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Abstract

Background: Glioblastoma multiforme (GBM) is a grade 1V brain tumor that arises from star-
shaped glial cells supporting neural cells called astrocytes. The survival of GBM patients
remains poor despite many specific molecular targets that have been developed and used for
therapy. Tousled-like kinase 1 (TLKZ1), a serine-threonine kinase, was identified to be
overexpressed in cancers such as GBM. TLK1 plays an important role in controlling
chromosomal aggregation, cell survival and proliferation. In vitro studies suggested that TLK1
is a potential target for some cancers; hence, the identification of suitable molecular inhibitors
for TLK1 is warranted as a new therapeutic agents in GBM. To date, there is no structure
available for TLK1. In this study, we aimed to create a homology model of TLK1 and to
identify suitable molecular inhibitors or compounds that are likely to bind and inhibit TLK1
activity via in silico high-throughput virtual screening (HTVS) protein-ligand docking.
Methods: 3D homology models of TLK1 were derived from various servers including
HOmology ModellER, i-Tasser, Psipred and Swiss Model. All models were evaluated using
Swiss Model Q-Mean server. Only one model was selected for further analysis. Further
validation was performed using PDBsum, 3d2go, ProSA, Procheck analysis and ERRAT.
Energy minimization was performed using YASARA energy minimization server.
Subsequently, HTVS was performed using Molegro Virtual Docker 6.0 and candidate ligands
from ligand.info database. Ligand-docking procedures were analyzed at the putative catalytic
site of TLK1. Drug-like molecules were filtered using FAF-Drugs3, which is an ADME-Tox
filtering program. Results and conclusion: High quality homology models were obtained from
the Aurora B kinase (PDB ID:4B8M) derived from Xenopus levias structure that share 33%
sequence identity to TLK1. From the HTVS ligand-docking, two compounds were identified
to be the potential inhibitors as it did not violate the Lipinski rule of five and the CNS-based

filter as a potential drug-like molecule for GBM.
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Background

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. It is also
classified as grade IV glioma which arises from the lineage of star-shaped glial cells known as
astrocytes. The survival rate is very poor where only 15% of patients survived more than 24
months due to disease aggressiveness and heterogeneity of the disease (Ohgaki, & Kleihues
2007; Ohgaki et al. 2004). Although several molecular inhibitors have been developed to target
aberrantly expressed enzymes and proteins, the results have been very frustrating (Li, & Tu
2015; Piccirillo et al. 2015). Factors contributing to resistant of GBM cells include deregulation
of key signalling pathways, namely PTEN, TP53, RB and PI3K-Akt (Ohgaki, & Kleihues 2011;
Smith et al. 2001), increased in the expression of anti-apoptotic proteins BCL2 and survivin
(Guvenc et al. 2013; Ruano et al. 2008), iterative perivascular growth within the highly
vascularized brain (Baker et al. 2014), and presence of 30-65% constitutively active EGFRvIII
mutant in GBM which secretes higher levels of invasion-promoting proteins (Sangar et al.
2014). Studies have revealed that Tousled-like kinase 1 (TLK1) is overexpressed in breast
cancer (Wolfort et al. 2006), prostate cancer (Ronald et al. 2011), and cholangiocarcinoma
(Takayama et al. 2010). In our previous study, we proved that TLK1 is overexpressed in GBM
and silencing of TLK1 results in a significant decrease in invasion, migration and GBM cells

survival (Ibrahim et al. 2013).

Human TLK1 contains 766 amino acids and is one of the members of the Tousled-like kinase
family consisting of TLK1 and TLK2 (Pruitt et al. 2012). The gene is mapped on chromosome
2031.1 and encoded by 25 exons. TLK1 share 85% sequence identity to TLK2, and both share
~50% sequence identity with Arabidopsis thaliana where Tousled-like kinase family was
initially identified (Takahata, Yu & Stillman 2009). This serine-threonine kinase is an

