
Students’ and Professionals’ Perceptions1

of Test-driven Development: A Focus2

Group study3

Giuseppe Scanniello1, Simone Romano2, Davide Fucci3, Burak Turhan4,4

and Natalia Juristo5
5

1University of Basilicata, Potenza, Italy6

2University of Basilicata, Potenza, Italy7

3University of Oulu, Oulu, Finland8

4University of Oulu, Oulu, Finland9

5Polytechnic University of Madrid, Madrid, Spain10

ABSTRACT11

We have conducted a qualitative investigation on test-driven development (TDD) with focus groups in
order to develop insights on the opinions of developers using TDD regarding the unintuitive process
involved, its claimed effects, as well as the context factors that can facilitate (or hinder) its application. In
particular, we conducted two focus group sessions: one with professional developers and another with
Master students in Computer Science at the University of Basilicata. We used thematic analysis template
(TAT) method for identifying patterns, themes, and interpretations in the gathered data. The application
of this qualitative method allowed us to obtain a number of results that can provide directions for future
research. Our main results can be summarized as follows: (i) applying TDD without knowing advanced
unit testing techniques can be difficult; (ii) refactoring (one of the phases of TDD) is not done as often as
the process requires; (iii) there is a need for live feedback to let developers understand if TDD is being
applied correctly; and (iv) the usefulness of TDD hinges on task and domain to which it is applied to.

12

13

14

15

16

17

18

19

20

21

22

Keywords: Focus group, qualitative investigation, test driven development23

INTRODUCTION24

Test-driven development (TDD) is an iterative software development technique where unit-tests are25

defined before production code. This technique encourages code development by repeating short cycles26

consisting of: (i) writing a unit test for an unimplemented functionality or behavior; (ii) supplying minimal27

amount of production code to make unit tests pass; (iii) applying refactoring where and when necessary;28

and (iv) checking that all tests are still passing after refactoring Beck (2002). The effects of these steps29

can be summarized as follows: a shift in mindset from test-last approach to test-first approach; developing30

code only to pass tests; a focus on design quality through refactoring operations; and a growing set31

of regression test cases as a safety net. It is claimed that TDD leads to better code quality due to its32

focus on testing, and improves developers’ confidence in their source code Astels (2003). A number33

of quantitative empirical investigations have been conducted on TDD (e.g., Fucci and Turhan (2014);34

Salman et al. (2015)). Results are somehow contrasting and inconclusive Shull et al. (2010). Even35

more surprisingly, TDD has been marginally investigated from a qualitative point of view and from36

the perspective of the developer Marchenko et al. (2009); Siniaalto and Abrahamsson (2007). Unlike37

quantitative investigations, qualitative ones allow gaining an understanding of reasons and motivations38

behind a given phenomenon Wohlin et al. (2012).39

In this study, we want to understand what are opinions of developers using TDD regarding the process40

itself, its claimed effects, as well as the context factors that can facilitate (or hinder) its application. In this41

respect, focus groups have the advantage, over other qualitative approaches, of producing interactions42

by focusing on the role of group rather than on individuals. We conducted two focus groups with five43

professional software developers, and 13 Master students in Computer Science. Professional developers44

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1619v1 | CC-BY 4.0 Open Access | rec: 31 Dec 2015, publ: 31 Dec 2015

attended a professionalization program in which TDD was presented. The students recently took a course45

about unit testing and TDD. The first session of each focus group was aimed at gathering participants46

impression regarding their learning experience, whereas the second session aimed at exploring issues47

related with TDD. We used thematic analysis template (TAT) to analyze the recordings of focus group48

sessions.49

The reminder of this paper is organized as follows: background and related work on the measured50

and perceived effectiveness of TDD is discussed in Section 1. We present our resarch methodology, e.g.51

planning and design of our focus groups in Section 2. Results are provided and discussed in Section 3.52

Section 4 concludes the paper.53

1 BACKGROUND AND RELATED WORK54

The effectiveness of TDD has been assessed through several quantitative studies, and their results55

aggregated using systematic reviews and meta-analyses Munir et al. (2014); Rafique and Misic (2013);56

