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Abstract 13 

A frequent bottleneck in interpreting phylogenomic output is the need to screen often thousands 14 

of trees for features of interest, such as robust clades of specific taxa, as evidence of 15 

monophyletic relationship and/or reticulated evolution. Here we present PhySortR, a fast, 16 

flexible R package for sorting phylogenetic trees. Unlike existing utilities, PhySortR allows for 17 

identification of both exclusive and non-exclusive clades uniting the target taxa, with 18 

customisable options to assess clades within the context of the whole tree. PhySortR is a 19 

command-line tool that is freely available, highly scalable, and easily automatable.  20 

Main Text 21 

Phylogenomics increasingly involves screening of thousands of phylogenetic trees using 22 

specialised sorting algorithms for features of interest, e.g. strongly supported monophyletic 23 

relationships of taxa in question (i.e. the “target” taxa). Currently available tree-sorting utilities, 24 

e.g. PhyloSort (Moustafa and Bhattacharya 2008) and SICLE (Deblasio and Wisecaver 2013) 25 

screen a set of trees (in Newick format) for the presence of clades that unite a set of user-defined 26 

target taxa based on clade support (that exceeds a defined threshold), and sort these trees 27 

accordingly. However, these tools do not consider the proportion of non-target taxa and overall 28 

taxon composition in a tree during the sorting process. 29 

Here we present PhySortR, a fast, flexible R package for screening and sorting phylogenetic 30 

trees (Cardona et al. 2008). The package provides the quick and highly flexible sortTrees 31 

function, allowing for screening (within a tree) for “Exclusive” clades that contain only the target 32 

taxa and/or “Non-Exclusive” clades that include a defined portion of non-target taxa. The 33 
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algorithm and all available options of PhySortR are described in detail in Supplementary Text S1 34 

and Supplementary Figures S1 and S2. 35 

PhySortR allows the user to specify one or more target taxa using the target.groups argument, 36 

providing that the taxa (tree-tip labels in the Newick files) are named consistently across all input 37 

trees; this is a simple string-matching exercise, i.e. the terms specified here determine taxon-level 38 

resolution of targets. The minimum support for a clade (min.support) can refer to bootstrap, 39 

Bayesian posterior probability, or any other measure of support. Existing utilities such as 40 

PhyloSort (Moustafa and Bhattacharya 2008), when assessing the relationship between two 41 

target groups in a 100-taxon tree, would identify both (a) a robust two-member clade (one from 42 

each target group), and (b) a robust 50-member clade containing multiple taxa from both groups, 43 

as “Exclusive”, although (b) is likely the more-convincing evidence of a close association 44 

between the targets and of greater biological significance. To address this issue, PhySortR allows 45 

one to define min.prop.target, the minimum required proportion of target(s) present in a clade 46 

relative to the total number of target(s) found in a tree. 47 

Alternatively, one might wish to screen for a robust clade that contains the target groups and a 48 

small proportion of “interrupting” non-target taxa, e.g. a 41-member clade consisting of 20 taxa 49 

each from the targets Rhodophyta and Viridiplantae, as well as a stramenopile taxon (a non-50 

target such as a diatom). Whereas the diatom is “interrupting” the otherwise exclusive clade of 51 

Rhodophyta + Viridiplantae, the association between the targets is still of interest and the diatom 52 

presence might be readily explained by lateral gene transfer (LGT) due to plastid endosymbiosis. 53 

Composite clades such as these are considered “Non-Exclusive” (Chan et al. 2011) and are not 54 

identified by existing tree-sorting tools. The concept of exclusivity (Fig. 1A) versus non-55 

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1609v1 | CC-BY 4.0 Open Access | rec: 28 Dec 2015, publ: 28 Dec 2015



4 

 

exclusivity (Fig. 1B) of clades in tree sorting has proven crucial in a number of genome-wide 56 

studies that have investigated the impact of LGT on the evolution of diverse algal and protist 57 

phyla (e.g., Chan et al. 2011; Curtis et al. 2012; Price et al. 2012; Bhattacharya et al. 2013). 58 

PhySortR identifies both types of clades by default. The user has the option to define a “Non-59 

Exclusive” clade based on the proportion of target versus non-target taxa using the option 60 

clade.exclusivity. At the default setting (clade.exclusivity = 0.9), the minimum proportion of 61 

target taxa within a “Non-Exclusive” clade is 0.9, thus the maximum proportion of non-target 62 

taxa allowed in the clade is 0.1 (i.e. 1 minus 0.9). This option accepts any value <1.0, and is only 63 

applicable for sorting “Non-Exclusive” clades (see Supplementary Fig. S2); at 1.0 (no non-target 64 

taxa allowed), the clade is considered “Exclusive”. PhySortR is an R implementation of the 65 

algorithm deployed in Chan et al. (2011) that has been adopted in other phylogenomic studies 66 

(Curtis et al. 2012; Price et al. 2012; Bhattacharya et al. 2013). The R platform is open source, 67 

platform-independent, and broadly accessible to researchers, with continued support by the R 68 

Core Team; functional modularity and the command-line interface enable batch automation and 69 

workflow integration.  70 

The runtime of PhySortR is dependent on the number of trees (N) to be sorted and the number of 71 

taxa (X) within a tree. We benchmarked PhySortR using two simulated datasets to assess runtime 72 

(t): one varying N at fixed X = 100 (Supplementary Data S1), another varying X at fixed N = 73 

1000 (Supplementary Data S2). We required 20% of X within an “Exclusive” clade in a tree. We 74 

observed that the runtime scales linearly with N (Figure 1C) and superlinearly with X (Figure 75 

1D). In the extreme case, sorting through 10000 trees took <500 seconds (~8.3 minutes). We 76 

observed negligible differences in t with negative controls (trees containing no identifiable 77 

clades) as input, compared to the test set in Figure 1D.  78 
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PhySortR incorporates existing functionalities and data structures in the commonly used 79 

phylogenetic packages ape (Paradis et al. 2004) and phytools (Revell 2012), allowing for 80 

streamlined interoperability within the R environment. Whereas ape and phytools accept only 81 

traditional Newick as input, PhySortR accepts tree files in both traditional and extended Newick 82 

formats (Cardona et al. 2008). The function convert.eNewick in isolation can be used as a 83 

general-purpose tool for converting extended Newick into traditional Newick format. PhySortR 84 

is freely available from the Comprehensive R Archive Network (cran.r-project.org). See also 85 

https://cloudstor.aarnet.edu.au/plus/index.php/s/StQRSJBmcSZKd7y. 86 

Supplementary Material 87 

Supplementary Text, Supplementary Figures S1-S2, Supplementary Data S1-S2. 88 
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Figure 131 

 132 

Figure 1. The concept of clade exclusivity and benchmarking results of PhySortR using 133 

simulated data. The schematic diagram of an “Exclusive” clade shown in (A) and consists solely 134 

of taxa from targets A and B, whereas the “Non-Exclusive” clade shown in (B) consists of 135 

targets A and B plus an “interrupting” taxon from group C; each clade has strong bootstrap 136 

support at 100%. The mean runtime (t) of PhySortR is shown for analysis across datasets (C) 137 

with different numbers of trees, N (Supplementary Data S1), and (D) with different numbers of 138 

taxa per tree, X (Supplementary Data S2). Values of t are mean across 100 replicates, error bars 139 

indicate the standard deviation of the mean.  140 
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