
 

A peer-reviewed version of this preprint was published in PeerJ
on 13 September 2016.

View the peer-reviewed version (peerj.com/articles/2456), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Cordeiro JLP, Fragoso JMV, Crawshaw D, Oliveira LFB. 2016. Lowland
tapir distribution and habitat loss in South America. PeerJ 4:e2456
https://doi.org/10.7717/peerj.2456

https://doi.org/10.7717/peerj.2456
https://doi.org/10.7717/peerj.2456


Lowland tapir distribution and habitat loss in South America

Jose Luis Passos Cordeiro Corresp.,   1  ,  Jos� MV Fragoso  2  ,  Danielle Crawshaw  1  ,  Luiz Flamarion B Oliveira  3 

1 Fiocruz Mata Atl�ntica, Funda��o Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, BR
2 Department of Biology, Stanford University, Stanford, California, United States
3 Museu Nacional, Departamento de Vertebrados, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, BR

Corresponding Author: Jose Luis Passos Cordeiro

Email address: zeluis@fiocruz.br

The development of species distribution models (SDMs) can help conservation efforts by

generating potential distributions and identifying areas of high environmental suitability

for protection. Our study presents a rigorously derived distribution and habitat map for

lowland tapir in South America. We also describe the potential habitat suitability of various

geographical regions and habitat loss, inside and outside of protected areas network. Two

different SDM approaches, MAXENT and ENFA, produced relative different Habitat

Suitability Maps for the lowland tapir. While MAXENT was efficient at identifying areas as

suitable or unsuitable, it was less efficient (when compared to the results by ENFA) at

identifying the gradient of habitat suitability. MAXENT is a more multifaceted technique

that establishes more complex relationships between dependent and independent

variables. Our results demonstrate that for at least one species, the lowland tapir, the use

of a simple consensual approach (average of ENFA and MAXENT models outputs) better

reflected its current distribution patterns. The Brazilian ecoregions have the highest

habitat loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19%) of

the total area lost. The Amazon region contains the largest area under protection, and the

most extensive remaining habitat for the tapir, but also showed high levels of habitat loss

outside protected areas, which increases the importance of support for proper

management.
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14

15 ABSTRACT 

16 The development of species distribution models (SDMs) can help conservation efforts by 

17 generating potential distributions and identifying areas of high environmental suitability for 

18 protection. Our study presents a distribution and habitat map for lowland tapir in South America. 

19 We also describe the potential habitat suitability of various geographical regions and habitat loss, 

20 inside and outside of protected areas network. Two different SDM approaches, MAXENT and 

21 ENFA, produced relative different Habitat Suitability Maps for the lowland tapir. While 

22 MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient (when 

23 compared to the results by ENFA) at identifying the gradient of habitat suitability. MAXENT is 

24 a more multifaceted technique that establishes more complex relationships between dependent 

25 and independent variables. Our results demonstrate that for at least one species, the lowland 

26 tapir, the use of a simple consensual approach (average of ENFA and MAXENT models outputs) 

27 better reflected its current distribution patterns. The Brazilian ecoregions have the highest habitat 

28 loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19%) of the total area 

29 lost. The Amazon region contains the largest area under protection, and the most extensive 

30 remaining habitat for the tapir, but also showed high levels of habitat loss outside protected 

31 areas, which increases the importance of support for proper management.

32 Keywords

33 Tapirus terrestris; Species Distribution Models; ENFA; MAXENT; Conservation 

34 Planning; Protected Areas.
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36

37 INTRODUCTION

38 The lowland tapir (Tapirus terrestris) is the largest terrestrial vertebrate (autochthone) in 

39 its ecosystems. Considered a keystone species, due to its large size and biomass, and also due to 

40 its function as seed predator/disperser (Bodmer, 1991; Rodrigues, Olmos & Galetti, 1993; 

41 Fragoso, 1997; Fragoso, 2005; Taber et al., 2009; Medici, 2010). Tapirs inhabit a variety of 

42 habitats, from xeric formations such as the Gran Chaco, to tropical dry forests and wetter 

43 formations such as rain forests, gallery forest, shrub forests, savannas and grasslands (Nowak, 

44 1991; Fragoso & Huffman, 2000). These vegetation types however, are used unevenly, with 

45 tapirs exhibiting selective habitat use. For example, they seem to prefer areas with moist palm 

46 forests, and wet, or seasonally inundated areas (Brooks, Bodmer & Matola, 1997; Fragoso & 

47 Huffman, 2000; Tobler, 2008; García et al., 2012).

48 The lowland tapir (Tapirus terrestris) maintains the most extensive distribution of the 

49 four recognized extant tapir species and inhabits the subtropical to tropical zones of South 

50 America, from northern Argentina, through Brazil, Bolivia, Peru, Ecuador, Venezuela, Guyana, 

51 Suriname, French Guiana and Colombia, east of the Atrato River (Nowak, 1991; Brooks, 

52 Bodmer & Matola, 1997; Groves & Grubb, 2011; Tirira, 2007 Wallace, Ayala & Viscarra, 

53 2012). A fifth tapir species, still under discussion, was recently described (Cozzuol et al., 2013; 

