
Multi-token Code Suggestions using Statistical
Language Models

Eddie Antonio Santos
easantos@ualberta.ca ∗

December 17, 2014

Abstract

I present an application of the Naturalness of software to provide multi-
token code suggestions in GitHub’s new-fangled Atom text editor 1. After
an error-fraught evaluation, there is not enough evidence to conclude that
Gamboge significantly improves programmer productivity. I conclude by
discussing several directions for research in code suggestion using natural-
ness.

1 Motivation
Code suggestion is a feature of text editors and integrated development envi-
ronments that, when invoked, lists different suggestions for the code that might
proceed the cursor position.

The amount of code in each suggestion may be one or more tokens long. A
token is a group of characters that form one whole, indivisible unit of syntactic
meaning in a programming language. This may also be known as a lexeme.

Code completion is code suggestion for one token that has already been
partially typed-in.

Programmers generally use code completion and code suggestion to save
keystrokes when typing code. For example, code completion may save keystrokes
when typing long, descriptive, identifier names, or when typing “boilerplate”
code—multi-token strings of code that appear frequently between projects that
achieve a certain, common purpose.

An ideal code suggestion engine would read the mind of the programmer. Its
suggestions would most often have to be exactly what the programmer needs.
In [1], Hindle et al. found that code has “natural” properties. That is, code
is “a natural product of human effort” [1], and is “likely to be repetitive and
predictable”. In fact, the cross-entropy of software against itself is lower than the

∗Special thanks to J. C. Campbell and A. Wilson
1https://atom.io/

1

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1597v1 | CC-BY 4.0 Open Access | rec: 19 Dec 2015, publ: 19 Dec 2015

https://atom.io/

cross-entropy of English against itself, implying that the tools used in Natural
Language Processing (henceforth, NLP) can be used successfully with software.
This paper aims to exploit this fact, using an n-gram language model to generate
statistically-informed multi-token code suggestions.

1.1 Prior Work
This concept isn’t new. After finding that n-gram language models capture the
regularity and repetitiveness in code, Hindle et al. [1] created an application
of this property (henceforth “naturalness”) by writing an engine that suggests
one token ahead of the cursor. Using a hybrid between the Eclipse suggestion
engine and the n-gram language model suggestion engine, the authors were able
to achieve up to a 61% improvement in keystrokes saved compared to the Eclipse
suggestion engine alone. There have been several efforts since then that have
tried improving the accuracy of this technique.

Nguyen et al. [2] augmented the n-gram model in [1] by attaching a wealth
of semantic information to each token. The token suggestion accuracy was
significantly improved over the base n-gram model. However, the extra infor-
mation required, such as type information, syntactic role, the arity of methods,
and topic analysis requires considerably more knowledge about the program-
ming language and would be difficult to generalize across different programming
languages—especially dynamic programming languages. Most importantly, it
uses “naturalness” as merely one aspect of creating better code suggestions.

Tu et al. [3] sought to confirm that software is localized2 Working on top of
the fact that software is natural, they sought to find that there are “ local regu-
larities [in software] than be captured and exploited.” They found, empirically,
that this is the case. Their method combines a general n-gram language model
trained on cross-project data with a local n-gram language model of higher order
which was trained on a sliding window of about 5000 tokens around the cursor
position. When they tried their hand at writing yet another code suggestion
engine, they too found that it suggested the correct token more often than that
in [1].

Other methods, such as that of Omar [4] and Raychev et al. [5] have also
focused on techniques that require more information about the language such
as its syntax, or its type system.

2 Implementation
In contrast to previous efforts, this paper attempts to predict multiple tokens
in one go, using only the information that the statistical language model yields.
This requires a small modification in how the n-gram language model from [1]
is used. The n-gram model is relatively simple: it requires only knowing how
to tokenize the input language. Thus, adapting it for a wide-range of languages
should be relatively simple. Plus, it does not require static analysis that would

2Not to be confused with Internationalization and localization

2

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1597v1 | CC-BY 4.0 Open Access | rec: 19 Dec 2015, publ: 19 Dec 2015

be impossible in dynamic languages such as Python and JavaScript. Allamanis
and Sutton [6] found that, with a much larger model trained on over one billion
tokens, the n-gram language model performed “significantly better at the code
suggestion task than previous models”. This implies that all that is needed to
generated better suggestions and to mitigate the problems of decreased accuracy
due to predicting across project domains is to increase the corpus size. For this
reason, the n-gram model was chosen, without modification.

