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Abstract9

The dynamics of ecological communities can be described by two contrasting models: the first assumes that10

the individuals of all species are identical and do not have competitive interactions. The second assumes that11

species are different, adapted to particular habitat conditions, and have strong interactions. These represent12

extremes of a continuum: the neutral and the niche models of community organization. Real communities are13

actually a mixture of both types of dynamics. Here we study the simplest model of neutral-niche communities14

where niche dynamics is represented as a competitive hierarchy. The competition intensity is defined as a15

parameter that modulates the transition between these extremes. We use a stochastic cellular automata to16

show that there is a phase transition between the neutral and niche model with a spanning patch formed by17

the most abundant species. We measure the diversity as the Shannon index and the richness as the number18

of species. The transition implies a sharp fall of species diversity but the richness shows a gentle decline with19

increasing competitive intensity. As this kind of multi-species critical transition have not been described20

previously, we suggest new early warning signals: the rate of exponential decay in the patch distribution21

of the non-dominant species. This rate decreases when the community approaches the critical point and22

increases when the community crosses it. As an example we apply the early warnings to the Barro Colorado23

Tropical forest, which as expected, appear to be far from a critical transition. The model shows that the24

critical point occur at a very low value of competitive intensity. Low values of competitive intensity were also25

reported for different high diversity real communities suggesting the possibility that these kind of communities26

are located near the critical point. This transition could happen before habitat destruction or degradation27
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affect the community in response to changes in environmental conditions like the ones produced by climate1

change or exotic species invasions.2
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Introduction1

Much effort has been devoted to understanding the mechanisms of community assembly and dynamics. In2

principle, the emphasis was on deterministic processes based on niche differences between species; the niche3

theory assumes that different species are regulated by different environmental factors and infer that diversity4

originates from spatial and temporal environmental heterogeneity (Tilman 1982; Chesson 2000). More5

recently, the emphasis shifted to stochastic mechanisms in the form of the Neutral Theory of Biodiversity6

and Biogeography (Hubbell 2001). The neutral theory assumes that individuals of all species are equivalent7

and it proposes that diversity originates from a balance between immigration, speciation, and extinction.8

The neutral theory has been proposed as a parsimonious formulation that can provide new insight into the9

patterns of community assembly (Hubbell 2005), besides this simplification it can predict some community10

metrics very well (Volkov et al. 2007; Rosindell et al. 2012), mainly the species abundance distribution11

(SAD).12

Finally a unified view has arisen that accepts that both kinds of mechanisms are present at the same time and13

the focus shifted to quantifying the relative importance of these in natural communities (Leibold & McPeek14

2006; Vergnon et al. 2009; Kalyuzhny et al. 2014; Martorell & Freckleton 2014). The main point is to15

understand which species level traits are important for community dynamics and which ones are unimportant16

(Matthews & Whittaker 2014), and this is related to the scale of observation. The problems of pattern and17

scale are critical in ecology (Levin 1992; Chave 2013), because patterns that seem stochastic at one scale18

may reveal structure at another scale. The concept of pattern is related to some sort of repetition that our19

brain can detect, when this pattern repeats at different scales we talk about scale invariance or self-similarity,20

characterized by power laws. These patterns could be produced by critical phase transitions described by21

percolation theory (Stauffer & Aharony 1994). This kind of spatial phase transitions were first introduced in22

ecology in the framework of landscape ecology (Loehle et al. 1996) and habitat fragmentation (Bascompte et23

al. 1996).24

Percolation is characterized by the presence of two phases defined by some macroscopic features, e.g. the25

presence of vegetation or a desert in arid ecosystems (Kéfi et al. 2007). These phases are linked by a critical26

point were a sudden transition happens and a large spatial pattern emerges. In a two dimensional landscape27

where each site is connected to the nearest neighbors with some probability p, if you start with a small p28

there will be some connected sites that form a cluster or patch. When p increases, there is a point at which29

appears a cluster of sites spanning the entire landscape. This spanning cluster has a self-similar structure30

and is produced by local interactions (Solé & Bascompte 2006).31
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Several different ecological spatial models exhibit critical behavior related to the degree of disturbance1