54 Voss, Helgen & Jansa, 2014). 

55 Taber et al. (2009) provides the most updated and detailed evaluation of T. terrestris 

56 distribution and conservation status. The authors estimate, based on specialists opinions and 

57 occurrence records, that historic distribution covered 13.129.874 km² and the current distribution 

58 is 11.232.018 km². T. terrestris is considered to be Vulnerable due to habitat loss, illegal hunting 
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59 and competition with livestock. Most of the main habitat out of Amazon has been converted to 

60 human use as cattle ranching and agriculture in a short time. The species is completed absent in 

61 vast areas of its historic range (Naveda et al., 2008; Taber et al., 2009). Deforestation and other 

62 forms of habitat change have all contributed to population declines. Therefore, the understanding 

63 the role of variables associated with the original distribution patterns are crucial to partitioning 

64 factors involved in the viability of populations. Accordingly, large-scale assessments may show 

65 patterns which locally are not evident, but involved in the viability of populations and, to a great 

66 extent, the impacts of changes in the long-term.

67 Species occurrence may be related to set of predictors ranging from site to landscape 

68 scale, as range of natural vegetation, terrain attributes, disturbance and human scenarios as land 

69 use and protected areas, and other environmental variables as those characterizing climate and 

70 seasonal changes (Franklin, 2009; Peterson et al., 2011). Such comprehensive ecological 

71 evaluation, including species responses to global changes may be effective when incorporating a 

72 large area perspective, particularly in the tropics where data deficient species are the rule or vast 

73 areas have been transformed without adequate inventories. 

74 Tapir, despite being a large mammal in the context of the Neotropics, is still data deficient 

75 in the largest data set collected for a species with wide distribution (Taber et al., 2009). However, 

76 the available data allows insights on their response to ecological factors along the eco-

77 geographical regions and major habitats, and can support conservation planning showing patterns 

78 of response to ecological and human factors in the time scale. 

79 Identifying the most important environmental parameters bounding species distributions 

80 remains difficult because animals respond to the environment at a range of spatial scales (Turner 

81 et al., 1997 ). Ungulates for example, make foraging decisions both within and across a variety of 
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82 spatial scales, making it difficult to relate species to specific habitats across their entire species 

83 range (Hobbs, 2003). However, describing these relationships is an important first-step towards 

84 understanding linked ecological processes and guiding conservation decision-making, as the 

85 agents that determine population viability may include factors related to habitat or elements that 

86 transcend spatial scales, such as dynamically linked variables or unlinked elements (Peterson, 

87 2011). Species Distribution Models (SDM) are thus important tools for defining testable 

88 hypotheses and generating potential species' ranges. Clements et al. (2012) and Mendoza et al. 

89 (2013) produced a SDM for Asian tapir (Acrododia indica) and Baird's tapir (Tapirella bairdii), 

90 respectively, and demonstrated the applicability of SDM use in the evaluation and development 

91 of tapir conservation strategies. Norris (2014) applied SDM to understanding the distribution of 

92 lowland tapir in a fragment of Atlantic forest in southeast Brazil and highlight the importance of 

93 a fundamental understanding of species natural history to determine not only appropriate model 

94 parameters, but also the biological relevance of SDMs. 

95 Appropriate model selection is critical when ecological as well as distribution oriented 

96 hypotheses are to be tested. The selection of a SDM should consider the theoretical 

97 underpinnings and practical applicability of the model as well as the hypothesis of interest 

98 (Jiménez-valverde, Lobo & Hortal, 2008; Kamino et al., 2011). Ecological Niche Factor 

99 Analysis (ENFA) and MAXENT are two approaches that are presently used for describing 

100 distributions and classifying landscape suitability for species (Braunisch & Suchant, 2010; 

101 Rebelo & Jones, 2010; Rodríguez-Soto et al., 2011). 

102 ENFA generates species distributions based on Hutchinson's concept of the ecological 

103 niche by comparing known species locations and associated environmental variables to areas 

104 without locations but with the same environmental conditions (Hirzel et al., 2002). In contrast, 
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105 MAXENT'S theoretical underpinnings are based on the maximum entropy principle and 

106 mathematically similar to a Poisson regression model (Renner & Warton, 2013). We modeled 

107 the potential distribution of the lowland tapir in South America using both methods and 

108 evaluated their relative accuracy.

109 The objective of this study was to describe habitat suitability, potential distribution and 

110 quantification of habitat loss (total and per ecoregions) for T. terrestris over its entire range, to 

111 evaluate and contribute to the knowledge about the species' conservation status.

112 MATERIALS & METHODS

113 Occurrence data

114 In our analyses we used 625 lowland tapir location points, 500 for modeling (Table S1) 

115 and an independent 125 for testing (validating) (Table S2) the generated distributions. Location 

116 data were obtained from (Brooks, Bodmer & Matola, 1997; Anderson, 1997; Simonetti & 

117 Huareco, 1999; Patterson et al., 2003; Florez FK, Rueda CF, Peñalosa W, et al. 2008.), and a 

118 data set developed from expert consultation and our own fieldwork.