2.1 What is an n-gram language model anyway?
An n-gram language model counts how many times a string of tokens has been
seen in some training data, called its corpus. The n of n-gram denotes the
order of the language model, or how many contiguous tokens are counted in the
language model.

2.2 Prediction
Since the language model is just a big fat counter, we assume that the most
probable token following a prefix of tokens (sometimes known as the history [7])
is the token that appears most often after the prefix in our language model.
That is, we choose the token with the highest count out of all other tokens with
the same prefix. Mathematically this is denoted as:

P (wn|w1 · · ·wn−1) =
C(w1 · · ·wn)

C(w1 · · ·wn−1)

where C(w1 · · ·wn) denotes the amount of times the token sequence w1 · · ·wn

has been seen in the corpus, and 1 · · ·wn−1 is the given prefix.
For the sake of numerical stability (floating point arithmetic on values limited

to 0.0–1.0 is prone to rounding errors), and simpler mathematics (calculating the
compound probability of two independent events requires an addition instead
of a multiplication), we apply the following transformation to the probability,
denoted I:

I(wn|w1 · · ·wn−1) = − log (P (wn|w1 · · ·wn−1))

This also give us an intuitive way at looking at the next token’s probability.
The most probable token following some sequence is also the least surprising
token after the sequence. Indeed, we call this measure the surprise3 of the token
sequence. An event that is certain to happen, would have a probability of 100%.
It is “not surprising”, so its surprisal value is 0. Similarly, an event that could
never happen would leave us “infinitely surprised”.

3Sometimes known as self-information.

3

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1597v1 | CC-BY 4.0 Open Access | rec: 19 Dec 2015, publ: 19 Dec 2015

2.3 Multi-token prediction
This approach works fine for predicting a single token. To extend this to predict
multiple tokens, we simply apply this method recursively: do the prediction
again, this time adding the most recently predicted token to the prefix. The
suprisal of the entire multi-token suggestion is the sum of the surprisal of finding
the last token following its respective prefix, for every token in the suggestion.

However, the manner by which predictions are ranked requires thought:
Keeping the goal of multi -token code completion in mind, we want to bal-
ance two opposing goals: suggesting shorter sequences of tokens that are, by
definition, more probable but offer no improvement to previous methods; with
suggesting longer sequence of tokens that are, by definition less probable, but
may just save the programmer a whackton of keystrokes.

2.4 Suggestion sort key
Suggestions should be ranked such that longer strings of tokens are preferred to
subsets of the same suggestion, that are, more probable, but most likely save
less keystrokes.

Let Ii be the surprisal of seeing tokens sequence ti in the corpus. Each
suggestion is given a score Si which is given by the following formula:

Si =
Ii
|ti|

where |ti| is the length of suggestion i.
This metric averages the surprisal of the entire suggestion over the entire

token string. Henceforth, this metric is called the mean surprise4. In the trivial
case when all suggestions in the set of suggestions are only one token long, this
scoring function simplifies to Ii, the surprisal of that one token.

The suggestions are then presented to the user in ascending order of their
score.

3 Methodology
Sixteen of the most popular Python projects from GitHub (based on stars) were
collected. For each project, the language model was retrained on every file in
the corpus except the files that belong to the project itself to simulate writing
the project from scratch without the knowledge of the project itself. From each
file, the final 350 tokens were typed using Gamboge.

Using Atom’s spec helpers5, files were typed programmatically, as if a person
was writing the code. A programmatically typed file was considered to be
“identical” if the result of tokenizing the original input (in terms of its text and
category) was identical to the result of tokenizing the “typed” output.

4I swear this is not a move in Pokémon.
5The Jasmine Behaviour-Driven Development framework is one built-in to Atom, and has

support for testing Atom headless.

