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A robust hierarchical model of daily stream temperature using

air-water temperature synchronization, autocorrelation, and

time lags

Benjamin H Letcher, Daniel J Hocking, Kyle O'Neill, Andrew R Whiteley, Keith H Nislow, Matthew J O'Donnell

Water temperature is a primary driver of stream ecosystems and commonly forms the

basis of stream classifications. Robust models of stream temperature are critical as the

climate changes, but estimating daily stream temperature poses several important

challenges. We developed a statistical model that accounts for many challenges that can

make stream temperature estimation difficult. Our model identifies the yearly period when

air and water temperature are synchronized, accommodates hysteresis, incorporates time

lags, deals with missing data and autocorrelation and can include external drivers. In a

small stream network, the model performed well (RMSE = 0.59 �C), identified a clear

warming trend (0.063 �C � y-1) and a widening of the synchronized period (2.9 d � y-1). We

also carefully evaluated how missing data influenced predictions. Missing data within a

year had a small effect on performance (~ 0.05% average drop in RMSE with 10% fewer

days with data). Missing all data for a year decreased performance (~ 0.6 �C jump in

RMSE), but this decrease was moderated when data were available from other streams in

the network. Straightforward incorporation of external drivers (e.g. land cover, basin size)

should allow this modeling framework to be readily applied across multiple sites and at

multiple spatial scales.
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26 Abstract

27 Water temperature is a primary driver of stream ecosystems and commonly forms the 

28 basis of stream classifications. Robust models of stream temperature are critical as the 

29 climate changes, but estimating daily stream temperature poses several important 

30 challenges. We developed a statistical model that accounts for many challenges that can 

31 make stream temperature estimation difficult. Our model identifies the yearly period when 

32 air and water temperature are synchronized, accommodates hysteresis, incorporates time 

33 lags, deals with missing data and autocorrelation and can include external drivers. In a 

34 small stream network, the model performed well (RMSE = 0.59 °C), identified a clear 

35 warming trend (0.063 °C · y-1) and a widening of the synchronized period (2.9 d · y-1). We 

36 also carefully evaluated how missing data influenced predictions. Missing data within a 

37 year had a small effect on performance (~ 0.05% average drop in RMSE with 10% fewer 

38 days with data). Missing all data for a year decreased performance (~ 0.6 °C jump in 

39 RMSE), but this decrease was moderated when data were available from other streams in 

40 the network.  Straightforward incorporation of external drivers (e.g. land cover, basin size) 

41 should allow this modeling framework to be readily applied across multiple sites and at 

42 multiple spatial scales.   

43

44 Introduction

45 Accurate stream temperature predictions are increasingly important as human impacts on 

46 streams and on the climate accelerate stream temperature change (Kaushal et al., 2010; 

47 Rice & Jastram, 2014). Human activities influence stream temperatures directly via 

48 increased water withdrawals, altered channel engineering and dam operation (Poole & 

49 Berman, 2001) and indirectly by altering landscape features (e.g. riparian cover) and by 

50 affecting air temperatures at broad spatial scales via climate change (Hayhoe et al., 2007; 

51 Huntington et al., 2009). Understanding how stream temperatures are changing over time 

52 and space and the ability to forecast future temperatures are important because stream 

53 temperatures directly influence stream ecosystems (Quinn et al., 1994; Wenger et al., 

54 2011) and because regulatory agencies commonly use stream temperature as a metric for 
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55 managing streams and  their watersheds (e.g. Beauchene et al., 2014). Altered stream 

56 temperatures are likely to have profound effects on the abundance and distribution of 

57 stream biota (Isaak & Rieman, 2012; Eby et al., 2014), especially coldwater, ectothermic 

58 species because many physiological and demographic rates are temperature-dependent 

59 (Fry, 1971; Elliott & Elliott, 2010; Letcher et al., 2015). 

60 The general importance of stream temperature has prompted the development of a 

61 number of models for stream temperature (e.g. Mohseni, Stefan & Erickson, 1998; Caissie, 

62 El-jabi & Satish, 2001; Hague & Patterson, 2014; Sun et al., 2014; Li et al., 2014). Stream 

63 temperature models vary along several important gradients, including model type 

64 (physical-statistical), temporal resolution (daily-yearly) and spatial resolution (local-broad 

65 spatial coverage). As with all models of complex systems, tradeoffs among these gradients 

66 usually limit models to highly-detailed, local models (Brown, 1969; Kim & Chapra, 1997; 

67 Younus, Hondzo & Engel, 2000) or simple, general models (e.g. Crisp & Howson, 1982). The 

68 detailed, local models typically produce good accuracy (RMSE ~ 1.0 °C) but may not predict 

69 temperatures well outside of the local area, while the simple models generate moderate to 

70 poor accuracy (RMSE ~ 1.5 °C to 3.0 °C ) across a broad spatial range. Models that 

71 aggregate over longer time intervals generally perform better (Stefan & Preud�homme, 

72 1993; Pilgrim, Fang & Stefan, 1998; Webb, Clack & Walling, 2003; Morrill, Bales & Conklin, 

73 2005), but even hourly models can perform well (Kanno, Vokoun & Letcher, 2013). A 

74 careful consideration of six key temperature modeling issues may provide the basis for the 

75 development of daily stream temperature models of medium complexity that provide good 

76 predictions across space. 