119 Environmental descriptors

120 We used eight (8) environmental variables (0.04° of spatial resolution, ~5 km) of which 6 

121 climatic variables of WorldClim (Hijmans et al.,2005), as well as altitude and vegetation index 

122 (Table 1). These variables are commonly used in predictive species distribution, and represent a 

123 set of easily interpreted ecological variables.

124 Distribution Models

125 We used ENFA version BioMapper 4.0 (Hirzel, Hausser & Perrin, 2007) and MAXENT 

126 version 3.2.3a (Phillips, Anderson & Schapire, 2006) models to describe habitat suitability and 
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127 potential tapir distributions. Both methods use environmental data linked to species location 

128 points and relate this to environmental variables across the area of interest. For the T. terrestris 

129 Consensual Habitat Suitability Map (CHSM) the simple average of all models outputs was 

130 calculated. For the T. terrestris potential distribution binary map (suitable/unsuitable), we 

131 applied the Minimum Training Presence (MTP) as a threshold value for models and CHSM, 

132 because it is the most conservative threshold, identifying the maximum predicted area possible 

133 while still maintaining a zero omission rate for both training and test data. Norris (2014) 

134 identifies MTP with more appropriate threshold criteria for T. terrestris, based on its own broad 

135 distribution and variety of habitats used by the species.

136 Additionally, for comparative purposes, the images resulting from each of the ENFA and 

137 MAXENT models (with continuous values from 0 to1) were reclassified into five environmental 

138 suitability zones, 1) an Unsuitable Zone (UNSZ; value pixel suitability < Minimum Training 

139 Presence, MTP), 2) a Low Suitability Zone (LSZ, value pixel suitability between MTP value and 

140 0.25), 3) an Intermediate Suitability Zone (ISZ, value pixel suitability between 0.25 and 0.50), 4) 

141 a High Suitability Zone (HSZ, value pixel suitability 0.50 and 0.75), and 5) a Very High 

142 Suitability Zone (VHSZ, value pixel suitability >0.75).

143 Ecological Niche Factor Analysis (ENFA)

144 The ENFA approach uses a factor analysis similar to Principal Component Analysis when 

145 producing species distributions (Hirzel et al., 2002). ENFA analyzes many environmental 

146 variables (EV) and reduces them to a few uncorrelated factors. This information is then used to 

147 produce an ecologically influenced species distribution. In ENFA all factors have ecological 

148 weight. The first factor is called Marginality (M), and measures the difference between the 

149 average conditions at sites where individuals of the species where actually located (species 
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150 distribution) compared to sites throughout the entire area of interest (global distribution), to 

151 produce a distribution of the species' niche in this environmental space. Another factor that is 

152 also considered is Specialization (S), which is the ratio of global variance to species variance. 

153 This item is a measure of niche breadth for the species (Braunisch et al., 2008). An M value 

154 close to one indicates that the species is a habitat specialist relative to the average condition of all 

155 EVs. The inverse of Specialization (1/S) is global Tolerance (T), which is a measure of the 

156 ecological flexibility of the species. A low value of T (close to 0) identifies a "specialist" species 

157 that tends to live in a very narrow range of conditions. A high value of T (close to 1) indicates a 

158 species that is not very selective of its living environment.

159 A Habitat Suitability Map (HSM) factor is calculated using the median - extremum 

160 algorithm derived from the first factors. This is the preferred algorithm for use when the real 

161 optimum is located at the extremes of the environmental conditions. We used broken-stick 

162 heuristics to determine the number of significant factors that should be retained to calculate 

163 habitat suitability (see, Jackson ,1993). 

164 MAXENT

165 MAXENT uses a machine learning response to predict species distributions from 

166 incomplete data. This method estimates the most uniform distribution (maximum entropy) of the 

167 sampled points relative to background locations across the study area. It produces a model of a 

168 species' environmental requirements based only on presence data and a set of environmental 

169 variables (Phillips, Anderson & Schapire, 2006). 

170 MAXENT assumes that sampling of presence locations is unbiased. In MAXENT spatial 

171 biased sampling promotes model inaccuracy (Phillips, Anderson & Schapire, 2006; Phillips et 

172 al., 2009; Syfert, Smith & Coomes, 2013). To account for the spatial bias in presence records, we 
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173 used the bias grid (Fig. S1), following procedures outlined by Elith, Kearney & Phillips (2010). 

174 The bias grid is used to down-weight the importance of presence records from areas with more 

175 intense sampling. The weighting surface is calculated based on the number of presence records 

176 within an area around any given cell (weighted by a Gaussian kernel with a standard deviation of 

177 100km).

178 MAXENT also provides environmental variable response curves indicating how each 

179 variable affects the predicted distribution. We ran MAXENT to model lowland tapir distribution 

180 under the �auto-features' mode and the default settings with 10-fold replicates (jack-knife cross-

181 validation). The logistic output was used (habitat suitability on a scale of 0-1), with higher values 

182 in the Habitat Suitability Map (HSM) representing more favorable conditions for the presence of 

183 the species (Elith et al., 2006; Phillips &  2008).