(Pascual & Guichard 2005). Some of these models showed robust criticality: a particular kind of criticality2

discovered for ecological systems, where self-similarity is present for a wide range of parameters and does not3

necessarily involve drastic changes in the biological variables of interest (Roy & Pascual 2003). This kind4

of criticality has been documented for arid ecosystems (Solé 2007); here the sudden shift towards a desert5

condition might occur when rainfall decreases (Scanlon et al. 2007) or also with more intense grazing (Kéfi et6

al. 2007). The mechanism producing self-similarity is the positive effect produced by local facilitation, the7

chance of a new seedling to become established is higher near the parent plant.8

Another example of an ecosystem exhibiting criticality are savannas, where the transition occurs between tree9

and grass cover (Abades et al. 2014). In critical phenomena, the transition is produced by the capacity of10

the system to transmit some signal or information, for example in savannas the proportion of 60% grass 40%11

trees is linked to the threshold needed for fire to spread. If there is not enough grass to act as a combustible,12

fire can not spread across the landscape (Staver & Levin 2012). Thus the increase in the proportion of13

trees, due to a change in environmental conditions, can create positive feedback mechanisms resulting in the14

encroachment of savanna ecosystems (Abades et al. 2014).15

Neutral models can produce species patches with power law distributions without been near a critical state16

(Houchmandzadeh & Vallade 2003), so the detection of this kind of patterns does not imply a phase transition.17

Moreover phase transitions are also observed in non-spatial models, some studies detected the presence of a18

sharp transition between neutral and niche dynamics in spatially implicit models (Chisholm & Pacala 2011)19

and Fisher et al. (2014) demonstrated the presence of a phase transition for this kind of neutral-niche models.20

Here we study a different kind of ecological spatial phase transition that is not related to disturbance or fire:21

it is the transition between a neutral and a niche community. We used the simplest model of neutral-niche22

communities where niche dynamics is represented as a competitive hierarchy (Saravia 2015). This spatially23

explicit model unifies Tilman’s model of hierarchical competition with the classical neutral model using one24

parameter: competition intensity. This parameter is represented as the probability that one species replaces25

another and it modulates the transition between the neutral phase and niche phase.26

Our first aim is to demonstrate the existence of a spatial phase transition in neutral-niche models, our second27

objective is to explore the dependence of the critical point with the parameters that are more important for28

the spatial pattern and to suggest some possible early warnings of the transition. Finally we will apply this29

new kind of early warnings to the repeated censuses of the Barro Colorado Island 50-ha forest plot in Panama30

(BCI).31
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Methods1

First, we define the spatial explicit neutral-hierarchical model, then we explain how we characterized its2

critical behavior in terms of percolation theory and how simulations are performed. We analyze early warnings3

for this critical transition and apply the same techniques for BCI plot data. We refer to interested readers to4

more extensive introductions to percolation theory in an ecological context (Solé & Bascompte 2006; Oborny5

et al. 2007).6

The spatial stochastic model7

This model represents a continuum between hierarchical and neutral model in the same spirit as Gravel et8

al. (2006), and others (Zhou & Zhang 2008; Chisholm & Pacala 2010). The model is a stochastic cellular9

automata (CA) or also called an interactive particle system (Durrett & Levin 1994). In these kind of models10

space is discretized into a grid and only one individual can occupy a particular position. Each position11

represents an area fixed by the investigator to mimic the real system. Time is continuous so the update of12

the model is asynchronous. Sites are chosen at random to be updated and to perform one complete time13

interval cJ sites have to be updated, where c is a constant that describes the overall rate at which transitions14

are occurring and J is the size of the grid (Durrett & Levin 1994).15

We use periodic boundary conditions, which makes the landscape a torus. It means that sites on the top edge16

of the grid are neighbors of those on the bottom edge, and sites on the right edge are neighbors of those on17

the left. With this choice we avoid edge effects, this is equivalent to thinking that the grid is embedded in a18

large community. The size of the community is given by J = dimX x dimY, where dimX and dimY are the19

dimension of the grid. Thus J is the maximum number of individuals in the simulated area. As in a classical20

neutral model there is a metacommunity i.e. a regional species pool assumed very large and invariant in21

ecological time scales (Hubbell 2001). All individuals have the same parameters, unless they should belong to22

different species (Hubbell 2001), and each species is assigned with a number. There are only two possible23

differences between species:24

• They may have a different frequency Xi in the metacommunity and also different abundances in the25

local community.26

• Hierarchical competition: species with lower numbers has a probability to replace species with higher27

numbers as in (Tilman 1994). Thus a species with number 1 have a probability to replace species with28

number 2 and greater. The species with number 2 can replace species starting from 3. The probability29
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of replacement (ρ) is a parameter, when it is 0 there is no replacement and the model behaves like a1

neutral model without competitive hierarchy.2

The colonization-competition and other possible trade-offs are not explicitly included in the model. But a3

colonization-competition trade-off can be established if species numbering is arranged in inverse order to4

its frequency Xi in the metacommunity. Hence the most competitive species (with number 1) will have the5

lowest migration rate and the less competitive will have the highest migration rate.6