77 First, the relationship between air temperature and stream temperature is non-linear at 

78 high and low air temperatures (Mohseni, Stefan & Erickson, 1998), but for different 

79 reasons. At high air temperatures, evaporative cooling slows warming of stream water, 

80 while at low air temperatures, air temperatures can dip well below the water temperature 

81 freezing limit (Caissie, 2006; Webb et al., 2008). Air and water temperatures are no longer 

82 synchronized when air temperatures are near and below 0 °C, which can generate a poor 

83 relationship between air and stream temperatures and heterogeneity of variance across 

84 temperatures. Many simple statistical models use a non-linear model to describe the 
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85 relationship between air and stream temperature (Mohseni, Stefan & Erickson, 1998; 

86 Webb, Clack & Walling, 2003; Kanno, Vokoun & Letcher, 2013). Others use a linear model 

87 and limit analysis to the summer (Hilderbrand, Kashiwagi & Prochaska, 2014) or to the ice-

88 free period of the year (Stefan & Preud�homme, 1993; Erickson & Stefan, 2000), in an 

89 attempt to avoid  the non-linear portions of the air-water temperature relationship. Time 

90 series (Caissie, El-Jabi & St-Hilaire, 1998; Caissie, El-jabi & Satish, 2001; Benyahya et al., 

91 2007) or non-parametric models (Benyahya et al., 2008; Li et al., 2014) of stream 

92 temperature trends over time that include air temperature as a predictor as well as local, 

93 physical models (e.g. Sinokrot & Stefan, 1993) can accommodate the non-linearity. 

94 Second, accuracy can be improved when models account for hysteresis, a different 

95 relationship between air and water temperature in the spring (rising temperatures) vs. the 

96 fall (falling temperatures) (Mohseni, Stefan & Erickson, 1998; Caissie, El-jabi & Satish, 

97 2001; Webb, Clack & Walling, 2003). Seasonal hysteresis is often caused by influx of cool 

98 snow melt or rain water in the spring (Lisi et al., 2015) which depresses spring stream 

99 temperature/air temperature relationships relative to fall stream temperature/air 

100 temperature relationships (Webb & Nobilis, 1997). Mohseni et al. (1998) observed that 

101 43% of their study streams exhibited hysteresis; they addressed hysteresis by fitting 

102 separate non-linear curves to the rising and falling seasonal temperatures. Time series 

103 models with non-symmetric seasonal functions account for hysteresis by default (e.g. Li et 

104 al., 2014).

105 Third, due to thermal inertia, stream temperature does not respond instantaneously to 

106 changes in air temperature. Including lags in air temperature effects can improve estimates 

107 for models with short time scales (Benyahya et al., 2008; Webb, Stewardson & Koster, 

108 2010). The effects of time lags increase with stream depth (Stefan & Preud�homme, 1993) 

109 and stream flow (Smith & Lavis, 1975; Webb, Clack & Walling, 2003). Time lags are a key 

110 component of time series modeling (Shumway & Stoffer, 2006).

111 Fourth, while the amount of stream temperature data available worldwide is increasing 

112 very rapidly (Webb et al., 2008), many sites have incomplete data. Very few study regions 

113 have a complete matrix of sample sites and years: data may be missing for an entire year at 
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114 a site or may be incomplete within a year. Incomplete within-year data will have variable 

115 effects on estimation depending on the extent and timing of the missing data. Effects of 

116 missing data will also depend on model type. For simple linear models, within-year missing 

117 data may not have a large effect on estimation because of the linear relationship between 

118 stream and air temperature. For non-linear models, missing data could have dramatic 

119 effects on estimation as missing data fail to �anchor� the curve. Other modeling approaches, 

120 such as time series models , machine learning models (DeWeber & Wagner, 2014) , and 

121 models with varying coefficients (Li et al., 2014) may be less sensitive to missing data. In 

122 general, hierarchical models with random effects across space (sites, stream networks or 

123 regions) and time (months, seasons, or years) can accommodate missing data as they 

124 �borrow information� across units (Wagner, Hayes & Bremigan, 2006; Gelman & Hill, 2007).

