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A Risk Assessment Approach to Ecological Decision-Making 

Abstract 

The conservation and management of wild populations and ecosystems almost always involves 1 

making decisions in the face of uncertainty and risk. The application of science to the ecological 2 

decision-making process was something that the late Professor Daniel Goodman thought 3 

deeply about. In this paper we outline the three main principles that Dr. Goodman espoused for 4 

good practice when conducting analyses for ecological decision-making: 1) the results should be 5 

conditioned on all relevant data and information, 2) there must be a full characterization of all 6 

uncertainty, and it should be fully propagated into the result, and 3) doing so in the correct way 7 

will result in the calculation of an accurate probability distribution (conditioned on our 8 

understanding of the state of nature) that should be used directly for ecological decision-9 

making. Dr. Goodman believed that in the context of threatened and endangered species 10 

management Population Viability Analysis (PVA), Bayesian statistics, and structured decision-11 

making are the most logical tools to achieve the three principles. To illustrate the application of 12 

the principles and tools in a real management setting, we discuss a Bayesian PVA that Dr. 13 

Goodman produced for the endangered Steller sea lion. We conclude by discussing the practical 14 

and philosophical impediments that may limit the full realization of the three principles and we 15 

offer some suggested solutions. 16 
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1. INTRODUCTION 21 

The conservation and management of species almost always involves making decisions 22 

based on limited information. We often do not know with precision, for example, the current 23 

state of the species we need to manage, we may not know what factors influence its dynamics, 24 

and often, we have limited knowledge of the species’ recent or long-term past that brought it 25 

to its current state.  Similarly, the impact of potential management actions on a species and 26 

future environmental conditions cannot be known with certainty. Because of these 27 

uncertainties and the potential for negative outcomes if we get the management decisions 28 

wrong, species management and conservation involve risk. Such risks may include failing to 29 

arrest a species’ decline, causing harm to other non-target species, spending limited financial 30 

and personnel resources on ineffectual actions, or unnecessarily limiting exploitation or other 31 

human activity associated with the species or its habitat.  Despite these uncertainties and risks, 32 

management decisions must be made.  How to make these decisions in an optimal way 33 

regardless of the quality or quantity of information available is clearly in the purview of the field 34 

of risk analysis and management. Rarely, however, is on-the-ground ecological management 35 

and decision-making approached from the perspective of risk analysis and management(1). 36 

The late Professor Daniel Goodman spent a great deal of his career on this question of 37 

optimal use of information for ecological decision-making, and strongly advocated for 38 

addressing decisions from a risk-focused perspective. He believed that the key to effective 39 

conservation of vulnerable species and other ecological decision-making lay in accurate 40 

estimation of the risk to a species coupled with structured decision-making that facilitated a 41 

transparent decision-making process and clear separation of scientific and policy questions.  In 42 

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1583v1 | CC-BY 4.0 Open Access | rec: 12 Dec 2015, publ: 12 Dec 2015



4 
 

this paper we describe the three main principles that Dr. Goodman advocated when making 43 

ecological decisions and the tools he believed were necessary to achieve these principles, 44 

namely, Population Viability Analysis (PVA), Bayesian statistics, and formal decision analysis. We 45 

also briefly discuss how Goodman applied these principles in a contentious management 46 

situation.  Throughout the paper we focus primarily on threatened and endangered species 47 

management under the US Endangered Species Act (ESA), but the concepts we present are 48 

relevant to all ecological decision-making arenas in and outside of the US.  49 

2. BACKGROUND ON ESA AND PVA 50 

Goodman was an applied ecologist.  He described his primary professional interest as 51 

the “application of modeling and statistics to actual environmental decision-making” (2).  Much 52 

of his applied worked involved ESA-related decision-making, including listing (placing a species 53 

on the endangered species list) and delisting (removing the species from the list) decisions. 54 

According to the law, listing of a species under the ESA is an indication that the species is “in 55 

danger of extinction throughout all or a significant portion of its range” (endangered), or is at 56 

risk of becoming endangered “within the foreseeable future” (threatened). Listing affords the 57 

species protective status under the law and may result in restrictions on human activity (e.g., 58 

land development, harvest, resource extraction). Once a species is listed under the ESA, the 59 

agency tasked with managing it (US Fish and Wildlife Service or National Marine Fisheries 60 

Service; collectively, the services) is required to develop a recovery plan that outlines how the 61 

agency proposes to recover the species so that it no longer requires the special protective 62 

measures of the ESA. The plan is required to contain “objective, measurable criteria” (recovery 63 

criteria) that define when a species is no longer at risk of extinction and can be considered for 64 
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delisting (16 U.S.C. §1533). Actual delisting can occur presumably (but not necessarily) after the 65 

recovery criteria are met and a delisting assessment shows that the species is no longer 66 

threatened or endangered and that the five threat factors identified in the ESA (i.e., habitat 67 

destruction, overutilization, disease or predation, inadequate regulation, or other factors) have 68 

been ameliorated.  While the overall intent of the ESA to protect and restore at-risk species is 69 

clear, much of the language in the law is general rather than specific (3-5), leaving decision-70 

makers with the difficult task of interpreting the law and deciding exactly what is meant by 71 

phrases like “in danger of”, “significant portion of”, and “foreseeable future”. As a result, a 72 

great deal of variation exists in the approaches used to evaluate a species’ standing under the 73 