There are three processes included in the model: death, local dispersal, and migration, starting with an empty7

site the following events can happen:8

(1) With probability m an individual of a species i can migrate from the metacommunity at a rate9

proportional to its frequency Xi in the metacommunity.10

(2) When the grid is not full, individuals give birth with rate 1 to a new individual that disperses to the11

neighborhood with a dispersal kernel, here we use an inverse power kernel (Marco et al. 2011):12

d(x) = α−1
xmin

(
x

xmin

)−α
with mean = α−1

α−2xmin where α > 1 and x ≥ xmin.13

where d(x) is the probability that an individual disperse a distance x from the parent. In all cases I14

used xmin = 1.15

(3) Individuals die at a rate µ16

(4) When an individual dies, it is replaced by a migrant from metacommunity with probability m and with17

probability 1 −m by an individual from the neighborhood. The neighborhood is established using the18

dispersal kernel with average distance d. Once the grid is full it stays full, because when an individual19

dies it is immediately replaced by another. This is called the zero-sum assumption in neutral models.20

(5) If the individual does not die it can be replaced by an individual from the metacommunity or neighbor-21

hood as in (4), but an individual of species with number k can replace and individual of a species k + 122

with probability ρ. Thus a hierarchical ordering of species is established. When this probability is zero,23

the model behavior becomes neutral.24

The model was developed using the C++ programing language and its source code is available at https:25

//github/lasaravia/neutral and figshare http://dx.doi.org/10.6084/m9.figshare.969692.26
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Percolation and simulations1

To characterize our model in terms of percolation theory, we need to define an order parameter that depends2

on an external control or tuning parameter that can be continuously varied. Thus, we defined as tuning3

parameter the replacement probability ρ, and the order parameter as the probability that a patch of one4

species connects the landscape, this is called the spanning cluster probability SCp.5

In our model, percolation is produced when there is at least one patch of one species that spans from one6

edge of the system to the opposite edge. To detect species patches we used a modified Hoshen–Kopelman7

cluster labeling algorithm (Hoshen & Kopelman 1976) with a neighborhood defined by the four nearest sites8

(Von Neumann neighborhood) available at github https://github.com/lsaravia/Clusters. The percolation9

point is defined as the value of the tuning parameter ρ at which SCp is 0.5. We used one snapshot of the10

spatial pattern to make our results more compatible with field studies, hence we measure the patch size11

distributions after 5000 time iterations.12

The size of the lattice affects the value of the critical point ρc at which the transition occurs; in small lattices13

SCp is non-zero for values of ρ below the ρc, because patches that connect the entire lattice appear only14

by chance. Therefore, in order to obtain an asymptotic estimate for ρc we performed a finite size scaling15

analysis. For this, we run simulations for different lattice sizes (Side = 100, 150, 256, 512) and obtained16

asymptotic values by regressing ρc against 1/N , the intercept becomes an estimate for a lattice of infinite17

size (ρ∞c )(Stauffer & Aharony 1994; Sornette 2000).18

We determined critical points for two different metacommunities: a) One with a logseries species abundance19

distribution, the most common distribution that fits experimental data (White et al. 2012). With this20

metacommunity we included a competition-colonization trade-off by arranging species numbers in inverse21

order as it’s frequency Xi in the metacommunity. b) A uniform species distribution, all species have the22

same probability to colonize the local community, this is analogous to simulating the appearance of a new23

species by evolution thus the migration parameter m would represent a speciation rate. The values of the m24

parameter (Table 1) were at least two orders of magnitude higher than realistic speciation rates (Rosindell &25

Cornell 2009) as it is not our aim to interpret the results in an evolutionary framework, only to show the26

influence of different metacommunities.27

All simulations started with an empty lattice that is colonized by migrants mimicking the assembly of a new28

community. For each parameter combination we performed 30 simulations. Thus, we calculate the SCp as29

the number of times we observed a spanning cluster divided by the number of simulations. The range of30

parameters used were compatible with published results in tropical forest (Condit et al. 2002; Etienne 2007;31
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Anand & Langille 2010), It was suggested that fat-tail dispersal kernels give more realistic results (Rosindell &1

Cornell 2009; Seri et al. 2012) so we used an inverse power law distribution with an exponents always greater2

than two—so the mean exists (Table 1). The parameter ρ is varied across all the range between 0 and 1 to3

determine the critical point, in the region where we suspect the ρc will be located (near 0) the steps were very4

small (0.0001) and greater (0.1) in the region were we don’t expect the ρc. The analysis of the model output5

were done in the R statistical statistical language (R Core Team 2015) and the scripts are available at github6

https://github.com/lsaravia/CriticalTransition and figshare http://dx.doi.org/10.6084/m9.figshare.2007537.7