important signalling regulator mainly involved in the cell cycle regulation, cellular mitosis, cell
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survival, and proliferation (Sunavala-Dossabhoy, & De Benedetti 2009). In general, the N-
terminal domain of Tousled-like kinase is well conserved to include three potential nuclear
localization sequences and three putative coiled-coil regions, while the C-terminus region
contains the catalytic ATP-binding domain at the region that consists of 456 to 734 amino acid
residues. The active binding site is located within the protein kinase domain sequence (Silljé
etal. 1999). This ~90 kDa kinase is activated by the CHK1/ATM DNA damage pathway (Groth
et al. 2003). TLK1 interacts with its substrates, namely Asf1, histone H3 (Carrera et al. 2003),
and Rad9 (Sunavala-Dossabhoy, & De Benedetti 2009) to activate DNA damage and DNA
repair activity (De Benedetti 2012). It was suggested that when overexpressed, TLK1 is
involved in radioprotection and chemo-resistance of cancer cells (Y. Li et al. 2001; Ronald et
al. 2011). Unfortunately, the structure of TLK1 has not been elucidated and this hinders the
full understanding of TLK1 biological processes. Nonetheless, the X-ray diffraction data for
the kinase domain of human TLK1 family member TLK2 have been recently reported which
may shed a light on structural understanding of human Tousled-like kinase (Garrote et al.
2014). No structure is yet available for both TLK1 and TLK2, hence, we perform a homology
modelling study of TLK1 structure to understand its function in orchestrating cellular functions
particularly in cancer pathways. In this study, we present a structural homology model of the
TLK1 catalytic binding domain which may serve as a potential target for molecular inhibitors.
We then used the proposed structure to identify potential inhibitors for TLK1 by utilising in
silico ligand-docking with high throughput virtual screening (HTVS) targeting more than

16,000 candidate compounds.
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Materials and methods

Template identification and homology modelling

The amino acid sequence of human TLK1 was retrieved from UniProt with the accession
number: QOUKI8 (http://www.uniprot.org/).The TLK1 FASTA format amino acid sequence
was downloaded into the BLASTP and PSI-BLAST search (http://blast.ncbi.nlm.nih.gov/) in
order to identify the homologous proteins. An appropriate template for TLK1 was identified
based on the e-value and sequence identity ranging from 30% to 33% at the protein kinase
domain indicating similarity of structure and function. The template and the target sequences
were later aligned using the Clustal Omega program
(http://www.ebi.ac.uk/Tools/msa/clustalo/). Subsequently, homology modelling was carried
out against the chosen template using HOmology ModellER (Tosatto 2005), I-Tasser (Zhang

2009), and PsiPred (Buchan et al. 2010).

Homology models quality estimation

The model quality estimation was performed using the Swiss-Model Qualitative Model Energy
Analysis (Q-Mean) Server based on the composite scoring function, which derives a quality
estimation on the basis of the geometrical analysis of single models (Benkert, Biasini &
Schwede 2011). It also describes the major geometrical aspects of the protein structures. Five
different structural descriptors were used. The local geometry was analyzed using the torsion
angle potential function over three consecutive amino acids. A secondary structure-specific
distance-dependent pairwise residue-level potential was used to assess long-range interactions.
A solvation potential describes the burial status of the residues. Two simple terms describing
the agreement of predicted and calculated secondary structure and solvent accessibility, were

also included. In comparison with other protein structure evaluation servers, the QMEAN
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shows a statistically significant improvement over nearly all quality measures describing the
ability of the scoring function to identify the native structure and to discriminate good from
bad models (Benkert, Tosatto & Schomburg 2008). 3D structure was then visualized using
PyMol software (The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrodinger,

LLC).

Validation of modelled structure

The best homology model created was used for further investigation. We used the latest version
of PDBsum (http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/) which provides further
information on protein function prediction, structural topology, PROCHECK and cleft
analysis. We also used ProSA which displays scores and energy plots that highlight potential
problems spotted in protein structures (Wiederstein, & Sippl 2007). Prediction of the protein
structure function was performed using proteo-genomic analysis software 3d2go
(http://www.sbg.bio.ic.ac.uk/phyre/pfd/html/help.html). This allowed full structural scan of
the protein structure made against the Structural Classification of Proteins (SCOP) database
using a modified version of BLAST (Tung, Huang & Yang 2007). Energy minimization was

performed on YASARA server (http://www.yasara.org/minimizationserver.php).