Turhan et al. (2010). Contradictory results regarding the effects of TDD on both software products (e.g.,57

defects) and the software developers (e.g., productivity) are reported. Interestingly, one of the secondary58

studies Causevic et al. (2011) suggested that the insufficient adherence to the TDD protocol and insufficient59

testing skills are among factors hampering industrial adoption of TDD.60

There is a smaller number of qualitative studies investigating the perception of developers regarding the61

practise. Mueller and Tichy Muller and Tichy (2001) presented results of using several XP methodologies,62

including TDD, within a university course. They reported that TDD was one of the most difficult63

techniques to adopt as writing test cases before coding was at times considered impractical. Nevertheless,64

students saw benefits of TDD and ranked it as the best among the practices used as it improved their65

confidence. Similarly, Gupta and Jalote Gupta and Jalote (2007) report that students seemed to be more66

confident that the testing effort applied by using TDD would bring better results than in a traditional67

test-after-code setting. They also identified the need of some upfront design. On the other hand, Pancur68

et al. Pancur et al. (2003) reports that students perceived TDD more difficult to adopt in comparison to69

professionals. Students perceived TDD as a practice that hinders their productivity, efficiency and quality.70

According to professional software developers, TDD helps in devising a better design, and preventing71

bugs; however, it does not replace a QA engineer Shull et al. (2010). Moreover, TDD improves confidence72

by minimizing fear of breaking existing working parts of code once a new feature is implemented Geras73

et al. (2004).74

While quantitative studies provide objective frameworks for assessing TDD effectiveness, their find-75

ings were mostly inconclusive. On the other hand, qualitative studies enable more deeper understanding.76

In this respect, existing qualitative studies relied upon non-interactive research methods such as question-77

naires. Our study differs from existing work before with the qualitative research methodology employed,78

i.e. focus groups, in order to develop a better understanding of underlying phenomena. Our study enables79

relatively deeper insights, since our results are based on not only individual perspectives, but also the80

collective understanding reached through interaction. Further, we included both students and professionals81

in our study, as previous work highlighted some differences among them (e.g., Salman et al. (2015)).82

2 THE FOCUS GROUP83

Increased attention in empirical methods has also interested software engineering. A broader range84

of empirical methods are available in software engineering arsenal so that appropriate methods can be85

selected and used for each research problem Kontio et al. (2008).86

The focus group method is quick to use and cost-effective to obtain qualitative insights and feed-87

back Kontio et al. (2004). It can be defined as a research technique that collects data through group88

interaction on a topic a-priori determined by the researcher Morgan (1996). Thus, focus groups are89

carefully planned discussions that the researcher designs to obtain personal perceptions of individuals90

(or participants, from here on) arranged in groups on a defined area of interest. Focus groups allow the91

collection of qualitative information and have the benefits of producing upfront and sometimes insightful92

information. In addition, this kind of research strategy is fairly inexpensive and fast to use even if it93

shares weaknesses with other kinds of qualitative methods. For example, results may be biased by group94

dynamics and sample size (a typical group size should range in between 3 and 12). There are several95

textbooks and detailed guidelines available on how to plan and run focus groups (e.g., Nielsen (1997)).96

2/9

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1619v1 | CC-BY 4.0 Open Access | rec: 31 Dec 2015, publ: 31 Dec 2015

We present the main steps of our research according to the template suggested by Kontio et al. Kontio97

et al. (2004). This template has been suggested for research in software engineering.98

2.1 Defining research problem99

Rather than providing quantifiable responses to a specific research question, a focus group study provides100

a flow of input and interaction among participants related to a given topic of interest Lehtola and Kujala101

(2004). The initial objective of our study is to provide insights regarding the adoption and use of TDD.102

What are the reasons to use TDD? In what contexts? What does a group think developers can achieve by103

using TDD? What are possible effects when adopting TDD? In Sections 2.3 and 2.4, we framed those104

discussion points when planning the second focus groups, for both students and professionals.105

2.2 Selecting participants106

We conducted two focus groups, one involving five professionals and another involving 13 Master students.107

As far as professionals are concerned, they attended a training course for adjournment on agile software108

development. The lecturer devoted the greater part of this course to introduce TDD and to apply it109

on actual cases. The course lasted for about eight weeks (with four hours of frontal lessons per week)110

and included homework and workshops working individually and in pairs. Each homework had to be111

completed in one week.112

Industrial experience of professionals ranged between one and ten years. One of the professionals113