ESA, including how recovery criteria are formulated and listing and delisting decisions are made 74 

by the services (6-8) 75 

One approach to evaluating whether a species should be listed or delisted under the 76 

ESA is Population Viability Analysis (PVA). PVA is a term that encompasses a wide range of 77 

quantitative techniques designed to predict the future status of a population or species (9). 78 

Generally, a PVA uses information about a species’ past population dynamics to project possible 79 

future scenarios through stochastic simulation modeling. One result of a PVA is an estimate of a 80 

population’s risk of extinction or quasi-extinction (i.e., falling below some designated threshold) 81 

over a specified timeframe. 82 

PVAs have an intuitive appeal with respect to ESA-related decisions since they provide an 83 

estimate of extinction risk, the very metric identified in the ESA as defining threatened and endangered 84 

species.  Despite this, their use in making management decisions, especially in the context of the ESA, 85 

has been vigorously debated.  Some have argued that in the context of management decisions PVAs are 86 
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too unreliable when data are poor, require too much data to be of use in endangered species listing 87 

decisions when data are often limited, or are too imprecise to be useful (10-16). Others have countered 88 

that their usefulness outweighs their limitations, that alternative approaches for ESA decision-making 89 

have more significant drawbacks, and that many of the perceived weaknesses of PVA can be addressed 90 

with careful application and consideration of uncertainty (17-25). This latter view was embraced 91 

completely and authoritatively by Goodman. He suggested that a PVA model was the only 92 

approach that could use and synthesize all of the available data, which was a highly desirable, 93 

and even obligatory, property. More specifically, he advocated for use of Bayesian statistics 94 

within the PVA framework, and for the results of the Bayesian PVA to be used in a structured 95 

decision-making context. 96 

3. GUIDING PRINCIPLES FOR ECOLOGICAL DECISION-MAKING 97 

Goodman’s advocacy for Bayesian PVA and structured decision-making was predicated 98 

on three fundamental principles for good practices in analyses used for ecological decision-99 

making:  1) the results of the analysis should be conditioned on all available data, 2) all 100 

uncertainty should be accounted for and fully propagated into the result, and 3) the calculated 101 

results should be directly used for ecological decision-making.  Goodman argued that if the first 102 

two principles were followed in the correct way, one could calculate a correct probability 103 

distribution for the state of nature given the available information and the uncertainty. It then 104 

follows that the correct probability could be used directly in structured decision-making process 105 

to arrive at a decision fully consistent with the decision-maker’s values, the data, and the 106 

uncertainty. We will step through these points in detail, and discuss their specific application to 107 

endangered species listing and delisting decisions. 108 
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3.1 Use all the data 109 

The first guiding principle is that a scientific analysis that will be used for ecological 110 

decision-making should be conditioned on all the relevant data (not just some of it), and to the 111 

extent possible, only on the relevant data.  In the context of species management, “relevant” 112 

means only those data that will impact the future dynamics of the species(26). Specifically, 113 

Goodman advocated using all the data in a synthetic analysis rather than performing multiple 114 

separate analyses of different kinds of data that are separately considered for the decision, or 115 

integrated via “human integration” (i.e., people viewing the separate results and subjectively 116 

deciding what they mean in total).  The non-synthetic approach is by far the most common 117 

approach to ESA listing and delisting decisions and generally requires less time and fewer 118 

resources than a fully quantitative synthesis approach. But as Goodman and others have 119 

argued, mathematical models that integrate all data reinforce an internal logic and consistency 120 

that can often be missing when separate models and ad hoc integration are used(23, 17, 27). 121 

PVA provides precisely the type of synthetic analysis that Goodman promoted. “Using 122 

all the data” in a PVA means, as a start,  including information on population size, population 123 

trend, sources of human-caused mortality, and life history information such as birth and death 124 

rates. However, it can also include data on such things as environmental forcing, variability of 125 

prey and/or natural survival rates, probability of catastrophic events, and likely future 126 

management or threat scenarios. Given the different types of data and the different temporal 127 

and spatial scales encompassed by such comprehensive inclusion of data, this principle of using 128 

all the data is rarely easy in practice. Fortunately, the increasing use of “integrated” population 129 
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models (28-32) reflects a trend toward this type of synthetic analyses and has led to increased 130 

accessibility of techniques and tools for using a wide variety of data within a single analysis.   131 

3.2 Include all sources of uncertainty 132 

Using all available information may seem to have an obvious interpretation, but what 133 

may not be as obvious is that “information” includes not only what we know but also what we 134 

don’t know, i.e., the “known, unknowns”, as Donald Rumsfeld would say(33).  This brings us to 135 

Goodman’s second guiding principle, incorporate all sources of uncertainty. An emphasis on 136 

incorporating uncertainty has been a long-running theme in conservation biology and 137 

environmental management. This is exemplified, for example, in a symposium and Special 138 

Section in the journal Conservation Biology in 2000 titled “Better Policy and Management 139 