High throughput in silico ligand-docking analysis

In silico ligand-docking analysis was performed using Molegro Virtual Docker (MVD version
2013.6.0) to predict protein-ligand interactions. The potential binding sites of selected proteins
and candidate small molecules were characterized by the molecular docking algorithm called
MolDock which was derived from “Piecewise Linear Potential (Sundarapandian et al. 2010).

The MolDock score refers to the approximate binding energies between protein and ligand
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which is usually expressed in kcal/mol. This software handles all aspects of the docking
process from the preparation of the molecules to determine the potential binding site of the
target protein, and the predicted binding modes of the ligand. Interestingly, MVD has been
shown to provide higher accuracy compared with the other commercially available docking
softwares e.g. Glide, Surflex and FlexX (Sivaprakasam, Tosso & Doerksen 2009). Docking
requires five steps; importing molecules, importing ligands, molecular preparation, creating

template and docking.

Candidate ligands for ligand-docking screening were downloaded from Ligand.Info
(http://ligand.info/) which compiles various publicly available databases of small molecules
and compounds from ChemBank, KEGG, ChemPDB, Drug-likeness NCI subset and non-
annotated NCI subset (von Grotthuss, Pas & Rychlewski 2003). We downloaded a total of
16,358 sdf. format small molecules from KEGG ligands (10,005), ChemBank (2,344) and
ChemPDB (4,009) for high throughput screening of potential inhibitors for TLK1. Due to the
large number of candidate KEGG ligands, we filtered out some of these compounds based on
the relevancy to the present TLK1 3D model using Findsite server (Brylinski, & Skolnick 2008)
as a pre-molecular docking step. After filtering these ligands, only 1,386 KEGG ligands were
selected for further investigation. Most of the ligands in the database as well as the homology
model or molecule did not have correct bond orders and bond angles. Hence, full optimization
of molecules and ligand preparation was performed using Molegro Virtual Docking software
default setting whereby appropriate missing hydrogen atoms were added, missing bonds were

assigned, partial charges were added if necessary and flexible torsions in ligands detected.
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Docking study was performed at the catalytic domain of TLK1. Simulation on the modelled
protein identified five cavities as potential binding sites. However, only one cavity was used
for the ligand-docking study i.e. the cavity with the largest surface area and volume of 214.528
arbitary unit within the catalytic domain sites of TLK1. The predicted sites had a grid resolution
of 0.3A and a binding site of 15A radius from the template. The Moldock optimizer was used
as a search algorithm and the number of runs was set to 10 with a maximum iteration of 1000,
scaling factor of 0.50, 0.90 cross over and a population size of 50. The maximum number of
poses generated was 5. Potential ligands were selected based on the best MolDock score value

that is less than -170.

Visualization of ligand-protein interaction

The three-dimensional and two-dimensional visualisation of ligand-protein interaction were
performed using the Maestro software package (Maestro, version 10.4, Schrédinger, LLC, New

York, NY, 2015).

In silico bioavailability study

Lead molecules identified from the high throughput ligand-docking screening were subjected
to further in silico filtering to identify those with the best values in terms of their absorption,
distribution, metabolism, excretion and toxicity (ADME-Tox). This was done using the FAF-
Drugs3 (November 2014 edition) which is a free ADME-Tox (Miteva et al. 2006) filtering tool.
This step will ensure the suitability of lead molecules based on toxicity for future in vivo
applications. We applied Lipinski’s Rule of Five (Lipinski et al. 2001) to remove some reactive
groups and compounds. We have also included the Central Nervous System (CNS) drugs

physicochemical criteria (Jeffrey, & Summerfield 2010; Pajouhesh, & Lenz 2005), which
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includes (1) molecular mass less than 450 Da, (2) partition coefficient (logP) of 0.2 -6.0, (3)
hydrogen bond donors not less than three, (4) hydrogen bond acceptors not less than five and

(5) topological surface area (tPSA) within 3-118.