4

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1597v1 | CC-BY 4.0 Open Access | rec: 19 Dec 2015, publ: 19 Dec 2015

That is, given an original file looking like this:

w=lambda x : x∗2

And the programmatically typed output:

w = lambda x : x ∗ 2

The files are considered identical because in both cases, tokenizing their text
produces the following token sting (presented as a JSON array):

[{ " category " : "NAME" , " text " : "w" } , {" category " : "OP" , "
text " : "="} , {" category " : "NAME" , " text " : "lambda" } , {
" category " : "NAME" , " text " : "x" } , {" category " : "OP" , "
text " : " : " } , {" category " : "NAME" , " text " : "x" } , {"
category " : "OP" , " text " : "∗" } , {" category " : "NUMBER" ,
" text " : "2" } , {" category " : "NEWLINE" , " text " : "\n" } , {
" category " : "ENDMARKER" , " text " : "" }]

The difference in the two files is syntactically-irrelevant whitespace. Thus,
in reporting keystroke count, typing inconsequential whitespace was ignored.

A suggestion was only completed if the cost of selecting the appropriate
selection (in keystrokes) was less than simply typing out the token. For example,
selecting the third suggestion in the list would require two keystrokes to move
the selection down to the third element, and one more keystroke to select it,
making three keystrokes total. A typer that only uses Atom’s built-in editing
features (such as automatic indentation) was also developed and tested. Its
keystrokes per file were measured.

Additionally, for each prediction request, the following information was gath-
ered:

• Were the desired tokens in the suggestion list

• If so, at what rank in the list?

• How long was the list of suggestions?

• How many keystrokes total did it take to choose the appropriate sugges-
tion?

4 Results
Due to data generation being fraught with errors, there was not enough data
generated to make a proper conclusion. Due to a bug in Atom, the tests would
only run on small files. After working around this, only the final few tokens
(under 300) were typed by the typers. This was marginally more succesful in
generating data. However, in my rush to generate data in time, a mistake in
the data collection code meant that accurate keystrokes counts for the control
could not be collected. It counted both keystrokes for the prefix tokens and
what was to be compared against the Gamboge typer. Despite the data being

5

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1597v1 | CC-BY 4.0 Open Access | rec: 19 Dec 2015, publ: 19 Dec 2015

Unassisted Typing Gamboge

10
00

10
00
0

50
00
0

Figure 1: Amount of keystrokes per typer. Note that the Y scale is logarithmic.

erroneously biased in favour of Gamboge, a paired t-test showed no significant
improvement in keystrokes for the files tested (95% significance level, p-value
= 0.078). However, the assumptions for the t-test are completely invalidated,
since both distributions have radically different variation, making the anaylsis
invalid. Figure 1, shows the side-by-side box plots of the bad data.

5 Discussion

5.1 Retrospective
Originally, I had intended to use the tokenizer built into Atom that is used
for its syntax highlighting feature. This would mean that any language Atom
can highlight, Gamboge could generate predictions. This was based on the
assumption that the tokenizer would be accurate enough to generate tokens

6

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1597v1 | CC-BY 4.0 Open Access | rec: 19 Dec 2015, publ: 19 Dec 2015

that could be passed to the language’s grammar. Unfortunately, this is not the
case. Its tokens would sometimes include multiple language tokens, or include
unnecessary whitespace. As well, the syntactically-significant whitespace for
languages like Python are completely absent from the token list. As such, these
tokens were unusable for prediction, so I used the Python tokenizer provided by
UnnaturalCode [8].

Atom itself is in early, rapid development. Since I pushed the first com-
mit to atom-gamboge6 in October 2014 to the time of this writing, Atom
has been through https://github.com/atom/atom/releases, with several API-
breaking changes. The documentation for Atom have been needing, at best.
Since Atom packages are written in a dynamically-typed language (JavaScript
or CoffeeScript), using the rapidly changing API is troublesome, because type
errors often appear far away from where they originate. This means a lot of
my time was spent in the debugger, reading Atom’s actual code, and how other
Atom packages are written. The test framework, although promising in that
it is possible to fully script editor interactions, is also fraught with issues. Not
everything is setup by default, and most of the editor must be manually put
together from their component pieces. The other troublesome aspect during
testing was attempting to interact synchronously over stdin with an external
script, used for tokenizing Python (you know you’re doing something wrong
when it’s easier to do it in C) Due to the intentionally asynchronous event-loop
based design of Node.JS (on which Atom is built on), synchronous interaction
with outside processes is cumbersome, and error-prone. A simple for-loops must
be decomposed into awkward continuation passing style, with many, many call-
backs. For this reason, Atom was invoked by an external Python program for
each file that had to be typed.