Decisions through Explicit Analysis of Uncertainty: New Approaches from Marine 140 

Conservation”. Goodman was not the only person advocating a better and more thorough 141 

handling of uncertainty in analyses, but he was an early advocate, and perhaps embraced the 142 

concept more thoroughly and emphatically than others. Although Goodman did not have a 143 

paper in the Conservation Biology special section, his influence can be seen in the number of his 144 

graduate students (or even second-generation graduate students) who did (34-37).  145 

What does it mean to more fully incorporate uncertainty?  One way to view it is through 146 

the development of applied statistical and modeling practices in ecology.  This is an over-147 

simplification, but there has been a progression in applied statistics in incorporating more 148 

uncertainty over the last few decades. Though it likely has always made statisticians cringe, 149 

there used to be many examples of ecological decision-making based solely on point estimates 150 

of parameters (e.g., the population is declining at 2.3% per year). That simplistic approach can 151 
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be viewed as step 1 in the progress toward incorporating more uncertainty.  Step 2 was to fully 152 

incorporate parameter uncertainty (e.g., the population is declining at 2.3% per year with 153 

standard error of 1.1%).  Although this sounds easy and straight-forward, for complex models 154 

this was not always simple, and new statistical techniques were developed to accomplish this, 155 

such as the jackknife or bootstrap in frequentist statistics(38, 39), or numerical integration 156 

techniques in Bayesian statistics such as sampling importance resampling (SIR) or Markov Chain 157 

Monte Carlo (MCMC) (40).  158 

Step 3 in the evolution of statistically valid approaches to uncertainty was the 159 

widespread use of more complex models in ecology, whether for abundance estimation (e.g., 160 

mark-recapture or line-transect analysis) or for population modeling. In particular, for PVA 161 

models there was clearly the need to incorporate the uncertainty that arises from stochastic 162 

processes (e.g., rather than declining at the same rate every year, the population can 163 

experience small declines in some years and larger declines in other years). Statisticians speak 164 

of uncertainty in terms of error, and stochastic processes are viewed as “process error” as 165 

opposed to “estimation error”, which arises from uncertainty in the exact value of the model 166 

parameters.  Treatment of these two types of error becomes important in PVA models, and 167 

their treatment can be viewed as being different in Bayesian statistics than it is in classical 168 

frequentist statistics (see Gerrodette et al. in this volume for more on this topic). Goodman was 169 

firmly in the Bayesian camp regarding the treatment of these two sources of error, and made 170 

convincing arguments for his point of view (27, 41). 171 

The development of more complex and sophisticated models in ecology has mostly 172 

been a good thing, but it came at a cost, which can be viewed as Step 4.  The complexity in 173 
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newer ecological models lead to more model choices and to a greater uncertainty about which 174 

model was the “best” one (e.g., does a model with a single rate of decline fit the data better 175 

than a change-point model with two different rates of decline?). To choose, we needed a solid 176 

statistical method for deciding which model fits the data better.  Although step-wise likelihood 177 

ratio tests for model selection had been around for a long time, better techniques were 178 

needed, particularly to compare non-nested models. This has led to the relatively recent move 179 

to fully embrace model uncertainty in ecological analyses, in addition to parameter uncertainty. 180 

Again, this development occurred on both sides of the statistical de-militarized zone (classical 181 

frequentist vs. Bayesian), with AIC, championed by Burnham et al. (42), gaining widespread 182 

usage for non-Bayesians, and Bayes Factors (43) and the BIC (as an approximation for the Bayes 183 

Factor) (44), gaining widespread usage by Bayesian statisticians. Each side took the model 184 

selection one step further with a subtle refinement, where rather than choosing a single model, 185 

we average our result across the best-fitting models, either through AIC or Bayesian model-186 

averaging methods (45). 187 

Interestingly, Goodman did not seem too keen on model selection methods. He 188 

identified model selection as a legitimate source of uncertainty, but to deal with it he 189 

advocated the use of flexible models that, when fit to data, could encompass a wide variety of 190 

realities(41). He acknowledged however, that such an approach comes at the cost of increasing 191 

parameter uncertainty (i.e., the model uncertainty is folded into the parameter uncertainty 192 

when a flexible model is used that increases the scope or number of parameters). He felt that 193 

this was an acceptable cost, and perhaps was preferable, because all uncertainty continued to 194 

be incorporated (though potentially misallocated) and could be propagated through to the 195 
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results and did not necessitate procedures external to the primary model(41).  This point of view 196 

is at odds with much of the mainstream of recent ecological analysis methods, but perhaps 197 

speaks to his view that if you worked from first principles in a correct and thorough way, then 198 

applied a “rich enough model”, you would get the correct answer, including a full 199 

characterization of uncertainty, and thus implicitly have no need for model selection. 200 