184 Model Validation and Comparison

185 Although validation procedures based on resampling of input data have some merit in 

186 simulating species occurrence, they fail to provide the same degree of confidence as when using 

187 an independent dataset (Greaves, Mathieu & Seddon, 2006). Thus, to evaluate the predictive 

188 capacity of the models, two approaches were used: the first - Model Fit - tested the fit of 

189 occurrence points to the generated models; for ENFA using the Boyce index (B) with 10-fold 

190 jack-knife cross-validation (for more details, see Boyce et al., 2001; and Hirzel et al., 2006). For 

191 the MAXENT model, we used 10-fold replicates (jack-knife cross-validation) to obtain the 

192 average Area Under Curve (AUC) of the Receiver Operating Characteristics (ROC) analysis. 

193 The second approach used was - Field Truth; this validation method used an independent set of 

194 125 actual occurrence records (randomly selected from total points and not used in the 

195 generation of models) to evaluate the predictive capacity of the models. The predicted suitability 
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196 of the models was extracted for each test point, and the average suitability was used to evaluate 

197 the model accuracy.

198 We compared the generated ENFA and MAXENT lowland tapir models using Fuzzy 

199 index for continuous maps, and Kappa index for potential distribution binary maps 

200 (suitable/unsuitable through MTP threshold criteria) using the Map Comparison Kit v.3.2 

201 software developed by the Netherlands Environmental Assessment Agency (Visser & Nijs, 

202 2006). Both indices express the pixel similarity for a value between 0 (fully distinct) and 1 (fully 

203 identical).

204 Additionally we used Olson et al.'s delineation (Olson et al., 2001) of the terrestrial 

205 "Ecoregions of the World" as our base map (Fig. 1) to better demonstrate the comparison 

206 between models and to quantify habitat loss in a South American ecoregions context.

207 Potential distributions versus remaining natural vegetation and protected areas

208 In order to identify both habitat availability and how effective the existing protected areas 

209 network is for T. terrestris, a Consensual Potential Distribution Map (CPDM, derived from 

210 CHSM - Consensual Habitat Suitability Map - reclassified as suitable and unsuitable, based on 

211 MTP cutoff criteria), was overlaid with the Land Cover Map for South America (Eva et al., 

212 2002), upgraded for Brazil (MMA, 2009), and with the WDPA map of protected areas (WDPA, 

213 2014). For these analyses the Land Cover Map for South America was reclassified as Anthropic, 

214 Grassland and Forest classes and the protected areas network was subdivided into two 

215 categories: Strict Protection (IUCN Categories I, II, III and IV) and Sustainable Use areas (IUCN 

216 Categories V, VI and Indigenous Territories identified in WPDA map).
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217 RESULTS

218 Lowland Tapir Distribution with ENFA 

219 The ENFA model explained 85.5% of the information (100% of the Marginality and 71% 

220 of the Specialization) based on the two factors selected by the broken-stick heuristics criterion for 

221 extrapolating lowland tapir distributions (Fig. 2A). Cross-validation of the model quality resulted in a 

222 Boyce index of 0.62 ± 0.14, indicating a satisfactory predictive capacity (model fit). Analysis of 

223 the average suitability of test records using Field Truth produced a value of 55.48 (SD 28.15), 

224 indicating high accuracy for the model, since this average value corresponds to the High 

225 Suitability Zone for the species. Fig. 2B represents the ENFA potential distribution binary map 

226 (suitable/unsuitable) based on the Minimum Training Presence cutoff criteria (MTP=0.02).

227 An overall M value of 0.57 and T of 0.52, indicates that lowland tapir habitat differs 

228 moderately from the average conditions across the entire distribution area, suggesting the species 

229 is moderately tolerant of a range of conditions. The M factor alone accounted for 35% of the 

230 total specialization, indicating an intermediate niche breadth for lowland tapirs (see Hirzel et al., 

231 2004).

232 The relative contribution of EV to the ENFA marginality factor (Fig. 3A) indicates that 

233 lowland tapirs "prefer" (more suitability) warm-humid areas with dense forest cover (Annual 

234 Mean Temperature between 21 ºC and 27 ºC; Mean Temperature of Warmest Quarter between 

235 23 ºC and 28 ºC; Mean Temperature of Coldest Quarter between 18ºC and 25 ºC; Annual 

236 Precipitation of 1076 - 2654mm; Precipitation of Wettest Quarter of 485 - 1023mm; higher 

237 values of NDVI) and avoid high altitude areas. The highest specialization for the species (Fig. 

238 3A) was associated with the temperature variables (Annual Mean Temperature, Mean 
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239 Temperature of Warmest Quarter, Mean Temperature of Coldest Quarter, respectively), showing 

240 some sensitivity (low tolerance) to shifts away from their optimal values on these variables.