We calculated the sensitivity of the critical point for infinite lattices (ρ∞c ) varying three parameters of the8

model, one at a time: the migrationm, the dispersal distance and the number of species in the metacommunity.9

To change the dispersal distance we vary the power exponent of the dispersal kernel α. The range of parameters10

we used is described in table 1. We used as a base the first row of the table, so if we vary m, the other11

parameters are fixed at α = 2.04 and the metacommunity number of species to 64.12

Communities and early warnings signals13

To compare communities change near and far from the ρc we measured the species abundance distribution14

(SAD) and calculated the rank abundance diagrams (RAD). These diagrams are equivalent to cumulative15

distributions and thus are a robust way to visualize the SAD without losing information (Newman 2005). We16

also calculated richness (S) and the Shannon diversity index (H) for each simulation.17

The patch size distribution has been suggested as an early warnings for ecological transitions (Kéfi et al. 2014),18

although a more in-depth study is necessary to reliably identify early warnings we present these as a first step19

in this new kind of models. The difference with previous models of phase transition in ecology (Kéfi et al.20

2011), is that they have one or two species patches and we have from 16 to 256 different species. We already21

know that the patch size distributions of species in neutral models follow a power law (Houchmandzadeh &22

Vallade 2003), although we added a competitive interaction to the neutral model we expect that the patch23

size distribution follows a power law (f(x) = x−α) or due to the finite size of the simulations a power law24

with exponential cutoff (f(x) = x−αe−λx)(Pueyo 2011; Weerman et al. 2012). As an alternative model we25

fitted an exponential distribution (f(x) = e−λx). Near the critical point, and after it, we have a species with26

a continuous patch that spans all over the area: the spanning species. Thus we fitted the patch distribution27

of the spanning species and the distribution of all other species aggregated. Before the critical point we do28

not have a spanning species thus we fitted the patch distribution of the species that has the biggest patch29

and also the distribution of all other species excluding the one that has the biggest patch.30
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For each of these species or set of species, we fitted the mentioned 3 discrete distributions using maximum1

likelihood methods (Clauset et al. 2009). After that we calculated the Akaike information criteria corrected2

for small samples (AICc), to select the best model (Burnham & Anderson 2002; Burnham et al. 2011). To3

characterize the variation of fitted parameters against ρ, we used quantile regression (Cade & Noon 2003). All4

the analysis were made using the R statistical language (R Core Team 2015), the fitting of patch distributions5

was made using mainly the package poweRlaw (Gillespie 2015) and quantile regressions with R package6

quantreg (Koenker 2013).7

We measured the patch size distribution from simulations in a range of ρ from neutral to niche communities,8

using a smaller set than the ones we used to estimate the critical point: ρ={0.0000, 0.0005, 0.0010, 0.0020,9

0.0030, 0.004, 0.005, 0.01}, the other parameters were from the first row of table 1 and a Side of 256 sites.10

The simulations run up to time 5000 and then we collected the patches every 40 time intervals for 400 time11

intervals more each. In some simulations the spanning cluster occupies a great proportion of the landscape in12

consequence very few patches remain to estimate a distribution. We only fitted a model when there are at13

least 20 patches and 5 different patch sizes.14

Application of early warnings to BCI forest data15

The Barro Colorado Island forest plot is a 50 hectare rectangle (1000 m x 500 m) of tropical forest located16

at Panama and managed by the Smithsonian Tropical Research Institute (Condit 1998). In this plot all17

individuals ≥ 1 cm diameter at breast height (dbh) of free standing woody tree species have been measured18

and identified. Since the first census at 1982-1983, there was a second census in 1985, and then each five19

years, there are seven publicly available censuses. We will estimate the species patch distributions for each20

year to check if there is a tendency.21

To analyze the patch distribution of BCI plot we first discretized the positions of the trees to fit them in a22

lattice (Appendix 1). After that we fit the same models that we described above to the patch size distributions23

for each year. To check for a tendency in the fitted parameters we quantil regressions but only with the 0.524

quantile (median) because we have a smaller n.25

Results26

We observed a typical pattern of a second order continuous phase transition (Figure 1) which means that27

at the critical point ρc one species percolates through the lattice: a mono-specific patch spreads from side28
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to side, this patch is called the spanning patch or spanning cluster. As expected from percolation theory1

(Stauffer & Aharony 1994; Sornette 2000) the probability of a spanning cluster (SCp) is greater than 0 for2