Results
Homology modelling of TLK1 serine/threonine kinase

The PSI-BLAST results of TLK1 sequence QOUKI8 were analysed and we selected the protein
hits based on query coverage, similarity and identity. The model structure which was selected
showed sequence identity and similarity that ranged from 27% to 37% and a query coverage
E-value that ranged from 4e-29 to 9e-15 and covered only the protein kinase domain site (450-
756). The homology model was created based on the TLK1 protein kinase catalytic domain
sequence. We selected 40 protein sequence templates for homology modelling using various
softwares. However, only 18 models were successfully created using HOmology ModellER
and i-tasser. We evaluated all the 18 models using Q-Mean Server and identified the Aurora B
kinase structure from African clawed frog Xenopus levias (PDB ID: 4B8M) as the best
template structure for TLK1 producing a Total QMean Score of 0.68 out of 1.0 required for an
excellent homology model (Table 1). The Aurora B kinase that in complex with inner
centromere protein A (VX-680) was determined to 1.85 A resolution (PDB ID: 4B8M). Pro-
Motif analysis showed that the modelled TLK1 structure, with 270 amino acids, contains 4
beta-hairpins, 6-beta bulges, 10 strands, 14 helices, 15 helix-helix interactions, 16 beta-turns

and 3 gamma turns (Figure 1A and 1B).

The homology model of TLK1 was also assessed using ProSA Z-score. The overall Z-score

quality was -4.92 suggesting a good quality model compared with the available structure from
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NMR and X-ray (Figure 2A and 2B). Ramachandran plot obtained from PROCHECK analysis
achieved a good quality model assessment of 90.1% in the favoured region (Figure 2C). The
plot represents the psi and the phi angles of the amino acid residues. Details of the analysis plot
can be referred to Table 2. Analysis from the three dimensional structural superposition (3d-
ss) web server (Sumathi et al. 2006) showed the root mean square deviation (RMSD) between
template structure and the 3D homology model structure to be 0.543 A (Figure 2D). ERRAT
overall quality factor is 53.696% and at least more than 80% of the amino acids have scores
more than or equal to 0.2 in the 3D/1D profile. The YASARA public server for energy
minimization provided a value of 16140271100.5 kJ/mol to 143790.2 kJ/mol with a score of -

1.53 t0 -0.95.

Proteogenomic analysis

Functional analysis of the TLK1 modelled structure performed using 3d2go web server
identified the following activities with the highest confidence value of 1.0: phosphotransferase
activity alcohol group as the acceptor, protein amino acid phosphorylation, protein
serine/threonine kinase activity and nucleotide binding. Nucleus and protein binding functions
were predicted with a confidence value of 0.89. Functional prediction in cell cycle, mitosis,
phosphoinositide-mediated signalling (confidence value of 0.86), centrosome, spindle
organization, regulation of protein stability, ubiquitin protein ligase binding (confidence value
of 0.85) were all in concordance with experimental data (Kelly, & Davey 2013; Pilyugin et al.
2009). These findings were predicted to be similar with the function of human Aurora kinase2
(PDB ID: 2J4Z). Interestingly, with a confidence value of 0.79, the modelled TLK1 structure
is also predicted to be involved in insulin receptor signalling pathway and actin cytoskeleton

organization which is similar to the human PDK1 (PDB ID:1UU3). This indicates that TLK1
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could be involved in the regulation of actin filament organization particularly in controlling

cancer cell motility.

High throughput virtual ligand-docking screening

The cut-off point of the MolDock docking scoring was set at less than -170 to select ligands
that predicted to have high binding affinity to TLK1. We identified 192 lead molecules, and
ATP was the top scoring molecule in the docking procedure with a MolDock score of -193.654.
The amino acid residues that found to involve in the protein-ligand interactions were GLY 463,
ARG464, GLY465, GLY466, PHE467, SER468, GLU469, VAL470 and LYS485. The
compounds that utilized in the screening were initially not known until we have completed the
identification procedure. The results showed that ATP docked accurately within the cavity,

suggesting the robustness of the in silico experiment.