241 An overlay of the ENFA-identified VHSZ and HSZ areas with Olson et al.'s (2001) 

242 delineation of the terrestrial ecoregions of the world shows that the best areas for lowland tapirs 

243 occur in Tropical Moist Broadleaf Forests (Fig. 1 and 2A). The Tropical Moist Broadleaf Forests 

244 of the northern Brazilian Amazon, southern Venezuela and the lowlands of Colombia and Peru, 

245 northern Cochabamba and southern Beni Department of Bolivia where also identified as VHSZ 

246 areas for lowland tapirs. In contrast, areas south and east of Amazon River basin, the Llanos 

247 Savannas biome of Venezuela and Colombia, and the central and north Cerrado Biome (Brazil) 

248 were deemed as slightly less (HSZ) suitable for lowland tapirs. An ISZ was identified in the 

249 western portion of the Cerrado, the Pantanal Wetland, Atlantic Forests (mainly the coastal 

250 region), Chiquitano and Dry Forests regions. The least suitable (LSZ) vegetation types are 

251 southern subtropical grasslands, southwestern thorn scrub vegetation of the Dry Chaco biome 

252 and the eastern (west of Atlantic Forests) transition zone between Caatinga, Cerrado and Atlantic 

253 Forest regions of Brazil. These areas are dominated by tropical seasonal semi deciduous forests 

254 (Oliveira-Filho, Jarenkow & Rodal, 2006) and apparently delineate the distributional limit of 

255 lowland tapirs. A large part of the Caatinga biome was classified as unsuitable (UNSZ) for 

256 lowland tapirs, particularly the eastern half of this region.

257 Lowland Tapir Distribution with MAXENT

258 With an average AUC of 0.804 (SD=0.01; 10-fold replicates), the MAXENT model (Fig. 

259 2C) achieved a satisfactory model fit and the modeled distribution performed better than random. 

260 A Field Truth value of 51.13 (SD=13.51) indicates that the model achieved high accuracy. This 

261 average value corresponds to the High Suitability Zone for lowland tapirs. Fig. 2D represents the 
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262 MAXENT potential distribution binary map (suitable/unsuitable) based on the MTP cutoff 

263 criteria (MTP=0.08).

264 The Mean Temperature of the Coldest Quarter (MTCQ) was the variable with the highest 

265 gain and which most decreased gain when omitted (when used in isolation) from the model (Fig. 

266 3B). The response curves (Fig S2) for the EV of this model indicate that lowland tapirs are 

267 strongly associated with warmer regions (MTCQ between 15ºC and 23ºC, and AMT between 

268 20ºC and 25ºC) and areas with an annual precipitation over 1000 mm (suitability of presence > 

269 0.5).

270 With MAXENT the VHSZ areas for lowland tapirs were very restricted to the Eastern 

271 Cordillera Real Montane forests in Ecuador. The slightly lower quality HSZ areas prevail in the 

272 northern Tropical Moist Broadleaf Forests biome of Colombia, Ecuador and Bolivia. This zone 

273 also predominates in Paraguay, northern Argentina, Atlantic Rainforest, the Pantanal Wetland, 

274 and the Chiquitano Dry Forests of Bolivia. The ISZ equaled the biggest area identified by 

275 MAXENT. The LSZ was found in the Caatinga Biome, in the subtropical highland grassland in 

276 the south of the Atlantic Rainforest Biome, and the southern range of its modelled distribution. 

277 Some parts of the Caatinga (areas surroundings the São Francisco River, Brazil) biome were 

278 classified as LSZ, but the region immediately to the west - a transition area between the Caatinga 

279 and Cerrado - supports relatively high values of suitability (ISZ). 

280 Comparison of Models and Consensual Habitat Suitability Map (CHSM)

281 The spatial similarity between HSMs produced by the ENFA and MAXENT was 

282 moderate, as indicated by the intermediate value of the Fuzzy (0.53). However, if the cutoff limit 

283 for suitability is MTP, the Kappa similarity value is very high (0.80) between the models, 

284 indicating a similar geographical range between predicted distributions. 
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285 In the CHSM (Fig. 4A) areas with higher habitat suitability values (VHSZ and HSZ) were 

286 identified in the Amazon region, Pantanal Wetland, Humid Chaco in Paraguay, and the 

287 Chiquitano Dry Forests of Bolivia. The Caatinga biome and the southern border of the modeled 

288 distribution correspond to areas with less habitat suitability in this map (LSZ). The MTP cutoff 

289 criteria (MTP=0.06) was applied to this map (CHSM) to generate the Consensual Potential 

290 Distribution Map (CPDM) shown in Fig. 4B.

291 For a more conservative approach the overlap between the modeled area and the known 

292 Tapirella bairdii non sympatric distribution with T. terrestris, on the Pacific coast in Colombia 

293 and Ecuador (Brooks, Bodmer & Matola, 1997; Patterson et al., 2003; Schank et al. 2015), was 

294 withdrawn from the final map CPDM (for more details see the discussion section).