Besides the developments in statistical methodology, there was also a related 201 

philosophical development in how we view ecological models. Perhaps the best way to view 202 

this is by looking at models that extrapolate into the future, such as PVA models. Do we assume 203 

that the world will stay the same as it is now, or do we allow for the possibility that the world 204 

may change, and with it, some of the basic assumptions that go into our models?  For example, 205 

do we assume that carrying capacity in a projection model is constant, or do we allow for a 206 

future change in carrying capacity?  These types of questions have become increasingly 207 

important as we struggle to deal with issues such as climate change in our models. Goodman 208 

strongly opposed using PVA simply “to replay the recent past as a stochastic simulation” (26). He 209 

argued that the observed past is only a sample of potential environmental variability and that 210 

blind extrapolation of past trends related to human impact, as one example, may not be 211 

justified. Issues of uncertainty related to future conditions are extremely difficult to deal with, 212 

but it is in these types of uncertainties where Goodman’s advocacy for the full incorporation of 213 

uncertainty strikes the starkest contrast to other approaches. He did not simply pay lip service 214 

to uncertainty as a “qualitative pejorative”, but insisted that all uncertainty be quantified 215 

including the future unknown (41).  While not yet regularly employed in PVA, some researchers 216 
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are beginning to address both subtle and severe uncertainty related to process ambiguity, rare 217 

events, or future unknowns (but not always in a Bayesian context)(23, 46-50, 31). 218 

3.3 Apply the true probability distribution to decisions 219 

So how does one accomplish the goal of quantifying all the uncertainty and using all the 220 

data, and how does that lead to Goodman’s third principle of calculating a true probability 221 

distribution and using that distribution directly in decision-making?  The short answer, in 222 

Goodman’s view, is to be a Bayesian with data. Bayesian methods require the use of a 223 

probability distribution (the “prior”) for the parameter that is specified a priori (essentially, 224 

before the data are used). According to Goodman, this prior probability distribution must 225 

contain a full characterization of the uncertainty and knowledge we have about the parameter 226 

prior to our analysis. By combining this prior that quantifies our full state of ignorance and 227 

information about the parameters with a flexible model that incorporates the uncertainty in 228 

the model structure, then bringing in the data via the likelihood function, Goodman argued that 229 

all relevant information and uncertainty can be analyzed in a single synthetic framework. Using 230 

this Bayesian approach, the mathematical combination of the prior and the data (via the 231 

likelihood) results in a posterior distribution that can be directly interpreted as a probability 232 

distribution for the parameter. Importantly, you can also directly and easily calculate a 233 

probability distribution for any function of the parameters. This is very different than what you 234 

get from a classical frequentist analysis, which results in a point estimate, and possibly, 235 

confidence intervals around the point estimate. 236 

Numerical computation developments such as MCMC can be applied to either 237 

maximum likelihood estimation or Bayesian statistics, so to a certain extent the ability to more 238 
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fully incorporate uncertainty has happened across all types of statistics, not just in the Bayesian 239 

paradigm.  From a technical point of view, there is one significant advantage of Bayesian 240 

methods – we can use hierarchical models, such as random effects models, which is not 241 

possible in frequentist statistics without using ad hoc estimation methods (51).  This can be a 242 

major advantage, and this one feature has led many scientists to adopt the use of Bayesian 243 

methods.  For other situations, the reasons to use Bayesian methods versus other methods is 244 

more philosophical, both in how the data are used, and in the presentation and interpretation 245 

of the results. 246 

The difference in interpretation between a Bayesian analysis and frequentist analysis 247 

becomes substantial when a stochastic model is used, such as in a PVA.  Regardless of the 248 

statistical framework, any stochastic model will yield a distribution for the probability of the 249 

event of interest simply due to the stochastic processes in the model. So even if all the PVA 250 

parameters are fixed at a single value, as in the frequentist paradigm, the result will be a 251 

distribution for the probability of extinction, i.e., there might be some probability the 252 

population goes extinct in 50 years as well as some probability the population goes extinct in 253 

100 years. Using this type of frequentist approach, if you change the values of the fixed 254 

parameters, you will get a different distribution of extinction times.  In contrast, a Bayesian 255 

analysis will give you a single distribution for the probability of extinction that integrates across 256 

all possible values of the parameters, and from which you can obtain a probability of extinction 257 

in 100 years or 50 years, or 2 years. 258 

Your uncertainty in the Bayesian result (posterior distribution) is a seamless 259 

combination of the stochastic processes in the model as well as your uncertainty in the correct 260 
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values of the parameters (process uncertainty). This can be viewed as folding two different 261 

interpretations of probability into a single distribution, where the stochastic processes of the 262 

model are truly uncertain (like the roll of a die) but the uncertainty in the values of the 263 

parameters are based just on our inability to know what their true values are.  All Bayesians 264 

accept that both kinds of uncertainty can contribute to the final summary of uncertainty, and 265 

Goodman explicitly agreed with this concept of incorporating both sources of uncertainty into a 266 

predictive distribution for the quantity of interest(41).   However, not everyone agrees on an 267 

interpretation of what the posterior distribution means. Goodman discusses this in one 268 

paper(26), where he notes that one Bayesian interpretation of a probability distribution is that it 269 

represents subjective belief – this concept arises when one interprets the prior distribution as 270 

summarizing one’s subjective belief about what the value of the parameter is, before the data. 271 

Goodman explicitly rejected this interpretation, and instead argued that the prior distribution 272 

should be based on empirical information, including auxiliary data relevant to your case, or 273 

even comparative data from a family of similar cases. With such data-based prior distributions, 274 