125 Fifth, spatial and temporal autocorrelation can cause estimation problems (Caissie, 2006; 

126 Benyahya et al., 2007; Hague & Patterson, 2014). Autocorrelation occurs when data points 

127 in space or time are not independent, i.e. close points are similar or dissimilar to each other 

128 simply because they are close. For example, downstream temperatures can be similar to 

129 upstream temperatures because water flows downstream or today�s temperature can be 

130 similar to yesterday�s temperature due to the combination of high heat capacity of water, 

131 low density and heat transfer from air, and conduction of heat from surrounding 

132 environment (i.e. thermal inertia) (Caissie, El-Jabi & St-Hilaire, 1998; Isaak et al., 2014). 

133 This is a very common issue in estimation and a variety of time series models can 

134 accommodate temporal autocorrelation (Shumway & Stoffer, 2006) and some newer 

135 approaches are now available to deal with spatial autocorrelation (Peterson & Ver Hoef, 

136 2010; Rushworth et al., 2015). 

137 Finally, air temperature is not the only important predictor of stream temperature (Webb, 

138 1996; Caissie, 2006). Many regression-based models have evaluated effects of landscape 

139 and environmental drivers on stream temperatures (Hawkins et al., 1997; Isaak & Hubert, 

140 2001; Hill, Hawkins & Carlisle, 2013). Important landscape drivers typically include 

141 topography, riparian cover, impervious surface, and stream depth (Poole & Berman, 2001) 

142 and environmental drivers often include stream flow, snow melt, groundwater input, and 

143 humidity (Taylor et al., 2013; Lisi et al., 2015; Snyder, Hitt & Young, 2015). It is 
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144 straightforward to incorporate external drivers beyond air temperature into most classes 

145 of stream temperature models (Hague & Patterson, 2014).

146 Here, we develop a model for mean daily stream temperature that improves accuracy of 

147 statistical models by addressing most of the issues listed above. To avoid fitting a 

148 relationship between stream and air temperature when there is none (e.g. winter), we 

149 develop a metric that limits estimation to the days of the year that stream temperature and 

150 air temperature are synchronized (roughly spring to fall). This metric is flexible among 

151 years and sites. To address hysteresis, we estimate a non-symmetrical trend across the 

152 synchronized days with a hierarchical structure to accommodate missing data. We also add 

153 an autoregressive term to the model to deal with temporal autocorrelation and we estimate 

154 spatial covariance to accommodate spatial autocorrelation. Because data presented here 

155 are spatially constrained to four sites in a small network, we do not include landscape 

156 variables in the model, although their addition is straightforward in the model structure. 

157 The two environmental drivers in the model are air temperature and stream flow. In 

158 addition to presenting the model, we analyze trends in estimates over time and conduct a 

159 detailed missing observations analysis.

160 Methods

161 Study area

162 The study site was located in western Massachusetts, USA (42⁰ 25� N; 72⁰39’ W, Fig. 1) and 

163 consisted of a third-order mainstem (West Brook, WB) and three second-order tributaries 

164 (Open large, OL; Open small, OS; Isolated large, IL). A dense canopy of mixed hardwood 

165 with some hemlocks provides cover throughout the watershed. Watershed area above our 

166 study area is 11.8 km2 and landuse in the area is limited residential with some farming. 

167 Average stream width of the WB is 4.5 m and is between 1-3 m for the tributaries. Water is 

168 stored in two of the streams; a drinking water reservoir is upstream of the WB, and a large 

169 beaver dam complex is above OS (Fig. 1). OL and IL were free-flowing during the course of 

170 the study. 
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171 We deployed four temperature loggers (± 0.1 C; Onset Computer Corporation, Pocasset, 

172 MA, USA, and ± 0.05 C; Solinst Canada Ltd., Georgetown, ON) in permanently watered 

173 sections of the study area. All loggers recorded data every 15 minutes throughout the year. 

174 The logger in the WB was deployed 1998 to 2013 and the loggers in the tributaries were 

175 out from 2002 to 2013. We do not have continuous air temperature measurements from 

176 2002 to 2013, so we used air temperature estimates for our study area from Daymet 

177 (http://daymet.ornl.gov/). For the years that we do have West Brook air temperature data 

178 (2008-2013), the relationship between West Brook and Daymet air temperatures was 

179 strong (p-value < 10-16, r2 = 0.91), suggesting that Daymet air temperatures are a good data 

180 source for the study site. Additionally, stream water is thermally controlled by energy 

181 sources over a large area, so the air temperatures in Daymet may have a stronger 

182 relationship with water temperatures compared to any local, single-point air temperature 

183 measurement.  Stream flow was estimated using a flow extension model (Nielsen, 1999)

184 based on data from a nearby USGS stream gage (Mill River, Northampton, MA, U.S.A.). See 

185 (Xu, Letcher & Nislow, 2010) for details.

186

187 Statistical analysis

188 Descriptive statistics. As a coarse comparison of daily water temperatures, we calculated 

189 correlations among sites. We also explored patterns in water temperature over time and 

190 among sites by comparing cumulative residuals from a spline fit to all the data (function 

191 gam() in R, Fig. 2). We calculated residuals for each water temperature data point and then 

192 developed empirical cumulative curves over days of the year for each year and site 

193 combination. 