ρ < ρc and small lattice sizes, for bigger lattice sizes SCp is 0 for ρ < ρc and jumps quickly to 1 for ρ > ρc3

and this clearly define the two phases. Consequently the critical point for smaller lattices is lower than for4

bigger lattices (Table 2). The size of the spanning cluster is between 0.28-0.37 in proportion of the lattice for5

a logseries metacommunity, and 0.34-0.36 for a uniform metacommunity. Communities with a species patch6

around these areas could be near a critical point.7

When the competitive intensity surpasses the critical point, the space left by the spanning species quickly8

diminish so the Shannon diversity (H) collapses (Figure 2), but some individuals can escape the competitive9

displacement thus richness shows a more gentle fall (Figure 3). We can observe the effect of the competition-10

colonization trade-off in the logseries metacommunities: a very small degree of competition produces more11

diverse communities than purely neutral ones. This is because in the long term the SAD from a neutral12

community will match the metacommunity SAD (Houchmandzadeh & Vallade 2003), thus a small degree of13

competition lowers the density of colonizers and raises H before the critical point. The effect of the trade-off14

also can be observed in richness, logseries communities have in general less species and the decrease in richness15

is slower than with uniform communities (Figure 3).16

The differences between logseries and uniform communities are also observed looking at the RADs (Figure17

S1). Before the critical point logseries communities have the effect of the trade-off: neutral ones (ρ = 0) have18

a greater negative slope and less species, then the slope is more flat (ρ around 0.0005), and approaching the19

critical point it begins to fall again but the shape of the RADs are different, the curvature is inverted. For20

uniform communities, the shape of the RAD is constant while the dominance of competitive species rises, the21

number of species keep constant until we reach ρ=0.1. This explains why we observed a sharp drop in H and22

a gentle decrease in S when we raise ρ. The change in the RAD with ρ also suggests a method to identify23

communities where the trade-offs are important or not.24

The critical point is the value of the intensity of competition where the phase transition occurs ρc. We25

observed that in general the transition happened at very low ρ values (Figure S2). That means that low26

levels of competition are needed to change the phase and sharply decrease diversity, this is observed for both27

logseries and uniform metacommunities. The effect of the colonization-competition trade-off in communities28

with logseries metacommunities is to slightly increase ρ∞c . Thus logseries communities can have slightly29

higher levels of competition than uniform communities before the transition to the niche phase.30

We analyzed how the critical point changes varying model parameters in ranges suggested by previous studies,31

thus the validity of our findings is restricted to these ranges (Table 1). The migration parameter m had the32
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widest range and the biggest relative influence (0.9) on the critical point ρ∞c (Appendix Table 2). When m1

is greater we have more influence of the metacommunity on the local community, this lowers the effect of2

competition intensity and makes the ρ∞c higher (Figure S2). The effect becomes important when m = 0.0163

which results in the biggest ρ∞c , approximately 0.01 which is an order of magnitude greater than all the other4

cases (Appendix Table 2). The number of species in the metacommunity has a strong influence on ρ∞c and5

we observed different relative responses for logseries (0.29) and uniform (0.39) metacommunities. For higher6

number of species in the metacommunity we obtained higher ρ∞c , this means that when we have less species7

the effect of competition is stronger, the community changes from the neutral to niche phase earlier. The8

competition-colonization trade-off, present in logseries communities, diminish the influences of competition so9

the variation in ρ∞c is smaller (Appendix Table 2). Finally dispersal distance has a weak effect in the range10

we used (relative variation of 0.1).11

The patch size distributions have been used to detect the closeness of the critical point when the spatial12

patterns are non periodic or irregular as in our case (Kéfi et al. 2014). In our simulations the most frequent13

best model —with lower AICc—was the power law with exponential cutoff (70%), the pure power law was14

found best in 8% of the cases and the exponential model never was found to be the best model (Appendix15

Table 3). The rest of the cases (22%) correspond to simulations with ρ greater than ρc where one big spanning16

patch exist and there are few other patches of the same species, so a distribution model can not be fitted17

following the criteria we stated in methods. Thus we adopted as a possible indicators of the phase transition18

the parameters of the power law with exponential cutoff model: α the power exponent and λ the exponential19

decay rate. We fitted quantil regressions using three quantiles: 0.25, 0.50 and 0.75.20