(i.e., the most experienced developer) had a Master degree in Computer Science, while the others had a114

Bachelor degree in Computer Science. All the professionals had knowledge of testing approaches and115

techniques (e.g., integration testing, system testing) before focus group took place.116

Participants in the second focus group were students enrolled into an Informative System (IS) course117

of the Master program in Computer Science at the University of Basilicata. This course had elements118

regarding software testing, software development process, software maintenance, agile development119

techniques with a focus on TDD, regression testing, and refactoring. Homework and classwork were also120

conducted to let students experiment and use TDD, regression testing, and selected testing framework,121

namely JUnit.1 The programming language of reference used throughout the class and for the homework122

was Java. Students had all passed exams related to the following courses: Procedural Programming, Soft-123

ware Engineering I, Object-Oriented Programming I and II, and Databases. Their prior knowledge can be124

considered rather homogeneous. The same lecturer held both training course for professional adjournment125

and IS course. Both professionals and students were familiar with TLD (Test Last Development). That is,126

a more traditional development technique where unit tests are written after a feature (or a set of related127

features) are considered completed by developers.128

2.3 Planning and conducting sessions129

We held two sessions for each focus group (i.e., four sessions in total). The first session of each focus130

group lasted for 30 minutes. The second session of each focus group lasted for about one hour. Both131

sessions were conducted on the same day. The topics of the sessions were the same for professionals and132

students. The first session was mostly a pilot, primarily intended to practice our focus group process.133

Topics discussed in the first session concerned course and classwork, as well as homework and workshops.134

During the second session, discussion focused in TDD-specific themes.135

We started with an overview of the study objectives and a short introduction to the ground rules for136

discussions during the sessions. We ensured that participant’s opinions represented actual situations137

by guaranteeing confidentiality and anonymity of discussions. The sessions were conducted in Italian138

language, and audio-recorded so that transcripts could be prepared in order to document points that were139

raised. The lecturer of training and IS courses was the facilitator for all the two sessions of each focus140

group. The role of the facilitator in the sessions was to make sure that important topics were touched,141

limit discussion’s sidetracks, and encourage participants to express their opinions. The facilitator did142

not take an otherwise active part in the discussion. In addition to the facilitator, there was also another143

researcher. He was responsible for the collection of notes from the discussions.144

Discussions were semi-structured, with pre-defined themes, but not specific questions. A set of themes145

were proposed by each researcher and successively compared and internally discussed (Section 2.4). This146

did not limit the dialog and allowed us to touch all the aspects that participants found more relevant.147

1http://junit.org

3/9

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1619v1 | CC-BY 4.0 Open Access | rec: 31 Dec 2015, publ: 31 Dec 2015

2.4 Analysis148

Audio recordings and notes taken by the researchers were transcribed and anonymized. They represent149

the data on which we base our analysis. We used thematic analysis templates (TAT) King et al. (2004)150

to analyze the data. Thematic analysis is a qualitative method used to identify patterns, themes, and151

interpretations in data Braun and Clarke (2006); Miles and Huberman (1994). The main difference152

between TAT and a conventional thematic analysis is the use of template documents. A template is a set153

of initial themes that are studied. Templates are developed by researchers based on their experience and154

knowledge of the phenomena under investigation. However, templates are not fixed as their content can155

evolve as analysis progresses. We utilized TAT because of its flexibility and swiftness King et al. (2004).156

In our case, templates were created on the basis of our previous experience in teaching and researching157

TDD. The TAT was independently carried out by all researchers manually (i.e., without using specialized158

software). No disagreement regarding the chosen themes was found. In Table 1, we show created template.159

The first focus group covered themes 1.1 to 1.4. In particular, theme 1.4 was introduced to deal with160

social acceptability issues Kontio et al. (2004). The second focus group covered themes 2.1 to 2.3. For the161

second focus group, themes emerging from data were consolidated in the final set presented in Table 2.162

Each of the three main themes focused on a particular facet, reported in parentheses. Each theme was163

articulated into sub-themes. The focus of sub-themes is also reported in parentheses.164