Atom’s documentation on testing is so underdeveloped, that I created a
pull request to finish it. However, due to the needs of this project and other
schoolwork, I did not complete all the work I wanted accomplish on documenting
the magic monkey-patching that the Atom developer’s did in test contexts.

What is nice about Atom is the fact that it’s just a JavaScript app running
in Chromium. This means that anything Chromium can do, I can exploit.
What was especially simple was providing the ricey “ghost text” affect that was
a trivial use of CSS 3 animations and opacity effects. Plus, Atom’s choice of
using dynamic LESS styles allowed me to use the color scheme of the user’s
chosen syntax theme to colour my spiffy ghost text effect. Atom Shell is a
project worth looking out for. Another nice thing about this is that I already
knew how to do an HTTP request—it’s just Chromium—so XMLHttpRequest
works out of the box. Plus, Atom is bundled with jQuery, so I could just use
its more friendly AJAX API instead.

In addition, I took was very undisciplined in refactoring. Instead of having
code that works, and passes tests that prove that they work, I had code that
seemed to be working—but all in one massive god object. When it came time
to separate the concerns, then and only then did I write tests. I wrote tests for

6https://github.com/eddieantonio/atom-gamboge

7

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1597v1 | CC-BY 4.0 Open Access | rec: 19 Dec 2015, publ: 19 Dec 2015

https://github.com/atom/atom-shell
https://github.com/eddieantonio/atom-gamboge

my re factored design before I had programmed it, but without verifying that
the original worked. The result was that every class that I factored out of the
original “view” (which turned into the controller) worked, and passed its tests
(eventually). However, what’s left of the original god object is tremendously
buggy and weird, does not pass all its tests. It is currently pending a rewrite
(since its functionality is comparably minimal to what it originally was).

I spent some time of this project working on existing code bases, such as
the forked version of MITLM and UnnaturalCode. Particularly, I spent time
figuring out how to extend the existing interprocess communication protocol
between UnnaturalCode (in Python) and MITLM (in C++) to support both
cross-entropy and prediction. Learning enough about both code bases took
some of my time, and I balanced this time poorly while between writing code
for the Atom package, and doing my literature review. However, the protocol
was extended, and UnnaturalCode’s existing tests covered any faults I might
be introducing into either code base, with the exception of testing predictions.
Much of the time spent on UnnaturalCode itself was spent writing tests for the
new or modified functionality, rather than on writing the new code itself.

One thing that UnnaturalCode was missing was an “inline” mode for tok-
enizing Python code. As previously mentioned, Atom’s tokenizer was ill-suited
for my purposes, so I had to use Python’s. UnnaturalCode has a forked version
of Python’s built-in tokenize module. However, after every input, it would emit
one DEDENT token for every INDENT token left on the tokenizing stack. As well,
the last token would always be an ENDMARKER. Thus, what my code would end
up predicting on was often a bunch of DEDENT tokens followed by an ENDMARKER,
which, naturally, did not often yield any good results. Getting rid of the ex-
traneous ENDMARKER was good enough, but it was a better idea to modify the
tokenizer with an “inline” mode that would simply stop before performing this
finalizing step.

The manner by which Gamboge ultimately talked to the n-gram language
model provided by MITLM went through the following stages: Atom would
issue a XMLHttpRequest to UnnaturalCode-HTTP, which is a thin HTTP wrap-
per to UnnaturalCode. UnnaturalCode would handle tokenizing the input and
passing it to MITLM via ZeroMQ. MITLM would do its MITLM thing, and
pass back its predictions to UnnaturalCode, back to its HTTP front-end and
finally to Atom. The only part missing in this strange bridge of processes was
the HTTP interface to UnnaturalCode. I wrote a small Python library using
the Flask web framework to accomplish this. Since it was intended to be small,
and mostly just forward requests to UnnaturalCode, its interaction with the
rest of UnnaturalCode is untested. After this project, however, it may be ex-
panded and become a fully-tested component of UnnaturalCode, at the request
of UnnaturalCode’s author.