194 Breakpoints. The goal is to develop a robust model for the relationship between mean daily 

195 water and mean daily air temperature. A key limitation in developing this relationship is 

196 that lower water temperatures in the winter are bounded near 0 ⁰C while air temperatures 

197 are not. This means that water and air temperatures can become decoupled when air 

198 temperatures are cold resulting in only a weak relationship, at best, between water and air 

199 temperature. In contrast, as air temperatures warm in the spring and before they get too 

200 cold in the autumn, water and air temperatures can be synchronized (Fig. 3 above), 
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201 suggesting the possibility of a strong relationship between water and air temperature 

202 during the synchronized portion of each year.

203 The key to the approach is identifying a breakpoint in the spring when water and air 

204 temperature become synchronized and a breakpoint in the autumn when temperatures 

205 become desynchronized. To identify the synchronization breakpoints we calculated a 

206 simple index (waterT � airT)/waterT (waterT > 0), where waterT was mean daily water 

207 temperature and airT was mean daily air temperature (Fig. 3). This temperature index 

208 (tempIndex) approaches 0 when water and air temperature are similar and is very 

209 different from 0 when temperatures diverge (Fig. 3). While water and air temperatures are 

210 synchronized, tempIndex flattens out (Fig. 3b), providing the opportunity to identify the 

211 beginning and end (breakpoints) of the flat period. 

212 To identify the spring and autumn breakpoints, we used a runs analysis that determined 

213 the first (spring) and last (autumn) day of the year that the tempIndex was consistently 

214 within the flat period (Fig. 3). We established the range of tempIndex values that 

215 comprised the flat period by calculating the 99.9% confidence interval (CI) for tempIndex 

216 using the middle 150 days of the year (late April to mid-September). The middle 150 days 

217 of the year were always within the flat period based on visual observation of tempIndex 

218 plots. Separate CI values were calculated for each year and stream. For the breakpoint 

219 estimation, we used a moving average for tempIndex with a centered 10-day window to 

220 help stabilize tempIndex values near the breakpoints. Temperatures were considered 

221 synchronized when 10 consecutive days of the moving average fell within the 99.9% CI. 

222 Beginning on day 1 and moving towards day 150, the first time 10 consecutive days were 

223 synchronized was used as the spring breakpoint and we moved from the end of the year to 

224 day 150 to establish the fall breakpoint. Numbers of days in the synchronized period for 

225 each stream and year are shown in Table 1.

226 We evaluated trends in fall and spring breakpoints by running three linear models with 

227 breakpoint day of the year as the dependent variable and year alone or year + stream or 

228 year * stream as independent variables. We estimated AIC to determine the most 

229 parsimonious model.
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230 Water temperature model description. With breakpoints established for each year and site, 

231 we modeled the relationship between water temperature and air temperature for the 

232 synchronized period using a hierarchical linear autoregressive model with a cubic trend 

233 across days within a year and covariation among sites. We fit the model using a Bayesian 

234 approach.

235 Observed water temperature  for each site (s; ), (��,�,� ) �1 = ��, �2 = ��, �3 = ��,�4 = �� 
236 day of year (d) and year (y) was assumed to derive from a normal distribution with mean 

237  and standard deviation sd (residual model error):��,�,�
238 Equation 1  ��,�,� ~ �(��,�,�, ��)          

239 We used a non-informative uniform prior [0,10] for sd. We modeled the mean with a linear 

240 trend ( ) adjusted by an AR(1) autoregressive coefficient ( ) on the residual error ��,�,� ��
241 from the previous day: 

242  Equation 2��,�,� =  ��,�,� +  ��(��,� ‒ 1,� ‒ ��,� ‒ 1,� )
243 We placed a hierarchical structure on :��
244  Equation 3�� ~ �(���,���) �( ‒ 1,1)

245 where site-specific  were drawn from a truncated normal distribution with mean  and �� ���
246 standard deviation  Values for  were truncated to keep them within the admissible ���. ��
247 range for a correlation. Priors for the mean and standard deviation were non-informative; 

248 , and  (an upper limit of 2 for  is non-informative for the ��� ~ �( ‒ 1,1) ��� ~ �(0,2) ���
249 truncated data). 