Table 1. Initial template for TAT analysis

ID Theme Discussion
1.1 TDD learning experience Reveals what were the positive and negative points encountered

when learning TDD
1.2 Improvements Reveals what can be done better to improve the negative points

in the learning experience
1.3 Classwork and homework Reveals the challenges encountered while tackling the assign-

ments used to practice TDD
1.4 Appreciations Reveals appreciations specifically for other peers or lecturers
2.1 TDD in practice Reveals challenges regarding the application of the TDD process
2.2 Task specification Reveals the influence of task and context on the application of

TDD
2.3 Effects of TDD Reveals the perceived effects of TDD on several dimensions

Table 2. Final themes and sub-themes identified after TAT analysis

ID Theme Sub-theme

2.1
TDD in practice
(focus on process)

a) TDD internal process characteristics (testing, refactoring)
b) External process characteristics (pair-programming)

2.2
Specification of tasks
(levels of details)

c) Differences with TLD
d) Nature of the task (greenfield, legacy)

2.3
Effects of TDD
(internal2, external3, productivity)

e) Differences with TLD
f) Existing experience (novice, professionals)

3 RESULTS165

The results from the previously identified themes are presented below grouped by session.166

3.1 First session167

A broad discussion on themes 1.1 to 1.4 is not possible due to both space restrictions and minor relevance168

with respect to the main research problems defined in our study.169

2In this context defined as the code-based properties for creating and maintaining the developed solution.
3In this context defined as the thoroughness of the developed solution.

4/9

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1619v1 | CC-BY 4.0 Open Access | rec: 31 Dec 2015, publ: 31 Dec 2015

Theme 1.1) TDD was interesting to learn.

Although professionals and students usually use TLD in their work or in university courses, they found170

TDD interesting as a different software development technique. They did not exclude the potential use171

of TDD in the future. This is a positive point related to their learning experience. On the other hand,172

participants considered classwork delivery time (3 hours) too short, and felt under pressure for delivery173

on time. In addition, participants found some classwork/homework requirements unclear.174

Theme 1.2) Simple exercises should be used to internalize TDD.

The attendees suggested to choose less complex classwork/ homework with well defined requirements175

description.176

Theme 1.3) Tasks and their specification sometimes made it difficult to accomplish assign-
ments.

Professionals and students encountered different challenges while they tackled the assignments used177

to practice TDD. Students had no experience in dealing with existing software. This represented a178

challenge for them because some of the assigned homework involved working with existing software.179

The English language used to specify the requirements of all assignments was another challenge because180

both professionals and students usually implement requirements specified in Italian language.181

Theme 1.4) Appreciation for the lecturer.

Participants expressed appreciations for the lecturer because he was available to explain both unclear182

requirements and source code used in homework and classwork.183

3.2 Second session184

We report results according to the themes shown in Table 2. For each of the main themes, we report main185

findings and results emerging from sub-themes. Interestingly, for both themes 2.2 and 2.3 the discussion186

was concerned with differences between TDD and TLD.187

3.2.1 TDD in practice188

Theme 2.1) Process-related characteristics restrain the application of TDD.

a) TDD internal process characteristics189

Although the three steps of the TDD process were easily understood, participants agreed that their190

application presents several hurdles. The first step—writing a test case for a non-existing functionality—191

requires, except for trivial cases, a good knowledge of unit-testing patterns and unit-testing framework.192

One example is writing a failing unit test for a new feature which depends on another entity, e.g.; another193

class. The lack of knowledge of test doubles Tahchiev et al. (2010) (sometimes referred as impostor194

pattern) and mocking frameworks can make the application of TDD inherently difficulty. On the other195

hand, a more traditional approach (e.g., TLD) is not restricting in such regards as it allows developers to196

implement required dependencies that can be later tested together. Although participants were accustomed197

to use refactoring techniques, they candidly acknowledged that refactoring is more often neglected. The198

reasons are: (i) the difficulty of identifying refactoring opportunities and (ii) the less desirability of199

refactoring when compared to the more fulfilling task of re-starting the TDD cycle by implementing a test200

case for a new feature. We can postulate that a better IDE support can be beneficial in both circumstances201

discussed before.202

5/9

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1619v1 | CC-BY 4.0 Open Access | rec: 31 Dec 2015, publ: 31 Dec 2015