There were many, many workarounds. For example, I was running into
MemoryError in my corpus downloading script. Since it only wrote files that
were syntically valid in Python, it would have to call compile on each and
every file downloaded. However, CPython implicitly keeps a cache of Python
bytecode once compile() has been called. This cache is not kept alive by

8

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1597v1 | CC-BY 4.0 Open Access | rec: 19 Dec 2015, publ: 19 Dec 2015

https://github.com/orezpraw/unnaturalcode/blob/master/unnaturalcode/flexibleTokenize.py
https://hg.python.org/cpython/file/078dbecf2e2c/Lib/tokenize.py

references. In order to stop leaking memory, I changed my syntax_ok() function
to fork(), and compile() in the child process, which would exit normally if the
file compiled, or exit abnormally if the file failed to syntax check. The parent
process would then return True or False based on the child’s exit code.

Another issue that may have affect results is UnnaturalCode’s treatment of
tokens. Sometimes the text of tokens with the category of NAME come back
from the langauge mode as <NAME> instead of the actual token text. String
tokens were always returned with the text <STRING>. Similarly dedent tokens
were returned with the text DEDENT, making them indistinguishable from an
indentifier with the same text. The latter problem was fixed, but the former
remained, and was used in the evaluation.

Fortunately, judicious use of source control saved my bacon several times.
Since the latest commits the my development branch of my plugin were broken,
I branched from the v0.1.1 tag which I created for a demo-ready version of the
plugin. The API changed between the release of v0.1.1 and the time I needed
it, so I just changed what needed to be changed in that branch and merged it
into my evaluation branch. Without my use of tags, I would have been even
more setback in tools to automate my evaluation.

5.2 Future Work
There are several ways to improve Gamboge in general. There are also several
assumptions made in this paper that should be empirically verified.

5.2.1 Implementation concerns

The scoring method in this paper was chosen arbitrarily. It seems to work “well
enough”. Data is needed to confirm that this does work well enough compared
to other possible scoring methods. That, or it may need to be theoretically
proven in using a strong background in information theory.

An issue for the general adoption of Gamboge as the preferred text editor is
whitespace. Currently, Gamboge naïvely separates tokens using a single space,
as noted in the implementation section. This is not ideal, as not all tokens
are separated using only a single space. Sometimes, as is often the case with
the opening parenthesis of a function call, there is no space separating the
identifier from the parenthesis (e.g., foo()). A simple possibility is to invoke
the language’s automatic program such as autopep8 for Python, go fmt for
Go. However, this method relies on the language having such a tool to begin
with, plus, depending on the implementation, the cost of invoking an external
program for every suggestion may be too slow for interactive use. A more
ambitious method for formatting the tokens produced by the suggestion engine
is to embed formatting information in the language model, in addition to the
standard . This is based on the assumption that the code in the corpus largely
abides by one language style guide. For languages that do not have one canonical
automatic formatter, it would be unnecessary to write it; the language model
would inherently know how to format code for this language, based on the

9

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1597v1 | CC-BY 4.0 Open Access | rec: 19 Dec 2015, publ: 19 Dec 2015

existing corpus. This proposal yields several research questions: Is this approach
worth the effort? Is it too slow to invoking an external formatter for each
suggestion in interactive use? To what extent do language communities abide
by one universal coding style?

Despite its modest needs for knowing only how to tokenize the source code
of a particular language, Gamboge is restricted to languages for which it knows
how to tokenize, and create tokens that would ultimately be used in parsing the
language’s syntax. As noted previously, using a text editor’s syntax highlighter’s
lexer for tokenization is troublesome, since its needs are only to highlight certain
tokens; it is safe to completely disregard, for example, syntactically-significant
whitespace that Gamboge needs in order to make decent predictions. The solu-
tion could be a parameterized lexer—since languages tend to have similar ways
of lexing the broad categories of identifiers, operators, delimiters, and in some
cases syntactically-significant whitespace, a general lexer might be possible. This
would make the job of training a new language model and predicting from it
quite easy: set the parameters required for lexing the new language and start
training.

Currently, Gamboge only provides the preceding tokens, or history to its
underlying language model for prediction. However, a possible improvement
is sending both prefix and postfix tokens. The predictions would then have to
match their surrounding context, rather than to be based off the tokens that
precede it.