For the biggest patch and the spanning species α has an increasing tendency but slopes are non-significative21

at 5% level in near 60% of the cases (Appendix Table 4 and appendix Figure S3), The λ’s slopes are also22

non-significant in nearly 60% of cases and do not have consistent patterns for all the cases: a decreasing23

pattern for logseries communities; for uniform communities most abundant species have negative slopes and24

spanning species have positive slopes (Appendix Figure S4). The most clear and consistent patterns are25

observed for the patches of other species clumped, which have for λ only 1 case was non-significant (8%)26

but for α also had 58% of cases non-significant (Appendix table 4). Before the critical point the λ have a27

negative slope and after the critical point have a positive slope, we also observed that the median of λ reaches28

a minimum right after the critical point (ρc between 0.0011-0.0013). Thus the slope of λ could be used as an29

indicator of the critical point. If the community is approaching the critical point the slope will be negative30

and if it is past the critical point the slope will be positive.31

For BCI data we found that there is no spanning patch, the relatively small scale we chose for discretization32
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produced small patches so the biggest patch have in average a size of 0.006 % of the lattice. The best models1

were the power law with exponential cutoff for the biggest patch species, and the power law for the other2

species, but in this last group the power law with exponential cutoff is also a plausible model because the3

differences in AICc are around 2, and the fitted power exponents are the same (up to two decimals). Thus4

we regressed the parameter λ against year to detect any tendency that would indicate an approaching or a5

moving away from a critical point. The slopes we obtained were all non-significant (Appendix table 5) thus6

there is no indication that the BCI is near a critical point.7

Discussion8

We described for the first time a spatial phase transition between neutral and niche ecological communities.9

The power laws of patch size distributions observed in this model are not only produced at the critical point10

but are present over the whole range of the control parameter ρ. There are some ecological models that11

display this kind of behavior and it has been termed robust criticality, because of the permanence of scaling12

laws (Pascual & Guichard 2005). These previous models all included some kind of disturbances or stress, and13

with the increase in disturbance levels an increase in the exponential decay (λ) of patch sizes is observed.14

This increase can be the result of a switch from a power law to a power law with exponential cutoff model15

(Kéfi et al. 2011), or by an increase of λ in the power law with exponential cutoff model (Weerman et al.16

2012). In our model model, the competition intensity ρ can play the same role as stress; a very small degree17

of competition produce a critical transition from a neutral phase to a niche phase, and the most competitive18

species invades a great portion of the landscape.19

The sequence of an increasing λ when the critical point is approached is not observed in our model but a20

decrease of it when the system goes towards the critical point, and then an increase. This coincides with21

theoretical predictions from percolation theory (Stauffer & Aharony 1994), at the critical point the exponential22

decay in the patch distribution vanishes and the patch distribution becomes a pure power-law. We did not23

observe the pure power-law because the size of the simulations is finite, but as λ becomes very small the24

power-law and power-law with exponential cutoff become almost identical.25

When the increase of λ starts we already have a biodiversity collapse, thus the pattern that can be used to26

detect the closeness to the collapse is the decrease in λ observed for the patches of all species excluding the27

one with the biggest patch. The existence of a patch of one dominant species that covers nearly 30% of the28

area can also suggest that the system is near the critical point. This patch that extends from side to side29

of the system —also called the spanning cluster— has a variable size depending on the size of the system30

12
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(from 28% to 38%). Thus it can not be used alone as an early warning, the size of the biggest mono-specific1

patch should be used in conjunction with the decrease of λ, if the size of the biggest patch is around 10% the2

system might not be close to the critical point, but if its size is around 30% or more the probability that the3

system is near a critical transition is greater.4

We calculated λ for the patch distribution of the Barro Colorado Island in Panama (BCI), the method could5

be applied because the power-law with exponential cutoff is a plausible model for the patch distributions. We6

did not find any tendency with time in λ and the biggest mono-specific patches are very small, although7

we may be underestimating these sizes. There are contradicting results about the BCI regarding if it is in8

a steady-state, some point out BCI as been in non-equilibrium state (Fort & Inchausti 2013) and another9

suggests that it is in a steady state (Azaele et al. 2006). We found that λ is not changing with time, this is10

compatible with a steady-state of the forest, moreover the forest seems not to be close —until now—to a11

critical point.12

A commonly used pattern to characterize ecological communities is the species abundance distribution, that13

we used in the form of rank abundance diagrams (RAD). We found that there is a change in the RAD when14

the critical point is approached but these changes are small and will probably go undetected (Saravia 2015).15

The shape of the RAD is highly dependent on the metacommunity, which is difficult to estimate as a baseline,16

thus there is no RAD characteristic of a community near the critical point. The species richness and Shannon17

diversity of the community are both resumed versions of the species abundance distribution. Richness keeps18

fluctuating around a more or less constant value when the community goes through the critical transition.19

Shannon diversity depend on the metacommunity and on the existence of trade-off: in some cases it increases20

before the critical point and in other cases starts to decrease. Thus these two indices can be misleading21

indicators of the proximity of a critical transition.22

In any case the use of several indicators is recommended (Kéfi et al. 2014), the indicators developed in23

this study have the advantage of combining the spatial and temporal information thus they should be more24

robust than indicators based in only one kind of information (Martín et al. 2015). Other kinds of early25

warnings signals developed for spatial systems like spatial variance or autocorrelation should be adapted for26

multispecific communities and a detailed study comparing all of them should be done.27