Participants in focus groups, being freshly introduced to TDD, acknowledged that they could not203

judge whether TDD was being applied correctly. One of the participants declared that “it is easy to fool204

yourself with TDD.” The perceived lack of confidence was suggested to be the reason to fall back to a205

test-last approach. Tools4,5 that give live feedback about developer’s conformance to TDD exists, but206

their effectiveness is not sufficiently studied Causevic et al. (2011). We can postulate that the use of these207

tools can be beneficial for TDD novice developers. We advise this point as a possible future direction for208

TDD research work.209

b) External process characteristics210

Participants deemed that TDD is regarded as an activity that should be embraced by the whole development211

team. Participants also practiced TDD in pairs, and recognized it as a good fit for pair-programming.212

3.2.2 Specification of tasks213

Theme 2.2) The task is critical.

c) Differences with TLD214

During training course, professionals deliberately practiced TDD on several tasks of different complexity215

and nature. The same held for students. Some tasks focused on the implementation of algorithms,216

others on architectural problems (e.g., focusing on the interaction between components). Some tasks217

were greenfield (i.e., the task is tackled from scratch), while others were brownfield (i.e., some of the218

components were already in place and the task consisted in modifying or adding functionalities).219

TDD is better suited for smaller tasks, whereas its application to a larger task was found undesirable.220

On the other hand, in presence of a really simple task or a task for which the developer has good knowledge221

of the domain, applying TDD or TLD did not seem to matter as personal experience trump the specific222

technique.223

TDD was recognized useful within an unknown domain as it allows the development of more224

explorative solutions; whereas TLD is to be preferred when a comprehensive plan of action is available.225

Finally, TDD is to be preferred when task requirements are likely to change.226

d) Task nature227

TDD could help understanding legacy code, but only when a test suite is already in place. Otherwise,228

TLD is preferred.229

3.2.3 Effects of TDD230

Theme 2.3) There are tradeoffs between internal and external quality, and productivity.

e) Differences with TLD231

The discussion of the effects of TDD also concerned how they vary in comparison with TLD. Participants232

discussed peculiarities of TDD and TLD, rather than trying to articulate which one is better than the other.233

From the discussion regarding this topic, different outlooks emerged between novice (i.e., students) and234

professional participants. Hence, results regarding sub-theme f) are based on participants’ experience.235

f) Existing experience236

Novice developers thought TDD improved their productivity because bugs are promptly found. Alongside,237

the emphasis of TDD on writing tests, and the high rate at which they are run helps to find bugs not238

only in production code but also in test code. Secondarily, participants perceived positive effects on239

external quality. TDD manifested its biggest drawback with respect to software internal quality. The240

process encourages developers to write quick-and-dirty production code to make the tests pass, provided241

that refactoring is then applied. However, participants acknowledged that refactoring is often ignored.242

This is considered to be the reason for detrimental effects of TDD on internal quality. On the other243

hand, TLD is considered to benefit internal quality. The professional participants stressed how TDD is244

time-taking and detrimental for productivity. Their explanation is that the small increment developed245

with TDD—without a general idea—made them reconsider their previous implementation decisions and246

4Besouro - http://github.com/brunopedroso/besouro
5Pulse - https://github.com/sbastn/pulse

6/9

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1619v1 | CC-BY 4.0 Open Access | rec: 31 Dec 2015, publ: 31 Dec 2015

forced them to change parts of the existing code. The result of a meta-analysis Rafique and Misic (2013),247

focusing on the difference between the application of TDD in industry and academia, supports the claimed248

drop in productivity. Our rationale is that experienced developers tend to strictly follow the process,249

whereas novices are more likely to interpolate TDD with TLD.250

3.3 Threats to Validity251

Focus groups could be prone to problems associated with qualitative data. As the developers of meth-252

ods/approaches may also act as the researcher responsible for focus group sessions, researcher biases could253

be present either during the planning, during the sessions themselves, or during the analysis Langford254

and McDonagh (2003). This kind of bias is not present in our study because we developed neither255

TDD nor TLD. To further deal with possible threats to the validity of our results, we used disciplined,256

objective, and rigorous instrumentation, and data analysis methods Kontio et al. (2008). In addition,257

all our results are based on traceable data. Other possible threats to the validity are related to focus258

group weakness Kontio et al. (2004): group dynamics,6 social acceptability,7 hidden agendas,8 and259

limited comprehension.9 As for group dynamics, we used semi-structured discussion techniques and the260

facilitator balanced discussions and activated less active participants. Social acceptability weakness was261

mitigated by laying out appropriate ground rules in the beginning. The moderator took his role in driving262

the discussion in order to avoid as much as possible social acceptability issues. Hidden agendas did not263

affect our study results because business relationships among participants in each session were not present.264