250 When observed temperature data were not available for the previous day (beginning of a 

251 series or following a break in the series) we modeled the mean without the autoregressive 

252 component:

253   Equation 4��,�,� =  ��,�,�
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254 We modeled the linear component with a combination of fixed and random effects:

255 ��,�,� =  � + �1��,�,� +  �2��,� ‒ 1,� +  �3��,� ‒ 2,� +  �4��,�,� + �5��,�,� ∙ ��,�,� + �6:8� + �9:11

256  Equation 5� ∙ ��,�,� + ��
257 where  is the overall intercept, the  are the coefficients for the fixed effects (T is mean � �
258 daily air temperature, F is mean daily stream flow, s is site) and  represents random ��
259 effects among years. Priors for the  were independent and non-informative, . �1:11 �(0,100)
260 represented random effect temporal trends (cubic) across years where:�� 
261  Equation 6�� = �� + �12,���,�,� + �13,�� 2�,�,� + �14,�� 3�,�,�
262 For convenience, this equation can be written in matrix notation as

263 Equation 7�� =  ��,�,�Β� 

264 where X is a data matrix with  columns (  = 4; the number of year-level predictors) with � �
265 the first column a vector of 1�s for the intercept and By is the y x  matrix of year-level �
266 regression coefficients.  Priors for the mean were non-informative, with

267  Equation 8Β�~���(��,Σ)

268 where  is a vector of length , representing the mean of the �� = (��, ��12,  ��13, ��14) �
269 distribution of intercept and slopes. The  covariance matrix is represented by  where � � � Σ
270 the variance of each regression coefficient is on the diagonal and the covariance on the off-

271 diagonals. The hyperprior for the means were non-informative with  and ��, = 0 ��12,  ��13, 
272 . Standard deviation priors were also non-informative and were drawn from ��14~�(0,100)
273 an inv-Wishart distribution:

274  . Equation 9Σ ~ ��� ‒ ���ℎ(����(�),� + 1)

275 Parameter estimation

276 We used the program JAGS (http://mcmc-jags.sourceforge.net) to code the model and to 

277 draw posterior samples of the parameters (see supplemental material for JAGS code). We 
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278 called JAGS from R (3.1.2) using the package �rjags� (V 3-14)(Plummer, 2014). We ran three 

279 chains with 1000 burn-in and 2500 evaluation iterations. Chains were thinned to keep 

280 every fifth iteration. We checked convergence using the �potential scale reduction factor� 

281 (Brooks & Gelman, 1998) from the �coda� package in R (Plummer et al., 2006) and also 

282 assessed chains visually.

283 Model assessment

284 Goodness of Fit and prediction. We assessed goodness of fit in two ways. First, we compared 

285 observed and predicted values for the complete dataset. Second, we ran a series of cross 

286 validation tests where we randomly left out a portion of the water temperature data, 

287 estimated parameters with the remaining (training) data and compared predictions of the 

288 left out (testing) data to original values. This involved leave-p-out cross-validation where 

289 we randomly left out a proportion (p) of the data, where p = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 

290 0.6, 0.7, 0.8. We ran 10 replicates for each value of p. For each condition, we calculated the 

291 root mean square error (RMSE) of the residuals for the training and the test data sets. 

292 Missing data

293 We also ran a series of tests to ask how the quantity, timing, and location of missing data 

294 influenced model performance (estimation and prediction). These tests can be used to help 

295 understand performance and to help design monitoring strategies. This set of analyses 

296 differed from the leave-p-out cross-validation (above) because data were not left out 

297 randomly. Rather, consecutive days of data were left out, either within a year or across 

298 streams, reflecting the character of missing field data.

299 Quantity: To evaluate how increasing the number of sampling days within a year affects 

300 estimation and prediction, we left out increasing numbers of days on either side of the 

301 median sampling date for each stream and year combination. Specifically, we started with 

302 complete data and then conducted nine sets of runs where we left out data 15·d days from 

303 the beginning and 15·d days from the end of each time series (where d = 1 to 9), generating 

304 shorter time series by 30 days for each scenario.
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305 When: We assessed how changing the timing of missing data affected predictions by 

306 shifting the window of available data from the beginning to the end of the synchronized 

307 period. To do this, we left out data for all but 30 consecutive days at a time for 13 non-

308 overlapping scenarios with scenario one starting at day of year 70 and scenario 13 starting 

309 at day of year 310. 

310 Where: To evaluate how well the model predicted stream temperatures when data were 

311 missing from one or more streams, we ran the above analyses leaving out data yearly from 

312 all streams or just the West Brook. For years with data just from the West Brook (1999 � 

313 2002), we removed all data a year at a time. For years with data from the tributaries and 

314 the West Brook (2003 - 2013), we either removed all the data for each year (all four 

315 streams) or just the data from the West Brook for each year. Removing all the data for a 

316 given year tests how well the model predictions work when there are no data for the year 

317 (but there are data for other years), while removing data for just the West Brook tests how 

318 well predictions work when data are missing for a stream (but there are data for other 

319 streams and years).

320 For all tests, we compared RMSE of the residuals for the test (left out) data to the RMSE of 

321 the residuals of the full training set (base case).

322 Results

323 Descriptive statistics. Evaluation of the descriptive statistics suggested that water 

324 temperatures were similar for OL and IL and for WB and OS and that the streams appear to 

325 be warming over the duration of the study. Correlations of daily water temperatures 

326 among the four sites were all between 0.96 and 0.97, except for the correlation between OL 

327 and IL (0.99). Patterns in the cumulative water temperature residuals were generally 

328 similar for WB and OS, with cooler years in the beginning of the time series and warmer 

329 years later (Fig. 4). OS demonstrated the warmest temperatures, especially in 2010-2012. 