Goodman argued that the posterior distribution represented an actual probability distribution 275 

for what the value of the parameter could be, and that it was not subjective: 276 

“This program of sequential application of Bayes’ formula to combine different 277 

kinds of available case-specific data, and available comparative data, allows use 278 

of the mathematical machinery of Bayesian statistics, without running aground 279 

on the rocks of subjective probability.”(26) 280 

This focus on making the prior distribution empirical led Goodman to perhaps think 281 

more deeply about the construction of prior distributions than others have, and it can be 282 
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argued this was one of his main contributions to ecological risk assessment and Bayesian 283 

statistics. In fact, he devoted an entire paper to the subject titled “Taking the prior seriously: 284 

Bayesian analysis without subjective probability.”(52)  In that paper he discusses the details of 285 

basing a prior distribution on comparative data from other cases, and how to use hierarchical 286 

Bayesian modeling to create such priors.  In another paper, he continued this theme and 287 

explicitly described how PVAs should be based on hierarchical Bayesian methods, with 288 

empirical priors established from suites of populations.(27)   He also reiterated that using such 289 

methods results in the correct answer, meaning the posterior distribution for the probability of 290 

extinction represents an absolute probability of extinction, not a relative probability of 291 

extinction. To make this point clear, he notes that if one had 100 different populations for 292 

which you had calculated a 3% probability of extinction in 100 years, your expectation would be 293 

that three of the populations would actually go extinct in 100 years.(27)  294 

These core principles Goodman was applying to ecological decisions, and PVAs in 295 

particular, directly addressed two of the core debates in the PVA literature which are related: 296 

(1) Are PVAs useful, and (2) can PVAs provide an absolute probability of extinction?  PVAs often 297 

(necessarily) require one to make several assumptions about the dynamics of small 298 

populations, for which few data are available.  Early on in the development and assessment of 299 

PVA models it was noted that relatively small differences in inputs could lead to large 300 

differences in the results(53), and it was argued that PVAs are potentially unreliable.(54, 10)  Others 301 

noted the precision of PVAs were unlikely to be sufficient to make PVAs useful.(11, 13, 14)    The 302 

interpretation of the probability of extinction as absolute versus relative has also been one of 303 

the core debates of the PVA field. In a seminal paper in the field, Beissinger and Westphal(12) 304 
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argue PVAs are unreliable for a variety of reasons, such as difficulties in estimating variance and 305 

not capturing environmental trends and fluctuations properly.  They recommended that PVAs 306 

should only be used as relative estimates of extinction risk, such as for weighing management 307 

alternatives to reduce extinction risk.  In contrast, Goodman firmly believed that the sequence 308 

of conditioning on all the data, incorporating all sources of uncertainty, and forming a 309 

probability distribution for the parameter of interest was the correct way to use science to 310 

make ecological decisions. 311 

“Such analyses provide the best legitimate inference that can be extracted from 312 

the available information. The inference is best in the sense that the distribution 313 

is true, and the distribution is as narrow as can be achieved with the 314 

information.”(41) 315 

Goodman was not alone in his beliefs. It is not that scientists who believe PVAs are 316 

useful do not understand these important issues of the precision of the results, the influence of 317 

small changes in inputs, or the possible reliance on untested assumptions or inadequate data. 318 

Instead, they (and we) argue there is no better summation of what is known about extinction 319 

risk for a species than a properly done PVA, and if there is a lot of uncertainty in the answer, 320 

this is an accurate assessment of the state of our knowledge, and decision-makers need to fully 321 

take account of this, i.e., it is part of the risk. PVA advocates also point out that the alternatives, 322 

such as using proxies for extinction risk (e.g., small population size and/or declining trend) or 323 

qualitatively assessing extinction risk, are worse(55) and represent less rigorous and quantitative 324 

uses of the same data that are input into the PVA. This view is perhaps most eloquently 325 

expressed by Brook et al.(17), in response to the widely held view that in circumstances where 326 
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data are sparse or of low quality PVAs have little useful predictive value and should be 327 

dispensed with in favor of “alternative methods”:  328 

“The trouble is that none of these authors have specified why these alternatives 329 

would be superior to PVA. It is our view that even when PVAs perform poorly 330 

against some vaguely defined absolute standard, they still perform better than 331 

alternatives that are even more vague, are less able to deal with uncertainty, are 332 

considerably less transparent in their reliability, and do not use all the available 333 

information.”(17) 334 

It is interesting to point out that one of the best arguments in support of this view that PVAs 335 

are the correct and best tool to use for making decisions about extinction risk has come from 336 

empirical tests, where it has been shown through the use of retrospective analysis of case 337 

studies that predictions of PVAs can be reliable.(24, 56)  338 

4. PRINCIPLES IN PRACTICE: STELLER SEA LION PVA 339 

In 2002 Dr. Goodman was contracted by the Steller sea lion (SSL) recovery team headed 340 

by Dr. Bob Small to develop a PVA for the SSL populations, the western portion of which had 341 

declined by more than 80% and was listed as endangered under the Endangered Species Act. 342 