Percolation transitions like the one observed in this model are second order or continuous critical transitions.28

This means that unless the system becomes degraded and changes its internal dynamics, these transitions are29

reversible. Much of the ecological literature was dedicated to study of other kinds of transitions: first order or30

discontinuous transitions that produce hysteresis —also called regime shifts—and rely on the understanding31

of deterministic equations (Solé & Bascompte 2006). These kinds of transitions are practically irreversible but32

13
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in real ecosystems the presence of noise and spatial heterogeneities can convert irreversible transitions into1

second order transitions (Martín et al. 2015), this enhances the importance of second order phase transitions2

like the ones detected here.3

A recently published model related the savanna-forest transition to a phase transition between persistent4

species in a neutral model without including any niche effect (Abades et al. 2014). The spanning cluster5

that appears at the critical point is theoretically infinite (Stauffer & Aharony 1994; Sornette 2000). But6

percolation is studied in finite systems as a consequence, in small lattices the spanning cluster has a positive7

probability to appear. In our model, we observed the apparition of a spanning cluster in the neutral phase8

only at the smallest lattice sizes (100-150 sites), but a spanning cluster never appears at greater sizes. Thus9

we did not observe a critical transition for neutral communities, this is in contrast with Abades et al. (2014)10

who reported a critical phase transition for a neutral model using a lattice with sides from 10 to 100. In both11

cases the same order parameter was used —the probability of a spanning cluster— but we used a different12

control parameter. They used the proportion of sites with a stable population of a given species as a control13

parameter. It seems that their results are related to static percolation, not to the neutral model. In static14

percolation occupied sites are located at random in a lattice and there is no time dependence or change, when15

the proportion of occupied sites reach a threshold percolation is observed. This is analogous to Abades et16

al. procedure, so they obtained percolation because they varied the proportion of occupied sites (and the17

populations within these sites were stable), not as a result of the use of a neutral model.18

Using an spatially implicit model Fisher & Metha (2014) described a phase transition between a neutral19

and niche communities. They used a stochastic Lokta-Volterra model for niche communities where neutral20

dynamics was added as Gaussian noise. Their mechanism is similar to ours but generalized to different21

kinds of interactions. Their model predicts that under stress a community will suffer a biodiversity collapse22

produced by a shift towards neutrality. This means that disturbed less diverse communities should have23

neutral dynamics. This prediction is contrary to most of the models and experimental data that suggest that24

niche dynamics dominate low-diversity communities while neutral dynamics will be more common in high25

diversity communities (Chisholm & Pacala 2011). Our results are in accordance with this last prediction: the26

critical point ρc is lower for low diversity communities. This implies that they are more sensitive to changes27

in environmental conditions, a small change can make them to shift to a niche phase.28

The results our model and similar works in spatially implicit models implies that most ecosystems will exhibit29

patterns of diversity that are either strongly niche-structured or indistinguishable from neutral (Chisholm &30

Pacala 2011; Fisher & Mehta 2014). Anyway there is another option, several field studies have demonstrated31

that weak interactions are a general phenomenon for species rich communities (Martorell & Freckleton32
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2014,Volkov et al. (2009)) which is also observed for natural food webs (Wootton & Emmerson 2005), so it is1

possible that these communities live near the critical point between neutrality and niche. This suggests the2

existence of a mechanism similar to critical self organization as hypothesized by Solé et al. (2002) called3

self-organized instability. In this general mechanism the immigration of new species increase diversity and4

connectivity, we argue that it also might increase interaction strength; this will happen until the critical point5

is reached and then diversity diminishes. Thus, only communities with weak interactions can maintain high6

diversity in the long term. The mechanisms included in this model are generic, the only differences between7

species are their competitive ability and their frequency in the metacommunity. The habitat is homogeneous8

so niche partition mechanisms are not included but the final effect could be the same at the end: the lowering9

of the intensity of interactions.10

Habitat fragmentation produce more isolated communities (Haddad et al. 2015), where less effective space is11

available to species thus disregarding the effect of the spatial pattern of habitat destruction this is equivalent12

to a community composed of less sites. Then it is probable than fragmentation shifts the critical point to13

lower values making the communities more sensitive to environmental changes. At the same time these14

communities would have a stronger niche effect and a high probability of biodiversity collapse. As we have15

previously mentioned, the distribution of habitable and non-habitable sites produced by fragmentation could16

result in percolation and critical phenomena. The interplay between these two critical transitions can be17