330 Patterns were remarkably similar between OL and IL, also demonstrating generally cooler 

331 temperatures earlier in the data time series (Fig. 4). Monthly distributions of water 

332 temperature were highly variable across years and streams (Fig. A1).
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333 Parameter estimation: Potential scale reduction factor (R-hat) values for all parameters 

334 were less than 1.01, indicating good convergence (Brooks & Gelman, 1998). Parameter 

335 estimates gave an overall mean of 15.1, with strong air temperature effects (1.52 unlagged, 

336 0.20 lagged 1 day, 0.15 lagged 2 days), a positive effect of stream flow (0.36), and strong 

337 site differences (OL = -0.50, OS = 0.59, IL = -0.54) (Fig. 5 and Table A1). The autoregressive 

338 mean equaled 0.79 and there was little variation in the autoregressive terms among sites 

339 (Fig. 5). The estimate for residual model error from Eq. 1 was 0.77. 

340 Model assessment: Goodness of Fit and prediction. Using the full dataset, predicted values 

341 were very similar to observed values (Fig. S2). The slope of the relationship was 0.99 (s.e. = 

342 0.0064) with an intercept of 0.15 (s.e. = 0.089) and an R2 of 0.98. Overall RMSE was 0.59 ± 

343 0.09 (Table 2). For the cross-validation tests where we randomly left out 30% of the data, 

344 the RMSE increased to 0.69 ± 0.003 for the training data and to 0.86 ± 0.010 for the test 

345 data (Table 2). 

346 Across a broader range of data randomly left out (0 to 0.8), the RMSE for the test data 

347 increased approximately linearly with a 0.025 increase in RMSE for each 0.1 increase in 

348 proportion of data left out (r2 = 0.98; Fig. S3). RMSE for the training data set was largely 

349 insensitive to the proportion of data left out and had a mean value of 0.86 (s.d. = 0.016, Fig. 

350 S3).

351 Break point trends. Break points appear to be getting later in the year in the fall and earlier 

352 in the year in the spring (Fig. 6). In the fall, delta AIC values for the linear models were all 

353 within two so we selected the simplest model (year only). In the spring, the delta AIC value 

354 for the simplest model was 5.2 so we also selected the simplest model (year only). Both 

355 seasons showed significant changes in breakpoints over years (estimate = 1.33, F (1,40) = 

356 4.68, p-value = 0.036 fall; estimate = -1.61, F (1,40) = 9.13, p-value = 0.0045 spring), but 

357 year explained only 10% (fall) or 19% (spring) of the variation in the relationship. The 

358 parameter estimates indicated that breakpoints are 1.6 days earlier in the spring and 1.3 

359 days later per year in the fall, generating an estimated widening of the breakpoint window 

360 of 2.9 days per year.

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1578v1 | CC-BY 4.0 Open Access | rec: 10 Dec 2015, publ: 10 Dec 2015



361 Trends in cubic functions. Predicted mean water temperatures based on the cubic function 

362 (Eq. 7) varied among years (Fig. S4), mirroring the general trend in the raw data (Fig. 2). 

363 Yearly maximum water temperature (white dots in S4) increased over the course of the 

364 study (F=5.34, df=1,13, p-value=0.037, R2 = 0.24), with an estimated annual increase of 

365 0.063 °C (Fig. 7, above). In contrast, the day of year of the temperature maximum did not 

366 change over the course of the study (F=0.030, df=1,13, p-value=0.86)(Fig. 7, below).

367 Missing data: Quantity. Adding more data to either side of the median date improved 

368 predictions of the test data (filled circles in Fig. 8). The slope of the regression (-0.46, s.e. = 

369 0.035) indicated that a 10% increase in data resulted in a reduction in RMSE of 0.046.

370 Missing data: When. The timing of data availability had a threshold effect on RMSE, with 

371 relatively high and variable RMSE before day 160 and consistent lower RMSE after day 160 

372 (triangles in Fig. 9).

373 Missing data: Where. Compared to the base case (all data included), leaving data out of the 

374 estimation one year at a time resulted in a mean increase in RMSE of 0.48 °C when just the 

375 WB data were left out and a mean increase of 0.57 °C when data for all four streams were 

376 left out (Table 2). 