295 Potential distributions (CPDM) versus remaining natural vegetation and protected areas

296 The Consensual Potential Distribution Map (CPDM) covers 13,441,402 km², of which 

297 29.44% are anthropogenic, such that 9,484,379 km² are available for the species (Table 2). The 

298 Atlantic Forests, Chocó Darién Moist Forests, Caatinga biome and Tropical and Subtropical Dry 

299 Broadleaf Forests (extreme north of South America) are the ecoregions with the largest 

300 individual habitat losses (Table 2). However, considering the size of the lost area (in km²), the 

301 Cerrado, Atlantic Forest and Amazon Region (Tropical and Subtropical Moist Broadleaf Forests) 

302 presented the largest losses. The Amazon region represents 62.73% (5,949,846 km²) of the total 

303 (9,484,379 km²) suitable and remaining area for T. terrestris. 

304 In this context, the protected areas network covers/protects 23.66% (3.179.573km²) of the 

305 total suitable area for T. terrestris, as follows: 848,278 km² Strict Protection and 2,331,295 km² 

306 Sustainable Use. Only 6% of the remaining Cerrado area suitable for lowland tapir is within a 
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307 Strict Protection protected area. For the Atlantic Forest and Amazon region the remaining area 

308 under strict protection is 10%.

309 DISCUSSION

310 Our study presents a distribution and habitat map for lowland tapir in South America. We 

311 also describe the potential habitat suitability of various geographical regions, habitat loss and 

312 assessment of the effectiveness of a protected areas network. Additionally, we evaluated the 

313 predictive capacity of two modeling approaches for describing these patterns. 

314 While the environmental requirements identified by the ENFA and MAXENT-modeling 

315 approaches for describing lowland tapir range appears broadly similar, only the ENFA model 

316 identified forest cover density (NDVI) as a factor contributing to tapir habitat suitability. This 

317 resulted in ENFA identifying the Amazon Region as a VHZ or HSZ for lowland tapirs (overlay 

318 of Fig. 1 and 2A). This result is supported by field knowledge on the ecology of this species, 

319 where tapirs have been identified as strongly associated with warm and wet regions (Bodmer, 

320 1991; Fragoso, 1997; Tober, 2008; Taber et al. 2009). 

321 In contrast, MAXENT identified much of the Amazon Region as an area of lower 

322 suitability for tapirs (ISZ; Fig. 2C), This result, in spite of using the bias grid, is related to an 

323 idiosyncrasy of the technique, in that MAXENT establishes a complex (very parameterized) and 

324 strong fit (over fit) between dependent and independent variables (Jiménez-valverde, Lobo & 

325 Hortal, 2008; Kamino et al., 2011; Rangel & Loyola, 2012). This explains why the relatively low 

326 number of tapir records in the very large Amazon region led MAXENT to identify the region as 

327 a lower suitability zone for lowland tapirs. In contrast, results from areas at the climatic extreme 

328 of tapir tolerance, such as the xeric Central Chaco, where more records were available, where 

329 identified counter intuitively (based on ecological field information) by MAXENT as highly 
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330 suitable for tapirs. This classification reflects a bias in the distribution pattern of occurrence 

331 records that is related to the difficulty of conducting research in the vast, remote Amazon region 

332 (Brooks, Bodmer & Matola, 1997) relative to more easily accessed, spatially restricted biomes, 

333 rather than to the real suitability of areas of lowland broadleaf forests for lowland tapirs.

334 Both models identified the Chocó-Darién Moist Forests ecoregion (western end of 

335 Colombia and Ecuador) as suitable for the lowland tapir (Fig. 1 and 2). This region is also the 

336 known South American range limit for the Central American Baird's tapir. This potential area of 

337 overlap for the two tapir species occurs because of the environmental similarity of this ecoregion 

338 (within the context of EV used) with adjacent areas-such as the Magdalena-Urabá moist forests - 

339 which contain records of lowland tapirs and form a continuous corridor with the lowland forests 

340 of the western Andes up to a bottleneck region between the Pacific ocean and the western slope 

341 of the Andes in southeastern Ecuador. The presence or absence of either tapir species in this 

342 region may be partially related to interspecific interaction between the species. The models in the 

343 context of EV used did not detect this possibility. This aspect (limitation) of both models, 

344 combined with the already described T. terrestris distribution, were the main reasons for 

345 excluding this region from the potential distribution map (CPDM) for the analyses of remaining 

346 habitats availability and effectiveness of the protected areas network.

347 CONCLUSIONS

348 Apparently viable tapir populations in the protected areas of eastern Brazil (Medici, 2010; 

349 Eduardo, Nunes & Brito, 2012) were classified as falling into LSZ, ISZ or HSZ, depending on 

350 the modeling method used. Tapir population levels here are low and this information is linked to 

351 the forest types by the models. However, low population levels here are likely the result of 

352 human activities that have decreased tapir densities, such as hunting and habitat destruction, 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1579v2 | CC BY 4.0 Open Access | rec: 11 Aug 2016, publ: 11 Aug 2016



353 rather than environmental factors (Taber et al., 2009). That is, the forests of eastern Brazil and 

354 their transition zones to the seasonal forests of the adjacent Caatinga and Cerrado regions of 

355 eastern Brazil have had their tapir populations reduced or extirpated by anthropogenic impacts, 

356 so that low population sizes are now associated with these ecosystems and are interpreted by the 

357 model, which does not separate anthropogenic variables from non-anthropogenic variables, as 

358 being correlated with the ecosystem.