The recovery team was tasked with revising the original recovery plan that had been developed 343 

in 1992, and to devise new recovery criteria. The intention of the recovery team was to use the 344 

results of Goodman’s PVA to develop these revised recovery criteria.  345 

Given the principles that Goodman espoused in his writing, it is worth examining 346 

whether he was able to put those principles into practice while developing the SSL PVA. The 347 

information we present below draws heavily from the Steller sea lion recovery plan containing 348 
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Goodman’s final PVA report as an appendix(57), but also from personal communications with 349 

Bob Small, discussions with Goodman, and Goodman’s personal files. Overall we found that he 350 

applied his general principles but not always in the idealized way he had proposed. 351 

4.1 Background  352 

To understand Goodman’s approach to developing the SSL PVA, it is helpful to have 353 

some background. Despite millions of dollars spent and years of research, no clear picture of 354 

the reasons and mechanisms for the steep declines in the western SSL population has 355 

emerged(58). The working hypothesis is that several factors have contributed, possibly including 356 

large natural ecosystem fluctuation; competition with fisheries; direct mortality via shooting, 357 

subsistence harvest, and incidental catch; and ecosystem-level changes that may have 358 

increased predation pressures. To what degree each of these may have contributed is still far 359 

from being understood. The listing of the species under the ESA and subsequent fishing 360 

regulations have addressed (to an uncertain degree) some of the potential human impacts, but 361 

continued declines in some parts of the SSL range indicate that a full understanding of the 362 

threats and causes of the declines is still elusive. However, to model future dynamics of the SSL 363 

population, as necessary in a PVA, understanding the historic dynamics of the population and 364 

potential future threats is critical.  365 

It was in this context that Goodman began work on the SSL PVA. Consistent with the 366 

principles outlined above, his aim was to develop a Bayesian PVA within a decision theory 367 

framework. His strategy was to take the descriptive narrative that the recovery team developed 368 

for the recovery plan, including the historic declines, the current threats, uncertainty about 369 

unexplained dynamics, and the recovery team’s definition of a recovered population, and turn 370 
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them into a synthetic quantitative model that would be logically consistent with respect to the 371 

empirical data, the policy determinations and expert opinion provided by the recovery team, 372 

and the uncertainty inherent in the system and process. Using this approach, he hoped to not 373 

only provide internal coherence between the PVA, the recovery plan narrative, and the 374 

recovery criteria, but also transparency and reduced ambiguity in the recovery plan and criteria 375 

to render them technically and legally defensible under the ESA. 376 

4.2 PVA Model Development: Principles vs. Reality  377 

Some of the first decisions Goodman asked the PVA subgroup of the recovery team to 378 

make were about policy elements that are not defined precisely in the ESA. First they defined in 379 

quantitative terms the extinction risk level that defined the boundary between endangered and 380 

threatened. In other words Goodman asked the subgroup to make a policy judgment that 381 

quantified the ESA’s threshold of “in danger of extinction”. The subgroup opted for <1% 382 

extinction risk in 100 years, a value recommended by some (59) and used in other recovery plans 383 

(25). Second, Goodman asked the subgroup to more precisely define whether “extinction” meant 384 

absolute extinction (zero animals left), or some version of functional- or quasi-extinction.  The 385 

subgroup decided to use a quasi-extinction level defined by a genetically effective population 386 

size (60) of 1,000. In this way, Goodman clearly isolated the policy questions from the modeling 387 

questions. 388 

Once the policy questions were settled, Goodman began the process of building the 389 

PVA.  Based on his personal files and descriptions of his interactions with the SSL recovery team 390 

and its PVA subgroup, Goodman spent a great deal of time and energy attempting to 391 

understand what was known and what was unknown about SSL demographics and history. 392 
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Much work went into analyses that occurred prior to the actual development of the PVA model. 393 

For example, he clearly labored over if and how to incorporate density dependence in his 394 

model, and he used an appendix to his report to demonstrate through supplemental modeling 395 

why density dependence could be excluded from his final PVA model.  Similarly, he took great 396 

pains in understanding what data were available to quantify the impact of various human-397 

caused factors on historic SSL dynamics. This was essential for understanding and modeling the 398 

population’s natural population fluctuations in the absence of these threats. Through extensive 399 

pre-model explorations, Goodman identified what he thought were the relevant data and 400 

included them in his model. Many other data related to SSL demographics exist, so clearly 401 

Goodman did not use all of the available data but made decisions about what data were 402 

necessary for the most defensible PVA and what data were most relevant to the question of 403 

recovery criteria. 404 

The complexity and uncertainty surrounding the SSL decline made it a particularly 405 

vexing problem that required unique modeling approaches. Perhaps in part because of the 406 

unconventional approach, Goodman did not apply Bayesian estimation procedures and full 407 

characterizations of uncertainty to all aspects of the problem, only to the estimation of the 408 

mean and variance of the population’s overall growth rate distribution. For example, Goodman 409 

attempted to elicit a range for the estimates of known sources of human-caused SSL mortality 410 