377 As the amount of data was increased on either side of the median date, RMSE increased less 

378 from the base case when data were available from the other three streams than when data 

379 were not available for any of the streams. The slope of the relationship between the 

380 proportion of days included in the training data and the difference in mean RMSE was -0.46 

381 when just the WB data were left out and the slope was -0.63 (s.e. = 0.20) when data from all 

382 streams were left out (Fig. 8). The slopes suggest either a 0.046 or a 0.063 decrease in 

383 RMSE with a 10% increase in days included in the estimation.

384 When data were available for only 30 days, but the 30-day window of availability varied 

385 across the year, the presence of data from the other streams eliminated the variability in 

386 RMSE across scenarios (compare circles to triangles in Fig. 9). The resulting increase in 

387 RMSE was about 0.38 across 30-day window scenarios when data were present from other 

388 streams.
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389 Discussion

390 We present a statistical model that accounts for many issues that can make stream 

391 temperature estimation difficult. Our model limits analysis to days when air and water 

392 temperature are synchronized, accommodates hysteresis, incorporates time lags, can deal 

393 with missing data and autocorrelation and can include external drivers. The result is quite 

394 low bias with complete data (RMSE = 0.59 °C), and bias remains low (RMSE <1 °C) when 

395 data from streams or years are missing. While we evaluated model performance for a 

396 single small stream system, it is straightforward to extend the model to a broader spatial 

397 scale to take full advantage of the rapidly increasing amount of available stream 

398 temperature data.

399 A key feature of our model is a flexible way to identify the portion of days spring-to-fall 

400 when stream and air temperatures are synchronized. The air-water temperature 

401 relationship breaks down during the winter, primarily, due to phase change 

402 thermodynamics, insulating ice cover, snow melt, and other physical processes. Previous 

403 researchers have omitted modeling winter temperatures or focused solely on summer 

404 temperatures (Kanno, Vokoun & Letcher, 2013; e.g. DeWeber & Wagner, 2014; Snyder, Hitt 

405 & Young, 2015). However, defining the �winter� period that causes deviations in the air-

406 water relationship depends on the conditions in a specific year and location; therefore, just 

407 excluding the winter months based on calendar dates (21 December � 20 March in the 

408 northern hemisphere) is an imprecise cutoff with the potential to bias the model and the 

409 resulting inference. For example, just as the amount of snow and duration of ice cover 

410 differs at 40o and 45o latitude, the physical properties that affect the air-water relationship 

411 vary annually and from one location to another depending on the exact landscape 

412 characteristics of the site, even when compared to nearby locations (Lisi et al., 2015). 

413 Additionally, taking the opposite approach and limiting analyses to the summer period 

414 excludes large amounts of data and prevents inference during other times of the year, 

415 which are important in biological and biogeochemical processes. Our method of calculating 

416 the period of the year where the air-water relationship is synchronized alleviates these 

417 issues of arbitrarily defining the winter period while maximizing the amount of data 

418 available for modeling linear effects of air on stream temperature.
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419 Modeling the synchronized period of the year also provides additional information about 

420 the spring and fall breakpoints and the duration between them. Despite considerable 

421 random annual variation, we found that air-water relationships were getting synchronized 

422 earlier in the spring and remaining synchronized later in the fall. This resulted in a 2.9 days 

423 per year expansion in the synchronized period of the year or 44 days over the 15-year 

424 study period. This has implications for the growing season (e.g. algal growth, primary 

425 productivity, nutrient cycling), which affects invertebrate (Ward & Stanford, 1982) and 

426 vertebrate growth and development (Neuheimer & Taggart, 2007; Venturelli et al., 2010).  

427 Growing seasons worldwide have been expanding about 10-20 days over the last few 

428 decades (Linderholm, 2006), which is slower than the expansion in the synchronized 

429 period we observed. The relationship between plant-based growing season estimates and 

430 the width of the synchronized period is currently unknown, but application of our model 

431 widely across space could establish this measure as an additional fundamental metric of 

432 climate regime change in cold-temperate ecosystems.  

433 Hysteresis is another challenge when modeling stream temperature (Webb & Nobilis, 

434 1997). We allowed for the potential differences in seasonal warming and cooling with a 

435 cubic effect of day of the year on water temperature (Figs. 2 & A4). This can be understood 

436 as the average expected water temperature on any day of the year during the synchronized 

437 period. Then the effects of air temperature, flow, and site can be thought of as moving the 

438 water temperature away from this mean expectation. We also allow this cubic effect to vary 

439 randomly by year. This has two major benefits. First, it allows the idiosyncratic seasonal 

440 temperature patterns to vary annually (Fig. A4). Otherwise it would be nearly impossible to 

441 have a parametric model describing the effects of a warm, wet spring followed by a cold 

442 summer or three moderately cool weeks followed by one extremely hot week in the 

443 autumn. The second benefit is, by having a random year effect, the pattern of hysteresis is 

444 variable and can be well-described when sufficient data are available, while in years with 

445 little data the predictions move towards the mean across years. This borrowing effect 

446 allows for good predictions even in years with minimal data. An alternative to the 

447 parametric cubic function is a non-parametric smoothed function, but it can be challenging 

448 to estimate hierarchical effects for smoothed functions. Li et al. (2014) present a stream 
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449 temperature model with time-varying smoothed functions which allows parameter 

450 estimates to vary over time. The time varying coefficients can account for variation in the 

451 air-water temperature relationship that is not included in the model. RMSE estimates (~1 

452 °C) from the time-varying model are low and similar to the estimate from our model (0.59 

453 °C). 