359 In this context, our results indicate that Brazilian ecoregions have the highest habitat loss 

360 for the tapir, which supports the results obtained by Taber et al. (2009) and Medici et al. (2012). 

361 Cerrado and Atlantic Forest account for nearly half (48.19%) of the total area lost (1,906,948 of 

362 3,957,023 km²).

363 When associated to the well-known hunting pressure and elevated habitat loss for the 

364 Caatinga, our low habitat suitability results for this biome support the hypothesis of a probable 

365 local extinction of tapir indicated by Taber et al. (2009). The same logic can be applied to the 

366 southern limit of the tapir distribution area within the Pampa region (Temperate, Tropical and 

367 Subtropical Grassland, Savannas, and Shrublands Ecoregions).

368 The Amazon region contains the largest extent of land under protection, and the most 

369 extensive remaining habitat for the tapir, but also showed high levels of habitat loss outside 

370 protected areas. This increases the importance of adequate monitoring of protected areas, so as to 

371 determine the relative effectiveness of indigenous territories, strict protection areas and 

372 sustainable use areas in sustaining tapir populations and inform the management of these areas. 

373 Management and use by humans is an inherent characteristic of an area; once the impact of 

374 management category on tapir populations is understood, this information can be added to 

375 habitat suitability models. 
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376 In conclusion, MAXENT and ENFA produced different HSM for the lowland tapir. 

377 While MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient 

378 (when compared to the results by ENFA) at identifying the gradient of habitat suitability. 

379 MAXENT is a more multifaceted technique that establishes more complex relationships between 

380 dependent and independent variables. It is an excellent tool for describing spatial occurrence 

381 data; however, spatial aggregation of occurrence records can lead to the miss-classification of 

382 areas as highly suitable when they are not, and the identification of areas that are highly suitable 

383 as exhibiting poor or no suitability for the species. As conservation planners and ecologists we 

384 should remember the axiom that "� all models are wrong, the practical question is how wrong 

385 do they have to be before they are not useful" (Box & Draper, 1987).

386 If the objective of a conservation or research program is to identify areas that are 

387 environmentally very similar to the points where species have been noted, without concern for 

388 understanding the ecological and human factors that contribute to that occurrence, then 

389 MAXENT is well suited for the task. However, our results indicate that ENFA is more 

390 appropriate for the task of classifying habitat suitability zones and species distribution patterns, 

391 not only because of the accuracy of the generated models but also due to this method's ability to 

392 better identify the gradient of habitat suitability across the potential distribution range, rooted in 

393 solid and clear (easy interpretation of parameters) ecological theory (Rangel & Loyola, 2012). 

394 All tapir species are considered as being at risk throughout their ranges (TSG-IUCN, 

395 2015). While the lowland tapir still exhibits robust populations in much of its extensive range, in 

396 other very large areas populations have become fragmented and highly threatened. Conservation 

397 planning for the four species, especially those that are listed in red data books, requires the use of 

398 the most robust methods for determining potential population size, abundance patterns, 
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399 distribution and factors influencing these variables. Our results demonstrate that for at least one 

400 species, the lowland tapir, the use of a consensual approach better reflected its current 

401 distribution patterns, confirming the critical situation of this species in Brazilian ecoregions.

402 Given that many governments and NGOs now use modeling techniques to assess species 

403 habitat suitability zones and distribution patterns for conservation planning, we strongly 

404 recommend that care be taken to select the most appropriate model.
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583

584 Table 1. Environmental Variables (EV) used to model the potential distribution of Tapirus 

585 terrestris in South America. All variables were resampled from original resolution to 0.04° 

586 (~5km), using the average value of all involved pixels, where the source pixels are covered by 

587 the target pixel.

588

Environmental Variable (EV) Acronym
WorldClim 

Acronym
Source

Annual Mean Temperature AMT BIO1

Mean Temperature of Warmest Quarter MTWQ BIO10

Mean Temperature of Coldest Quarter MTCQ BIO11

Annual Precipitation AP BIO12

Precipitation of Wettest Quarter PWQ BIO16

Precipitation of Driest Quarter PDQ BIO17

WorldClim 

(Hijmans et al.,2005)

Altitude - Digital Elevation Model ALT --

Shuttle Radar Topography 

Mission 

(http://www2.jpl.nasa.gov/srt

m/)

MODIS Normalized Difference 

Vegetation Index (NDVI)-32 day 

composites-Oct/15 - Nov/15/2004. Date 

of the composite represents well the 

contrast between forest and open 

formations.

NDVI --

Global Land Cover Facility 

(GLCF) 

(http://www.landcover.org/dat

a/modis/)

589
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591

592 Table 2. Land Cover (remaining vegetation) and protected area network in modeled Tapirus 

593 terrestris potential distribution (Consensual Potential Distribution Map, CPDM).