In silico pharmacokinetic analysis

The 192 compounds with the best MolDock scores were submitted to the Free ADME-Tox
filtering tool 3 (November 2014 edition) for pharmacokinetic analysis. Analysis were subjected
to the Lipinski’s Rule of Five (RO5) (Lipinski et al. 2001) and filters for CNS drugs (Jeffrey,
& Summerfield 2010; Pajouhesh, & Lenz 2005) to ensure the efficacy and safety of the
candidate compounds. The final filtering process revealed that only two compounds passed this
assessment without violating the general Lipinski’s RO5 and the CNS rule. These compounds
were identified as ID352 and ID1652 from the ChemBank database (Table 3). Their chemical
structures, ITUPAC names, the radar plot of physicochemical analysis, oral absorption
estimation data and the Pfizer 3/75 Rule Positioning plot, which estimated drug-like molecules

that are likely to cause toxicity and experimental promiscuity, are presented in Figure 3A-H.
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ID1652 is known as beraprost which is a prostacyclin analogue used in the treatment of arterial
hypertension (Galié et al. 2002). It has a better docking score, with no violation of Lipinki’s
rule of five and a low promiscuous toxicity as compared to ID352 or bepridil which is a calcium
channel blocker for anti-angina (Rae et al. 1985). Beraprost also has a better hydrogen bonding
score from the ligand-docking simulation. Results from receptor-ligand interactions (Figure 4)
revealed a common cavity for ATP, ID352 and 1D1652 binding. The residues that are involved
in the interactions include GLY465, GLY466, PHE467, SER468, VALA470, and LYS485.
These suggested that both of the two compounds bind to catalytic site of TLK1 ATP binding

pocket.

Discussion

GBM remains as the solid tumour with the poorest survival in adults since the past few decades.
The search for the right molecular target is still ongoing and one of the many approaches is by
using computer-aided drug discovery tools. Our recent in vitro study identified TLK1 as a
potential target for glioblastoma multiforme. We found TLK1 to be overexpressed and the
knockdown of TLK1 reduced cellular proliferation and invasion (Ibrahim et al. 2013). An auto-
phosphorylated chemical inhibition screen on recombinant TLK1B, which is a known splice
variant, has been performed by Ronald et al, using more than 6,000 compounds. This study
identified four inhibitors belonging to the class of phenothiazine antipsychotics that are
structurally and chemically similar. The same study also showed that thioridazine was able to
sensitize prostate cancer cells when used with doxorubixin (Ronald et al. 2013). Although
chemical library screening for drug discovery seems promising, it is very expensive and time
consuming. A study using the ChemBL database and Kinase SaRfari application identified 74

“hits” compounds that can potentially bind to TLK1 (Bento et al. 2014). However, no details
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were reported on the specific biding sites and the specific TLK1 structure that were used for
the screen. In this study we used a computational approach to identify suitable TLK1 inhibitors

based on a homology model that has been created.

The 3D structure of TLK1 is currently not available for drug design strategy, hence we used
18 PDB templates that shared 30% to 33% sequence identity, to create homology models of
TLK1. As a result, Aurora B kinase (PDB ID: 4B8M) was identified as the most suitable
homology template by the HOmology modellER server. This model allows us to perform

ligand-docking analysis to identify potential inhibitors for TLKL1.

One of the major challenges for optimal therapeutic intervention for glioblastoma and other
types of brain tumor is to achieve maximal penetration across the blood brain barrier (BBB).
The BBB is a structure composed of endothelial cells which is associated with perivascular
neurons, pericytes and astrocytic end-feet processes. The endothelial cells connected by tight
junctions form an almost impenetrable barrier to all compounds except highly lipidized small
molecules of less than 400 Da (Nathanson, & Mischel 2011). Although many studies have
identified drug-like molecules from high throughput virtual screening, most only follow the
Lipinski’s rule of five and have neglected the probability calculations for the molecules to cross
the BBB. This eventually led to dismal results in in vivo studies (Gidda et al. 1995; Pardridge
1998). We used the recent version of the free ADME-TOX software and utilized the CNS filter
to identify drug-like molecules that are able to cross the BBB. With this approach we identified
bepridil and beraprost as the two compounds which may bind specifically at the catalytic site
of TLK1 receptor protein and also fulfilled the CNS drugs selection criteria (Jeffrey, &