(external factors) used to adjust the net (or realized) growth rates (Fig. 1), but the PVA 411 

subgroup was unable to find data to support more than minimum estimates. Because of this 412 

lack of full quantification of uncertainty, Goodman suggested in his PVA report that the 413 

uncertainty in the full impact of external factors “must be borne in mind when interpreting the 414 
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results” of the his model (57).  Obviously this falls short of a full quantitative rendering of all 415 

sources of uncertainty. 416 

  Goodman also used conventional vague priors for the Bayesian portion of his model. 417 

Since he did not explain his decision to do so, we are left to guess at his reasoning. Pragmatic 418 

considerations likely determined the decision, whether it was time limitations or data 419 

limitations or both. Regardless of the reason, the vague priors yielded posterior distributions 420 

carrying the maximal uncertainty present in the data and reflects a more pragmatic approach 421 

than is present in Goodman’s philosophical writing. 422 

Goodman did incorporate some level of model uncertainty in his approach to dealing 423 

with the unexplained dynamics that have impacted the western SSL population historically and 424 

how they might impact the population in the future.  To deal with this aspect of uncertainty, 425 

following development of his model, Goodman conceived of three alternative hypotheses 426 

about how future SSL growth rates would operate. He asked the PVA subgroup to provide an 427 

estimate, based on expert opinion, of the probability that his PVA model assumptions were 428 

correct versus the three alternative hypotheses. If formalized into alternative PVA models, all 429 

three alternative hypotheses would result in 0% probability of extinction in 100 years under any 430 

conceivable management scenario. Thus, Goodman used the PVA subgroup’s expert opinion 431 

regarding the probability of his “base” model being correct to perform a sort of model 432 

averaging. His approach was unconventional compared to other model selection approaches, 433 

but it was consistent with his principle of considering all the relevant information and 434 

uncertainty and was also consistent with the principle of using PVA and structured decision-435 
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making to help make explicit all the assumptions that go into a decision and the models used to 436 

aid in that decision. 437 

Due to the Bayesian nature of the PVA analysis the joint posterior distribution on the 438 

mean and standard deviation of the population growth rate reflected the parameter 439 

uncertainty from the vague priors and the process uncertainty from the underlying growth rate 440 

estimates.  The subsequent use of the joint posterior distribution in the prospective analysis 441 

aimed at estimating the SSL population’s future prospects thus ensured that the parameter 442 

uncertainty was propagated through the analysis as advocated by Goodman in his philosophical 443 

writings. Likewise, the derived distribution of time to extinction embodied both parameter and 444 

process uncertainty. Given the large range in estimated natural growth rates and the vague 445 

priors, the uncertainty reflected in the joint posterior distribution was large, resulting in a wide 446 

distribution for the estimated time to extinction (Fig. 2). 447 

When model results show a high degree of uncertainty (wide spread), as they did in this 448 

case, it is instinctual for both modelers and managers to want to reassess the model to see if 449 

the results can be narrowed to arrive at a more precise answer. Consistent with his principles, 450 

however, Goodman set the stage early in the process to ensure that such tinkering with the 451 

model to get a “better” answer would not occur. Asking the recovery team to decide upon the 452 

policy questions prior to model development was one way he did this; another was extensive 453 

communication with the recovery team throughout and following model development. Based 454 

on the data and expert opinion he elicited from the PVA subgroup and his rigorous analyses 455 

(including pre-model and post-model explorations) Goodman believed that the results from his 456 

PVA model were the most accurate estimates that could be obtained from the available data 457 
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and that they appropriately reflected the high degree of uncertainty in both the historical 458 

dynamics of the population and its future prospects. With these “correct” PVA results in hand, 459 

Goodman spent a considerable amount of time in writing and in meetings explaining how the 460 

results could be used to arrive at recovery criteria that appropriately reflected those results. He 461 

also laid out a long-term plan for continuing to update the PVA as more data became available 462 

to potentially reduce the uncertainty in the model and reduce the estimated time to recovery. 463 

The recovery team used Goodman’s PVA results to formulate recovery criteria for the 464 

SSL western DPS, but because of the wide posterior distribution from Goodman’s PVA, the 465 

timeframe for recovery was far into the future. As Goodman argued, this was the “correct” 466 

estimate of the time to recovery given the information available at the time the PVA was 467 

developed.  However, since the National Marine Fisheries Service has ultimate say in what 468 

appears in the final recovery plan, prior to its final publication, the recovery criteria developed 469 

from Goodman’s PVA were replaced with criteria based on what was called a “weight of 470 

evidence” approach. The final recovery criteria required lower population sizes and shorter 471 

time frames for recovery than those developed from Goodman’s PVA. 472 

5. SUMMARY AND CONCLUSIONS 473 

Dr. Goodman championed three main principles for achieving transparent and 474 

scientifically based ecological decision making: using all available data, exhaustively quantifying 475 

uncertainties, and using a synthetic analysis to arrive at a result, complete with uncertainty, 476 

that can be used directly in the decision-making process.  Mechanistically, Goodman believed 477 

that the best way to adhere to these principles in the context of species management was to 478 

use Bayesian PVA and structured decision-making.  The Bayesian aspect is necessary because 479 
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additional information and quantifications of uncertainty can be encapsulated in the prior, and 480 

the mechanisms of Bayesian analysis propagates that information and uncertainty through to 481 

the result in a statistically valid manner.  The PVA portion is important because it can synthesize 482 

multiple sources of information and translate the available data and uncertainties into the 483 

common currency of extinction risk. In combination, a Bayesian PVA will result in a synthetic 484 

assessment of all information and uncertainty in the form of a legitimate probability 485 

distribution of the estimated risk of extinction, which can be used directly in a structured 486 

decision-making framework. 487 

While we strongly support the principles Goodman laid out, we sometimes struggle with 488 

whether we can achieve the ideal that he specified. Our own experience, as well as Goodman’s 489 