Land Cover 

Class

Area*

(km²)

Area within a 

Strict Protection 

protected area *

(km²)

Area within a 

Sustainable Use 

protected area*

(km²)

Protected Areas 

network extent*

(km²)

Forest
7,003,896

(52.11%)

690,277

(81.37%)

1,927,908

(82.70%)
2,618,185

Grassland
2,321,326

(17.27%)

114,816

(13.54%)

219,451

(9.41%)
334,267

Water
159,157

(1.18%)

8,351

(0.98%)

18,831

(0.81%)
27,182

Anthropic
3,957,023

(29.44%)

34,834

(4.11%)

165,105

(7.08%)
199,939

Total (km²) 13,441,402
848,278

(6.31%)

2,331,295

(17.34%)

3,179,573

(23.66%)

594 * values within parenthesis indicate its percentage. 
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596

597 Table 3: South American Ecoregions (adapted from Olsonn et al.,2001), anthropic and 

598 remaining natural areas in modeled Tapirus terrestris potential distribution (Consensual Potential 

599 Distribution Map, CPDM).

Ecoregions

Anthropic* 

(km²)

Remain* 

(km²)

Total

(km²)

Amazon Region - Tropical and Subtropical 
Moist Broadleaf Forests

846,274
(12.45)

5,949,846
(87.55)

6,796,120

Atlantic Forests
939,594
(80.46)

228,205
(19.54)

1,167,799

Caatinga Brazilian Biome
478,964
(66.16)

244,964
(33.84)

723,928

Cerrado Woodlands and Savannas
967,354
(51.15)

923,911
(48.85)

1,891,265

Chiquitano Dry Forests
51,120
(23.58)

165,718
(76.42)

216,838

Chocó Darién Moist Forests
55,401
(69.96)

23,794
(30.04)

79,195

Deserts and Xeric Shrublands
48,042
(35.72)

86,460
(64.28)

134,502

Dry Chaco
106,582
(15.77)

569,329
(84.23)

675,911

Flooded Grasslands and Savannas
5,398
(9.76)

49,905
(90.24)

55,303

Humid Chaco
43,822
(15.23)

243,950
(84.77)

287,772

Llanos Savannas
56,034
(13.87)

347,900
(86.13)

403,934

Mangroves
14,467
(31.22)

31,874
(68.78)

46,341

Montane Grasslands and Shrublands
271

(5.12)
5,024

(94.88)
5,295

Pantanal Flooded Savannas
25,081
(15.55)

136,238
(84.45)

161,319

Temperate Grasslands, Savannas, and 
Shrublands

31,516
(36.57)

54,672
(63.43)

86,188

Tropical and Subtropical Dry Broadleaf Forests
123,732
(54.72)

102,375
(45.28)

226,107

Tropical and Subtropical Grasslands, Savannas, 
and Shrublands

163,371
(33.78)

320,214
(66.22)

483,585

Total
3,957,023

(29.44)
9,484,379

(70.56)
13,441,402
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600 * values within parenthesis indicate its percentage. Adapted from Eva et al. (2002), and upgraded 

601 for Brazil by MMA (2009).
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602

603

604

605 Figure 1: Terrestrial Ecoregions (adapted from Olson et al.,2001) and locations of lowland tapir 

606 (Tapirus terrestris) occurrence in South America. 
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608

609

610

611 Figure 2: (A) ENFA Habitat Suitability Map; (B) ENFA potential distribution binary map 

612 (suitable/unsuitable) based on the Minimum Training Presence cutoff criteria (MTP=0.02); (C) 

613 MAXENT Habitat Suitability Map; (D) MAXENT potential distribution binary map 

614 (suitable/unsuitable) based on the MTP cutoff criteria (MTP=0.08). Unsuitability Zone (UNSZ), 
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615 Low Suitability Zone (LSZ), Intermediate Suitability Zone (ISZ), High Suitability Zone (HSZ), 

616 and Very High Suitability Zone (VHSZ) identified.
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618

619

620

621 Figure 3: (A) The relative contribution of Environmental Variables (EV) to the ENFA 

622 Marginality and Specialization factors - EVs are sorted by decreasing absolute value of 

623 coefficients on the marginality factor. Positive values on this factor mean that T. terrestris 

624 prefers locations with higher values on the corresponding EV than the average value in the study 

625 area. Signs of coefficient have no meaning for the specialization factors. (B) Jackknife test 

626 results of individual environmental variable importance in the development of the MAXENT 
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627 model relative to all environmental variables (hactched bar), for each predictor variable alone 

628 (black bars), and the drop in training gain when the variable is removed from the full model 

629 (gray bars).
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631

632

633

634 Figure 4: (A) Consensual Habitat Suitability Map, CHSM; (B) Consensual Potential 
635 Distribution Map, CPDM (suitable/unsuitable), based on the Minimum Training Presence cutoff 
636 criteria (MTP=0.06). Unsuitability Zone (UNSZ), Low Suitability Zone (LSZ), Intermediate 
637 Suitability Zone (ISZ), High Suitability Zone (HSZ), and Very High Suitability Zone (VHSZ) 
638 identified.
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