Summerfield 2010; Pardridge 1998). We observed that more than 80% of the interactions
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involved between ligands and receptor are hydrophobic. We have also identified other lead
compounds for TLK1 such as the imidazole-pyrrole polyamide derivatives with better binding
affinity (with Moldock Score of -208.44 to -209.34) compared to bepridil and beraprost.
Unfortunately, these compounds violated the Lipinski’s Rule of Five and have molecular

masses of more than 450 Da which are not suitable to cross the blood brain barrier.

Beraprost, an analogue to prostacyclin or PGlz, is commonly used for arterial pulmonary
hypertension and has multiple physiological effects such as endothelial vasodilation, inhibition
of platelet aggregation, leukocyte adhesion, and vascular smooth muscle cell proliferation
(Wang et al. 2011). Activation of the PGI> signalling pathway by beraprost sodium suppressed
lung cancer metastases by preventing maturation of angiogenesis (Yoshinori Minami et al.
2012). It was also reported to enhance permeability and retention (EPR) of solid tumors by
decreasing tumor blood flow by 70%, hence inhibiting tumor growth. Morever, it did not affect
normal cells and systemic blood flow (Tanaka et al. 2003). Since this compound mimics
structurally related lipid soluble hormone PGlI, it was predicted that the efficacy of the

compound will be high as it will be able to cross the BBB (Moga 2013).

Bepridil is a known sodium-calcium channel blocker that is use for anti-arrythmias. An earlier
study reported that bepridil caused tumor growth inhibition in neuroblastoma and astrocytoma
cells by causing a prolonged increase in free intracellular calcium concentration when cells
were co-treated with anti-estrogens (Yong, & Wurster 1996). Bepridil has been experimentally
found to bind to the N-domain pocket of cardiac troponin C but with negative cooperativity
(Varguhese, & Li 2011). Even though, theoretically, bepridil can cross blood brain barrier

effectively (Muehlbacher et al. 2012), our findings showed that it may have non-specific
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binding properties towards TLK1. Hence, it will be an added value if some chemical
modification can be made to increase its selectivity towards TLK1. It is worth to note that S-
bepridil was found to have a higher binding affinity towards the p53 binding domain in MDM2
(Warner et al. 2012). In order to enhance binding affinity between TLK1 receptor and these
two identified ligands, as well as preventing cross binding towards other types of receptors,
modification of current ligand structure by QSAR fragment based on pharmacophore analysis

is warranted for future study.

This study has identified potential inhibitors that binds at the catalytic site of TLK1. However,
identification of inhibitors that can bind to the non-catalytic component of a particular kinase
would also be useful as they would also play significant roles in the regulation of cellular
functions (Romano, & Kolch 2011). Further studies of TLK-ligand complex structure will
allow identification of allosteric inhibition sites to provide much specific TLK1 regulatory

inhibitory effects.

Conclusion

We have successfully created a 3D structure for the catalytic domain for TLK1 which was
predicted to be a potential molecular target for GBM. We have performed vigorous analysis to
determine the suitability and stability of the modelled structure through various quality control
platforms. We identified beraprost and bepridil as the two candidate compounds that will bind
to TLK1. These two drugs are commonly used for cardiovascular diseases. Further in vitro and
in vivo studies need to be performed to validate the therapeutic value of these compounds for

GBM.
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Figures and Tables

Table 1: Top 20 models generated from two homology modelling servers; Homology modeller

(HOMER) and i-Tasser. TLK1homerdB8M was selected as our homology model for

subsequent analysis.