Previously, this paper made a distinction between code completion and code
suggestion. Gamboge is a code suggestion engine, but its approach may be
used to complete partially input tokens. Instead of showing what tokens may
follow after the current token (always assuming that the token is complete), the
engine may use the current identifier as a hint for filtering the suggestion list.
For example, if the user types “for key in d.”, Gamboge suggests complete
tokens following “.”. Once the user types “i”, the suggestion list would be
filtered and perhaps the most probable suggestion starting with “i” would be
“items ()”, which is listed.

5.2.2 Combination with other code suggestion engines

Gamboge is complementary to many existing code suggestion engines, and can
be used as one part of a larger code suggestion effort.

The Gamboge prediction results can be used as a suggestion provider for the
AutoComplete+7 package. This is a popular plugin that makes improvements
to the interface of the AutoComplete plugin such as automatically displaying
suggestions (much like the ghost text feature of Gamboge). It also allows for
other Atom packages to supply suggestions that will be displayed alongside its
own.

An especially interesting addition to Gamboge is combining it with mined
source code idioms or snippets described in the work of Allamanis and Sut-

7https://atom.io/packages/autocomplete-plus

10

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1597v1 | CC-BY 4.0 Open Access | rec: 19 Dec 2015, publ: 19 Dec 2015

https://atom.io/packages/autocomplete-plus

ton [9]. The language model used in Gamboge could be modified to suggest
where a snippet is likely to appear after a string of tokens in addition to its own
suggestions. In this way, it can suggest both a string of linear tokens, and an
entire snippet which, just like the results of the n-gram model, are mined from
source code, rather than being arbitrarily hard-coded into the text editor.

Since Gamboge uses a simple n-gram model, extending its prediction back-
end with the cache language module developed by Tu et al. [3] may be beneficial.
Since they have already shown that in single-token contexts, it surpasses a
bare n-gram language model in suggestion performance, it may also improve
suggestion performance for multi-token predicting.

A potential improvement is to compare all of the suggestions generated by
the language model, and test each suggestion in its prediction context against a
syntax checker. Then, it would eliminate any suggestions that are syntactically
invalid. I hypothesise that due to the results of naturalness, there may not be
a significant improvement to the mean reciprocal rank of the results. However,
if P600, a processing delay when the mind encounters syntactic anomaly [10],
holds for programming, removing all syntactically anomalous suggestions might
eliminate any undue cognitive load.

5.2.3 Other work

Finally, Gamboge may be used in an effort to promote the usefulness of natu-
ralness techniques. As mentioned in [1] and [3], naturalness and localness have
several applications that are being lost on the crowd that are trying to make
better code suggestion engines. However, in order to maintain large, and useful
language models for the most popular languages, the storage and computation
of such models may be used as part of an online service that, ostensibly, is
intended only for providing robust code completion. This may entice program-
mers to contribute to naturalness efforts, while improving the experience of the
many, many other applications of naturalness.

6 Conclusions
In its current state, Gamboge is not ready for widespread adoption by program-
mers. Reasons for this include its cumbersome dependencies on UnnaturalCode
and MITLM, and the lack of a ready-made corpus for any language that a pro-
grammer would actually want to write code in. That said, I hope that this
document enlightens anybody following the same path. Despite the challenges,
putting more work into Gamboge may not only make it a useful suggestion
engine, but establish it as a platform for others to exploit the virtues of the
naturalness of software.

11

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1597v1 | CC-BY 4.0 Open Access | rec: 19 Dec 2015, publ: 19 Dec 2015

References
[1] A. Hindle, E. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the natu-

ralness of software”, in Software Engineering (ICSE), 2012 34th Inter-
national Conference on, bibtex:Hindle2012, Jun. 2012, pp. 837–847. doi:
10.1109/ICSE.2012.6227135.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A sta-
tistical semantic language model for source code”, in Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, ser. ES-
EC/FSE 2013, New York, NY, USA: ACM, 2013, pp. 532–542, isbn: 978-1-
4503-2237-9. doi: 10.1145/2491411.2491458. [Online]. Available: http:
//doi.acm.org/10.1145/2491411.2491458 (visited on 09/19/2014).

[3] Z. Tu, Z. Su, and P. Devanbu, On the localness of software, 2014. [Online].
Available: http://zptu.net/papers/fse2014_localness.pdf.