more complex than was previously thought (Oborny et al. 2007). Thus the combination of these two critical18

phenomena should be thoroughly studied, also the extension to different kinds of interactions including food19

webs, mutualistic communities and intransitive competition (Soliveres et al. 2015) is a fundamental next step,20

but great care should be given to the method of simulating the interaction coefficients to recreate realistic21

communities (Rohr et al. 2014).22

The novelty of this critical transition is that it occurs before that produced by habitat loss, deforestation,23

land use changes, increased grazing, fragmentation, etc., and it only needs a change in the environmental24

conditions that changes the strength of the interaction between species. This also could be produced if habitat25

connectivity and species that previously did not interact have the possibility to compete, in the same line an26

invading species could produce the same effect and trigger a phase transition in a formerly neutral community.27

A great portion of biosphere’s ecosystems are under the pressures produced by human-induced activities, but28

human activities also produce global-scale forcings —like climate change—that can reach relatively pristine29

ecosystems although they are not under a direct influence of human activities (Barnosky et al. 2012). This30

kind of changes can be represented by the phase transition described here before the ecosystem is under a31

direct degradation, and the detection of this kind of transition could be used as a signal to detect a global32
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state shift in the biosphere.1
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Tables

Table 1: Parameters values used in the simulations of the neutral-hierarchical model. The parameter µ is the
mortality rate; α is exponent of the inverse power law dispersal kernel, between brakets is the mean dispersal
distance; and m is the migration from the metacommunity.

Side
Metacomm. No.

Species µ α (mean dist.) m

100 64 0.2 2.04 (26.66) 0.00016
150 128 2.08 (13.34) 0.0016
256 16 2.18 (6.67) 0.016
512

1

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1589v2 | CC-BY 4.0 Open Access | rec: 23 Dec 2015, publ: 23 Dec 2015



Table 2: Critical points ρc and critical cluster size for the phase transition of a neutral/niche model. We used
a range of simulation lattice sizes and two metacommunity types. The metacommunities where L: logseries,
U: uniform; Side was the side of the simulation lattice and the total size=Side2. The other parameters were
migration m=0.00016, mean dispersal distance=26.66.

Metacomm.
Type Side ρc

Critical
Cluster

L 100 0.00018 0.3093
L 150 0.00102 0.3777
L 256 0.00132 0.3521
L 512 0.0015 0.2862
U 100 0.00065 0.3564
U 150 0.00094 0.3609
U 256 0.0011 0.3583
U 512 0.00136 0.3448
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Figures

Figure 1: Probability of Spanning cluster for a spatial neutral/niche model as a function of the intensity
of competition ρ. The columns represent two different metacommunity types: Logseries, a metacommunity
with logseries species abundance distribution (SAD); Uniform, a metacommunity with a uniform SAD. The
columns represent the side of the simulation lattice, the total size is side2. The vertical green line is the
critical point, the value for parameter ρ where a phase transition between neutral and niche phases occurs.
The critical point was determined as the point where the spanning probability is 0.5, the other parameters
used were m=0.00016, dispersal distance = 26.66
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Figure 2: Shannon diversity index and critical point for a spatial neutral/niche model as a function of the
intensity of competition ρ. Columns represent with metacommunity types: Logseries is a metacommunity
with logseries species abundance distribution (SAD), and the Uniform metacommunity have a uniform SAD,
both with 64 species. Rows represent different lattice sizes. Points are independent simulations of the model.
The parameter ρ representing the intensity of competition is the control parameter and the vertical green
line is the critical point were the phase transition occurs. Other parameters used were m=0.00016, dispersal
distance = 26.66.
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Figure 3: Richness and critical point for simulated neutral/niche model communities as a function of the
intensity of competition ρ. The columns represent different metacommunity types and the rows different grid
*side*, where the total size of the grid is *side x side*. Points are repeated simulations of a the spatial model
(n=30) and the vertical line is the critical point were the phase transition occurs
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Figure 4: Exponential decay rate λ for patch size distributions as a function of the intensity of competition ρ.
We fitted a power law with exponential cutoff to patch size distribution of species that does not have the
biggest patch (Other MaxPatch) or species that are not the spanning species (Other Spanning), the points
are the value of λ and the continuous lines are fitted median regressions. The dashed line connects the λ
median for each ρ. We made 10 simulations for each ρ, metacommunities have 64 species and two different
species abundance distributions (SAD): *L*, logseries SAD; and *U*, uniform SAD; the critical point for
logseries is 0.0015, for uniform metacommunities is 0.0014. The size of the grid was 256*256 sites and the
other parameters used are migration=0.00016, dispersal distance=26.66.
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