x) =
1

2
√
πσ2t

exp(− x2

4σ2t
). (41)

This is the same functional form as Gaussian kernel. So, the objective function

becomes the following form:

LD(α(t)) =

l∑
i=1

αi(t)−
1

2

l∑
i,j=1

αi(t)αj(t+∆t)yiyjJ(xi(t), xj(t+∆t)), (42)

here,

J(xi(t), xj(t+∆t)) =
1

2
√
πσ2∆t

exp

(
−||xi(t)− xj(t+∆t)||2

4σ2∆t

)
. (43)

As shown in above, the same functional form as Gaussian kernel was natu-

rally derived. This gives one of the reasonings why basic SVM works. They

are supposing stochastic distribution to data implicitly. Above derivation is a

verification of its effectiveness.

4.2 Deterministic DSVM

4.2.1 Setting of Problem for Deterministic DSVM

The generalization to deterministic case of basic SVM is obtained by the intro-

duction of time dependence,

xj = xi + dx, (44)

and dx follows,

dx2 = c2dt2. (45)

What we consider is the classification problem as depicted in Fig. 2. The

objective function is,

LD(α) =
l∑

i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjK(xi, xj), (46)

4.2.2 Kernel of Deterministic DSVM

The Bellman principle for current case is described as

J(x) = max J(x+ dx). (47)

This equation derives

max [J(x+ dx)− J(x)] (48)
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Figure 2: Deterministic DSVM

For inifinitismal difference, this equation becomes,

J(x+ dx)− J(x) =
∂

∂x
J(x)dx+

∂2

∂x2
J(x)dx2 (49)

= ± ∂

∂x
J(x)cdt+

∂2

∂x2
J(x)c2dt2 (50)

(51)

for dx2 = c2dt2. Setting ∂
∂xJ(x) = 0 means that the kernel is stable to the

variation of data. This assumption gives the wave equation of the following

form:
∂2

∂t2
J(x)− c2

∂2

∂x2
J(x) = 0. (52)

The solution of this equation is

J(x) = exp(i(ct± x)). (53)

The objective function becomes the following form:

LD(α(t)) =

l∑
i=1

αi(t)−
1

2

l∑
i,j=1

αi(t)αj(t+∆t)yiyȷJ(xi(t), xj(t+∆t)), (54)

here,

J(xi(t), xj(t+∆t)) = exp[i(c∆t± {xj(t+∆t)− xi(t)})]. (55)
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5 Comments

5.1 State Dependence

The assumption of flat space in higher dimension is playing a central role in

the algorithms of SVM. The effectiveness of SVM verifies this assumption. In

general, the spaces are not flat. If it remain in higher dimension, we have to

introduce curved space. This is realized as state dependent coefficients in our

framework. For stochastic case, this is represented as

dx = µ(x, t)dt+ σ(x, t)dz, (56)

and for deterministic case,

dx2 = c(x, t)2dt2. (57)

For these cases, we have to solve non-linear diffusion or wave equations. This

needs obtaining the solutions, numerically. But this will realize a new mecha-

nism by merging solving the equations in numerical way to algorithms.

5.2 Reinterpretation of Kernel

5.2.1 Kernel in Information Geometry

We consider the infinitismal distance between the points in data space.

ds2 = |s(x+ dx)− s(x)|2 =
∑{

∂

∂xi
s(x) · ∂

∂xj
s(x)

}
dxidxj (58)

The metric of this space is

gij(x) =

(
∂

∂xi
s(x)

)
·
(

∂

∂xj
s(x)

)
. (59)

This metric is represented with kernel as [7, 8]

gij(x) =
∂2

∂xi∂x′
j

K(x, x′)|x′=x. (60)

If we take the Gaussian kernel, K(x, x′) is

K(x, x′) = exp

{
−|x− x′|2

σ2

}
. (61)

This formalism can be extended to the time-dependent case. This is realized as

the inclusion of time direction to the metric.

gij 7→ gµν , (62)
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here,

µ, ν = 0, 1, . . . , N. (63)

This picture corresponds to deterministic case in our work.

5.2.2 Equivalence Principle in Information Geometry

Once include the time direction, we can deal the information space by the

same way as in general relativity. Here, we consider a relationship that is a

counterpart of equivalence principle [9]. We assume the small deviation from

Minkowskian metric for the metric gµν , in short, gµν = ηµν +hµν , hµν ≪ 1. We

can derive the following relation for the points of data,

ẍµ + Γµ
αβ ẋ

αẋβ = 0 (64)

In the above equation, ( ˙ ) denotes the derivative with respect to time, and Γµ
αβ

is Christoffel symbol. For the space components, the following equation holds,

ẍµ = −Γµ
αβẋ

αẋβ ≃ −Γi
00c

2. (65)

The last equality holds under the assumption of the very slow speed of point

compared with the speed of light. The Christoffel symbol can be calculated as,

Γi
00 ≃ −1

2
∂ih00. (66)

Then we obtain the equation of following form,

ẍi ≃ c2

2
∂ih00. (67)

The comparison of this equation with the equation of Newtonian mechanics:

ẍi = −∂iϕ, gives the following relation between potential and metric,

ϕ ≃ −c2

2
h00. (68)

This gives the relation between the acceleration of point of data and the metric:

dynamics and shape of data.

5.2.3 Relation to AdS/CFT Correspondence

In the context of AdS/CFT correspondence, diffusion equation and wave equa-

tion appear as a reflection of Fick’s law [10, 11, 12]. The solutions of these
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equations are interpreted as kernel, described in former sections. In informa-

tion geometry, kernel is related with metric of space as shown in above. It will

be interesting to seek the interpretation of kernel in the context of AdS/CFT

correspondence and to find the interpretation of AdS/CFT in the context of

information geometry.

6 Conclusions

In this paper, we gave a derivation of kernel of DSVM. The time-dependent

processes that we adopted were stochastic and deterministic. The derivation of

kernels followed Bellman principle. We also gave physical interpretations in the

context of extension of information geometry.

The information geometric comments that we gave are little, but the study

of information geometry with physical viewpoints will be interesting and bring

new insights both in the contexts of information theory and physics. We will

explore them.

Followings are in the scope our future study, application to financial opti-

mization problem, extension to dissipative systems, relation to heat equations

in Topological Data Analysis, stochastic quantization of gravity, information

paradox, information causality, and conformal transformation.
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