C_beta All-atom Torsion Secondary Solvent Total

interaction pairwise Solvation angle structure accessibility QMEAN-
Model name energy energy energy energy  agreement  agreement score
TLK1homer4B8M -61 -5727.18 -16.37 -16.13 89.30% 79.30% 0.68
TLK1homer4FR4 -74.72 6094.74 -11.26 -17.32 85.70% 77.60% 0.648
TLK1homer4dDFX -54.53 -6539.34 -22.18 -20.69 85.90% 77.10% 0.634
TLK1homer3SOA -45.31 -5046.76 -4.80 -0.19 81.20% 78.80% 0.625
TLK1homer4M7N -89.83 -5128.66 -15.31 -0.89 80.80% 79.10% 0.617
TLK1homer4FGB -79.38 -6276.79 -16.15 -14.23 79.30% 77.50% 0.61
TLK1homer4L44m -62.07 4967.85 -8.67 -4.86 86.60% 75.60% 0.604
TLK1homer3Q5I -67.53 5211.28 -3.89 -6.1 77.20% 77.20% 0.596
TLK1homer4KIKB -46.22 -3504.47 -4.66 -7.84 74.80% 77.20% 0.585
TLK1homer3TAC -67.15 -5787.83 -12.33 5.77 81.70% 76.90% 0.582
TLK1homer1KOB -67.51 -5454.16 -17.93 10.78 80.30% 77.30% 0.566
TLK1homer2Y94 -88.61 -5646.09 -14.67 13.09 81.40% 76.30% 0.558
TLK1homer2YCF -71.96 -5698.7 -1.22 0.66 76.90% 74.40% 0.551
TLK1homer4EQC -44.07 -5230.6 -15.55 0.2 79.40% 72.60% 0.511
TLK1homer3zZDU -20.33 -3543.81 6.09 0.85 79.50% 70.90% 0.509
TLK1homer2ETR -57.27 -5573.2 -12.92 -18.61 76.30% 68.60% 0.471
TLK1homer4FIE -48.17 -4413.68 -7.96 -12.1 79.60% 78.60% 0.471
TLK1homer3i6U -75.46 -6091.17 -6.14 4.72 68.40% 70.50% 0.443
tlklmodel2itasser -211.76 -9701.51 -35.09 43.13 77.80% 65.40% 0.371
tlklmodellitasser -114.9 -6928.17 -22.73 29.02 71.00% 61.60% 0.294
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Figure 1: (A) Secondary structure of TLK1 homology model generated from Homology
Modeller server. Visualization was performed using The PyMOL Molecular Graphics System,
Version 1.5.0.4 Schrédinger, LLC.; b-sheets, alpha-helices and loops are in yellow, red and
green respectively. (B) Depiction of the amino acid residues that used in secondary structure

analysed from Pro-Motif analysis using PDBsum server.
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Figure 2: (A) ProSA shows the overall quality model of TLK1 with score of -4.92 (B) ProSA
comparison results of energy-plots for TLK1 model structure with the PDB ID: 4B8M. (C)
Ramachandran plot analysis using PROCHECK shows 90.1% of amino acids are generously
in the allowed region. (D) 3D structural superposition of Aurora B kinase (PDB ID:4B8M)

(green) and homology model of TLK1 (yellow).

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1582v2 | CC-BY 4.0 Open Access | rec: 9 Mar 2016, publ: 9 Mar 2009



398 Table 2: Ramachandran plot statistics of TLK1 homology model structure obtained from

399 PROCHECK analysis.

Parameter Value in
percentage

Most favoured region 90.1
Additional allowed region 8.7
Generously allowed region 0.4
Disallowed region 0.8
Amino acid residues accepted in the analysis 242 out of 270
G-factor average score 0.22
Main chain bond angles 0.41
Main chain bond lengths 0.62
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403

404

405

406
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407  Table 3: Lead molecules with their docking scores and amino acids interaction identified. In

408  bold, are common residues that involved in the ATP, Bepridil and Beraprost binding.