In addition, it was clearly communicated to participants that results will be presented in anonymous265

form. We also emphasized that study results could be important for both academy and industry. As for266

limited comprehension, we selected participants of equal expertise in each session, namely professionals267

and students. It is worth mentioning that secrecy does not affect the validity of results because relevant268

information concerned with proprietary or business reasons was not discussed in our focus group sessions.269

4 CONCLUSION AND FUTURE WORK270

In this paper, we reported the results of two focus groups in which students and professional software271

developers discussed their experience carrying out programming tasks of different nature using test-driven272

development (TDD). We held two sessions for each focus group (i.e., four sessions in total). The first273

session dealt with high-level topics regarding the courses where participants studied and experimented274

TDD. The most important result is that TDD was interesting to learn. Both students and professionals275

agreed on this point. The second session touched practical aspects related to TDD and its application.276

We used thematic analysis templates (TAT) when discussing: the challenges that TDD process poses, the277

context—with a particular focus on the programming task—that can hamper or support the use of TDD,278

and the different effects TDD has on common aspects, like software quality and developers’ productivity.279

Regarding TDD process, we found that:280

• Applying TDD without knowing advanced unit testing techniques (e.g., mocking), can be difficult.281

• Refactoring is not done as often as the process requires.282

• There is a need for live feedback to ensure that TDD is being applied correctly.283

• TDD works better if used in conjunction with pair-programming.284

We believe that obtained results also provide the basis for further research opportunities. For example,285

when studying the efficacy of TDD, the ability of the study’s participants to apply advanced testing and286

refactoring techniques should be taken into account. When studying TDD, we recommend that IDEs to287

support the process informing study’s participants when TDD is not being applied correctly.288

Regarding the kind of tasks to which TDD is applied, we found that:289

• TDD suits small task better.290

• TDD is preferred for tasks which domain is not well know, i.e. for exploration.291

• TDD is applicable to legacy code already covered by unit tests.292

6As a focus group discussion takes place without predefined format, it is possible that group dynamics or communication styles
influence the level of activity.

7It can influence points made during discussion. For example, it is possible that a participant volunteers incorrect information
and disagreement may take place accordingly.

8Examples of possible biases are: business relationships between participants, motivation to appear in favorable light or not
because of result publication, and internal politics of participants’ companies.

9Time for discussions is limited and communication happens most often only only verbally during the discussion. Complex
issues or points could not be understood by all participants.

7/9

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1619v1 | CC-BY 4.0 Open Access | rec: 31 Dec 2015, publ: 31 Dec 2015

In this regard, one of our future endeavors is to test the hypothesis that TDD works better with293

high-granular requirements rather than coarse requirements through a controlled experiment. The use of294

TDD with legacy code also represents a challenge for future research.295

Regarding the effects of TDD when compared to test-last development (TLD), we found that:296

• Novices believed that TDD improves productivity at the expenses of software internal quality.297

• TLD yields a better internal quality over TDD.298

• Professionals deemed that TDD decreases productivity in developing software.299

We plan to conduct future work to investigate how the application of TDD by developers of different300

experience impacts software attributes such as internal and external quality, as well as productivity. Finally,301

we recommend the use of focus groups as a tool to efficiently generate experimental hypotheses, that can302

be later tested using quantitative methodological approaches.303

REFERENCES304

Astels, D. (2003). Test Driven Development: A Practical Guide. Prentice Hall Professional.305

Beck (2002). Test Driven Development: By Example. Addison-Wesley Longman Publishing Co., Inc.,306

Boston, MA, USA.307

Braun, V. and Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in308

psychology, 3(2):77–101.309

Causevic, A., Sundmark, D., and Punnekkat, S. (2011). Factors Limiting Industrial Adoption of Test310

Driven Development: A Systematic Review. In Software Testing, Verification and Validation (ICST),311