[4] C. Omar, “Structured statistical syntax tree prediction”, in Proceedings of
the 2013 Companion Publication for Conference on Systems, Program-
ming, & Applications: Software for Humanity, ser. SPLASH ’13, New
York, NY, USA: ACM, 2013, pp. 113–114, isbn: 978-1-4503-1995-9. doi:
10.1145/2508075.2514876. [Online]. Available: http://doi.acm.org/
10.1145/2508075.2514876 (visited on 09/19/2014).

[5] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models”, in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14,
New York, NY, USA: ACM, 2014, pp. 419–428, isbn: 978-1-4503-2784-8.
doi: 10.1145/2594291.2594321. [Online]. Available: http://doi.acm.
org/10.1145/2594291.2594321 (visited on 09/19/2014).

[6] M. Allamanis and C. Sutton, “Mining source code repositories at massive
scale using language modeling”, in 2013 10th IEEE Working Conference on
Mining Software Repositories (MSR), bibtex:Allamanis2013, May 2013,
pp. 207–216. doi: 10.1109/MSR.2013.6624029.

[7] C. Manning and H. Schuetze, Foundations of Statistical Natural Language
Processing, 1 edition. Cambridge, Mass: The MIT Press, May 28, 1999,
720 pp., isbn: 9780262133609.

[8] J. C. Campbell, A. Hindle, and J. N. Amaral, “Syntax errors just aren’t
natural: improving error reporting with language models”, in Proceedings
of the 11th Working Conference on Mining Software Repositories, ACM
Press, 2014, pp. 252–261, isbn: 9781450328630. doi: 10.1145/2597073.
2597102. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
2597073.2597102 (visited on 09/13/2014).

[9] M. Allamanis and C. Sutton, “Mining idioms from source code”, arXiv:1404.0417
[cs], Apr. 1, 2014. arXiv:1404.0417. [Online]. Available: http://arxiv.
org/abs/1404.0417 (visited on 09/19/2014).

12

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1597v1 | CC-BY 4.0 Open Access | rec: 19 Dec 2015, publ: 19 Dec 2015

http://dx.doi.org/10.1109/ICSE.2012.6227135
http://dx.doi.org/10.1145/2491411.2491458
http://doi.acm.org/10.1145/2491411.2491458
http://doi.acm.org/10.1145/2491411.2491458
http://zptu.net/papers/fse2014_localness.pdf
http://dx.doi.org/10.1145/2508075.2514876
http://doi.acm.org/10.1145/2508075.2514876
http://doi.acm.org/10.1145/2508075.2514876
http://dx.doi.org/10.1145/2594291.2594321
http://doi.acm.org/10.1145/2594291.2594321
http://doi.acm.org/10.1145/2594291.2594321
http://dx.doi.org/10.1109/MSR.2013.6624029
http://dx.doi.org/10.1145/2597073.2597102
http://dx.doi.org/10.1145/2597073.2597102
http://dl.acm.org/citation.cfm?doid=2597073.2597102
http://dl.acm.org/citation.cfm?doid=2597073.2597102
http://arxiv.org/abs/1404.0417
http://arxiv.org/abs/1404.0417
http://arxiv.org/abs/1404.0417

[10] P. Hagoort, “How the brain solves the binding problem for language: a
neurocomputational model of syntactic processing”, NeuroImage, vol. 20,
Supplement 1, no. 0, S18 –S29, 2003, Convergence and Divergence of Le-
sion Studies and Functional Imaging of Cognition bibtex: Hagoort2003S18,
issn: 1053-8119. doi: http://dx.doi.org/10.1016/j.neuroimage.
2003.09.013. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1053811903005251.

13

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1597v1 | CC-BY 4.0 Open Access | rec: 19 Dec 2015, publ: 19 Dec 2015

http://dx.doi.org/http://dx.doi.org/10.1016/j.neuroimage.2003.09.013
http://dx.doi.org/http://dx.doi.org/10.1016/j.neuroimage.2003.09.013
http://www.sciencedirect.com/science/article/pii/S1053811903005251
http://www.sciencedirect.com/science/article/pii/S1053811903005251

	Motivation
	Prior Work

	Implementation
	What is an n-gram language model anyway?
	Prediction
	Multi-token prediction
	Suggestion sort key

	Methodology
	Results
	Discussion
	Retrospective
	Future Work
	Implementation concerns
	Combination with other code suggestion engines
	Other work

	Conclusions