409

Lead Chemical MolDoc Rerank [H-Bond score | Amino acids involved in

molecules name k Score Score interaction

ID

352 Bepridil -170.518 -109.678 -2.5 GLY465, GLY466, PHE467,
SER468, VAL470, LY S485,
HI1S487, GLU496, TYR501,
HI1S502, H1S504, ALAS05,
TYRS509, GLU508, HIS512,
LEU523, THRS536, LEUS538,

THR606, ASP607, PHEG08S,

1652 Befaprost/  -181.124 37.981 -5.35 GLY465, GLY466, PHE467,
Beraprost SER468, VAL470, LY S485,

HI1S487, GLU496, TYR501,

HI1S502, HI1S504, ALAS05,

CYS506, TYRS509, SER528,

THRS533

*367 ATP -186.431 -49.1549  -9.386 GLY463, ARG464, GLY465,
(Control) GLY466, PHE467, SER468,

GLU469, VALA470, LYS485

410

411
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413

414

415

416

417

418

419

420

Lipinski rule of five and CNS filtering.

Table 4: Physiochemical properties of ligands from the docking study that passes ADME-TOX

Parameters 1D352 1D1652
MW 366.54 402.52
logP 5.31 4.1
logSw -4.94 -4.33
tPSA 16.91 89.52
Rotatable bonds 10 10
Rigid Bonds 17 16
Flexibility 0.37 0.38
HB Donors 0 3

HB Acceptors 3 5
HBD_HBA 3 8
Number of system ring 3 1
Max Size System Ring 6 12
Charge 1 1
Total charge 1 -1
Heavy atoms 27 29

C atoms 24 24
Heteroatoms 3 5
Ratio H/C 0.12 0.21
Lipinski violation 1 0
Solubility mg/ml 2613.49 5304.9
Solubility forecast index | Reduced solubility | Reduced solubility
Phospholipidosis Non-inducer Non-inducer
Stereocenters 1 6
iPPI No No
Status Accepted Accepted
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Figure 3: (A) and (B) Structure of identified compounds ID352; N-benzyl-N-(3-isobutoxy-2-
pyrrolidin-1-yl-propyl)aniline and 1D1652; 2,3,3a,8b-tetrahydro-2-hydroxy-1-(3-hydroxy-4-
methyl-1-octen-6-ynyl)-1H-cyclopenta(b)benzofuran-5-butanoic acid respectively. (C) and
(D) Physico-chemical profile of compounds ID352 and 1D1652, respectively. A radar plot
representing the computed compound profile blue line that should cover within the CNS filter
area in red and must be within the blue field. (E) and (F) Oral absorption estimation of ID352

and 1D1652, whereby the compound values should fall within RO5 and Veber rule area; light
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green and red area. (G) and (H) Shows oral bioavailability profile (compound blue dot should
fall within the optimal dark green and light green area and red ones being extreme zones
generally indicating low oral bioavailability). ID352 were predicted to cause toxicity compared

to ID1652 whereby dot plot falls within the green area which is less likely to cause toxicity.
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Figure 4: (A) 3D binding mode of the ligands ID1652 in the ATP binding site of the homology
modeled TLK1 protein. The docking pose between ligand 1652 and the ATP binding site of
TLK1 protein shows two backbone hydrogen bonds between the ligand and TYR501 and
GLU496. (B) 2D ligand interaction diagram showing presence of hydrophobic interactions
between the ligand and PHE467, ALA505, TRY501, CYS506 and TYR509. (C) 3D docking
pose between ligand 352 and the ATP binding site of TLK1 showing an aromatic-aromatic and
amino-aromatic interactions between the ligands and PHE467 and HIS487 respectively. There
is also a hydrogen bond between the ligand and the LY S485. (D) 2D ligand interaction diagram

showing hydrophobic interactions between the ligand and LEU523, LEU538, VALA470,
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PHE467, TYR501, TYR509, ALA505 and PHEG608. The fact that ligand 1D1652 has more
activity than ligand 353 demonstrated the importance of hydrogen bonding rather than the
aromatic-aroamtic and amino-aromatic interactions. Visualization of ligand-protein
interaction. The three-dimensional and two-dimensional visualisation of ligand-protein
interaction were performed using Maestro software package (Maestro, version 10.4,

Schrodinger, LLC, New York, NY, 2015).
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