2011 IEEE Fourth International Conference on, pages 337–346. IEEE.312

Fucci, D. and Turhan, B. (2014). On the role of tests in test-driven development: a differentiated and313

partial replication. Empirical Software Engineering, 19(2):277–302.314

Geras, A., Smith, M., and Miller, J. (2004). A prototype empirical evaluation of test driven development.315

In Software Metrics, 2004. Proceedings. 10th International Symposium on, pages 405–416.316

Gupta, A. and Jalote, P. (2007). An experimental evaluation of the effectiveness and efficiency of the test317

driven development. In Empirical Software Engineering and Measurement, 2007. ESEM 2007. First318

International Symposium on, pages 285–294.319

King, N., Cassell, C., and Symon, G. (2004). Using templates in the thematic analysis of texts. Essential320

guide to qualitative methods in organizational research, pages 256–270.321

Kontio, J., Bragge, J., and Lehtola, L. (2008). The Focus Group Method as an Empirical Tool in Software322

Engineering. In Guide to Advanced Empirical Software Engineering, chapter 4, pages 93–116. Springer323

London, London.324

Kontio, J., Lehtola, L., and Bragge, J. (2004). Using the Focus Group Method in Software Engineering:325

Obtaining Practitioner and User Experiences. In Proceedings of the International Symposium on326

Empirical Software Engineering, pages 271–280. IEEE.327

Langford, J. and McDonagh, D. (2003). Focus Groups: Supporting Effective Product Development. CRC328

Press.329

Lehtola, L. and Kujala, S. (2004). Requirements Prioritization Challenges in Practice. In Proceedings330

of International Conference On Product Focused Software Process Improvement, pages 497–508.331

Springer.332

Marchenko, A., Abrahamsson, P., and Ihme, T. (2009). Long-term effects of test-driven development A333

case study. In Proceedings of Internation Confernce on Agile Processes in Software Engineering and334

Extreme Programming, pages 13–22. Springer.335

Miles, M. B. and Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.336

Morgan, D. L. (1996). Focus Groups. Annual Review of Sociology, 22:129–152.337

Muller, M. and Tichy, W. (2001). Case study: extreme programming in a university environment. In338

Proceedings of the 23rd International Conference on Software Engineering, pages 537–544.339

Munir, H., Moayyed, M., and Petersen, K. (2014). Considering rigor and relevance when evaluating test340

driven development: A systematic review. Information and Software Technology.341

Nielsen, J. (1997). The Use and Misuse of Focus Groups. IEEE Softw., 14(1):94–95.342

Pancur, M., Ciglaric, M., Trampus, M., and Vidmar, T. (2003). Towards empirical evaluation of test-driven343

development in a university environment. In EUROCON 2003. Computer as a Tool. The IEEE Region344

8, volume 2, pages 83–86 vol.2.345

8/9

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1619v1 | CC-BY 4.0 Open Access | rec: 31 Dec 2015, publ: 31 Dec 2015

Rafique, Y. and Misic, V. B. (2013). The Effects of Test-Driven Development on External Quality and346

Productivity: A Meta-Analysis. Software Engineering, IEEE Transactions on, 39(6):835–856.347

Salman, I., Misirli, A. T., and Juristo, N. (2015). Are Students Representatives of Professionals in Software348

Engineering Experiments? In Procedings of International Conference on Software Engineering, pages349

666–676.350

Shull, F., Melnik, G., Turhan, B., Layman, L., Diep, M., and Erdogmus, H. (2010). What Do We Know351

about Test-Driven Development? IEEE Software, 27(6):16–19.352

Siniaalto, M. and Abrahamsson, P. (2007). A comparative case study on the impact of test-driven353

development on program design and test coverage. In Proceedings of the International Symposium on354

Empirical Software Engineering and Measurement, pages 275–284. ACM/IEEE Computer Society.355

Tahchiev, P., Leme, F., Massol, V., and Gregory, G. (2010). JUnit in action. Manning Publications Co.356

Turhan, B., Layman, L., Diep, M., Erdogmus, H., and Shull, F. (2010). How effective is test-Driven357

Development. Making Software: What Really Works, and Why We Believe It, pages 207–217.358

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., and Wesslén, A. (2012). Experimentation in359

Software Engineering. Springer.360

9/9

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1619v1 | CC-BY 4.0 Open Access | rec: 31 Dec 2015, publ: 31 Dec 2015