SSL PVA example, demonstrates that the path is not an easy one, nor are all aspects operational 490 

in all situations. For example, Goodman found it difficult, or at least too time-consuming, to 491 

fully implement empirically-based prior distributions for the SSL PVA parameters, and we 492 

suspect this may often be the case. However, using a fully Bayesian synthetic model that uses 493 

all the direct data should be obtainable in most situations.  494 

We have also found that rigorous implementation of structured decision-making within 495 

the wildlife-management agencies can be very difficult. This difficulty stems in large part from 496 

the structure of wildlife management agencies and the separation between scientists and the 497 

upper-level managers who ultimately make the decisions. It is appropriate, in our view, to have 498 

this separation between the science and the decision-making management side. However, it 499 

can cause an issue whenever scientific methods such as PVA appear to automate the decision. 500 

From the managers’ perspective, this can be seen as moving the management decision 501 

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1583v1 | CC-BY 4.0 Open Access | rec: 12 Dec 2015, publ: 12 Dec 2015



25 
 

(inappropriately) to the science side. In reality, scientific models such as PVA, require both 502 

policy determinations (e.g., should “endangered” be defined as having an extinction risk of 5% 503 

in 100 years or 1% in 200 years or…) as well as scientific determinations (e.g., what kind of 504 

demographic model should be used and should it include density dependence). Other model 505 

inputs may also require a combination of scientific data and best guesses that will require input 506 

from both scientists and managers (e.g., to what degree will human activities impact future 507 

populations).  Scientific models should therefore not be viewed purely as scientific endeavors 508 

but as collaborative efforts between decision-makers and scientists.   509 

In Goodman’s SSL PVA example, he was able to achieve buy-in from the scientific PVA 510 

sub-group, and eventually the entire SSL recovery team, through extensive communication and 511 

education about statistical fundamentals and the process and logic he used to develop his 512 

model.  He also clearly outlined which aspects of the model were policy questions to be 513 

answered by the team, which aspects were expert opinion, and which aspects were purely 514 

scientific questions to be resolved by data.  His work in this area provided an excellent 515 

foundation and justification for the scientific analyses that were performed as well as an 516 

example of how good communication can bring about consensus on model inputs. However, 517 

once the draft recovery plan was submitted to agency decision-makers and reviewed by others 518 

outside the recovery team, the buy-in from the recovery team held little currency. So unless the 519 

management context is relatively uncontroversial or communication and buy-in can be 520 

achieved throughout all levels of management so that the final decision-makers have input into 521 

policy relevant aspects of the model, then the rigorous application of a structured decision 522 

making process is likely not fully achievable.  523 
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So are we to throw up our hands in despair?  We do not think so.  We believe that the 524 

three principles and the tools to achieve them should be used to the maximum extent 525 

practicable, with the understanding that, at times, pragmatism may have to win out (e.g., fully 526 

empirically based Bayesian priors may not be achievable), but that the principles can be 527 

followed in spirit if not always to the letter.  We believe that this is what Goodman did in his SSL 528 

PVA.  Following these principles will, at the least, render the science portion of the process fully 529 

transparent and documented for all stakeholders. Beyond the science, communication between 530 

scientists and managers is clearly a critical component of the process as is clarity on all sides 531 

about which aspects of model-building are policy determinations and which are scientific 532 

questions. We also believe, as Goodman did, that the road to better ecological decision-making 533 

is a long one that will require incremental progress.  Perhaps Goodman’s principles provide us 534 

with a picture of the ideal scenario toward which we should strive. 535 

 536 
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FIGURES  679 

Figure 1.  Figure from Dr. Goodman’s PVA report in the appendix of the Steller sea lion revised 680 

recovery plan(57). The circles represent the six Steller sea lion western DPS census estimates 681 

plotted against year. The heavy line connecting the census estimates represents the trajectory 682 

corresponding to constant exponential growth within each interval. The thin line represents a 683 

projection of a population initiated at the observed population size in 1958, and growing 684 

subsequently according to the calculated underlying growth rates for each respective period 685 

representing what would have happened, in the absence of density dependence, if, from 1958 686 

on, the population had been released from the extraneous influences attributable to human 687 

activities as estimated by the PVA subgroup.  688 
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 689 
Figure 2.  Figures from Dr. Goodman’s PVA report in the appendix of the Steller sea lion revised 690 

recovery plan(57).  A) The results of Dr. Goodman’s PVA estimating the Bayesian posterior 691 

A. 

B. 
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distribution for the time to quasi-extinction for the Steller sea lion western DPS. B) Dr. 692 

Goodman’s PVA results displayed as the cumulative probability of extinction plotted against 693 

years. 694 
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