454 Using the cubic function also provides information on the smoothed annual peak 

455 temperature and the date of the peak water temperature. We estimated that the peak 

456 temperature increased at a rate of 0.063 °C per year, or 0.94 °C over the course of 15 years. 

457 The stream temperature warming rate is within the range of rates identified in rivers and 

458 streams across the US (0.007 - 0.077 °C per year, Kaushal et al., 2010), but three-fold faster 

459 than the rate identified using simple linear models in the Chesapeake Bay watershed 

460 (0.028 °C per year, Rice & Jastram, 2014). In contrast to the peak temperature, the day of 

461 the year that the peak temperature was reached did not charge during the study. This 

462 decoupling between the value of the peak and the day of the peak suggests that increased 

463 peak temperatures are not a result of a change in the timing of maximum temperatures, but 

464 rather are driven primarily by increased air temperatures. 

465 Changes in water temperature at a given location do not instantaneously follow changes in 

466 air temperature. This is due to the movement of water, heat transfer time, and exchange 

467 with thermally buffered below ground heat sources (and sinks)(Caissie, 2006). We 

468 accounted for this by including one- and two-day lagged air temperature effects. In this 

469 way, today�s water temperature is influenced by a combination of the air temperature 

470 today, yesterday, and the day before yesterday. We found the strongest effect of today�s air 

471 temperature but significant effects of air temperature both the previous two days (Table 

472 A1), suggesting that air temperature effects are operating on the time scale of several days 

473 in our small stream system. 

474 Our hierarchical approach to modeling handles years and sites with varying amounts of 

475 incomplete data. A hierarchical model can accommodate missing data for one year and site 

476 by �borrowing� information from other years and sites (Bolker et al., 2009). If there is 

477 enough local (site and year) information, the influence of other sites and years on 
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478 parameter estimates will be minimal. If data are missing, however, estimates with missing 

479 data will tend (shrink) towards the hierarchical mean (Gelman & Hill, 2007). We evaluated 

480 how missing data influenced prediction bias across years and sites. When data for a single 

481 year and all sites were left out, bias (increase in RMSE) was higher (+0.57) than when just 

482 the West Brook data were left out (+0.48), demonstrating how data from nearby streams 

483 can inform estimates. It will be important in the future to identify the strength of the spatial 

484 decay function to understand how close sites (on the network) should be to allow effective 

485 information sharing.

486 We also evaluated how missing data within years influenced predictions. First, we added 

487 data from the middle of the year in both directions and found that a 10% increase in data 

488 resulted in approximately a 10% improvement in RMSE. Clearly, more data during the 

489 synchronized period will provide better predictions, but predictions can still be reasonable 

490 with limited data during the year. This may be especially true when data from more nearby 

491 streams are available, as stream temperature monitoring becomes increasingly common. 

492 Second, we evaluated how data availability during the year affected predictions by 

493 retaining 30 days of data and shifting the window of availability across the year. When data 

494 were available from the other three streams, WB predictions with missing data were 

495 insensitive to the timing of available data (consistent 0.38 increase in RMSE). However, 

496 when data from the other three streams were not available, predictions were poorer when 

497 data were only available early in the year compared to late in the year. When data are 

498 available from nearby streams, the local data can help define the annual cubic pattern in 

499 the model, but when they are not available the higher variability in daily stream 

500 temperature in the spring compared to the autumn likely results in some years with cubic 

501 patterns that are a poor fit to autumn stream temperatures.

502 We used a simple autoregressive term to model the temporal autocorrelation in the 

503 residuals. This is critical in a regression-based daily temperature model because the error 

504 at time step i is likely to be correlated with the error at time i+1 due to some small 

505 temporal variation not accounted for by the regression parameters. Any autocorrelation or 

506 patterning in the residuals violates the assumptions of a linear regression model. This is a 

507 classic problem in time series analysis (Shumway & Stoffer, 2006). In our model, the AR1 
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508 term adequately corrected for temporal autocorrelation such that the resulting residuals 

509 displayed homogeneity and were normally distributed. No additional lagging or moving 

510 average was needed in this case, but it would be easy to add these additional ARIMA 

511 parameters to the model if necessary. The estimate of 0.79±0.05 (mean±s.d., Table A1) for 

512 the autoregressive term indicates strong effect of the previous day�s residual on stream 

513 temperature. 

514 Air temperature can be used as the primary variable predicting water temperature in small 

515 streams. However, additional factors can influence water temperature directly or affect the 

516 air-water temperature relationship (Caissie, 2006; Sun et al., 2014). We found that the 

517 effect of air temperature was reduced as stream flow increased (significant negative 

518 coefficient; Appendix A1). This corresponds to our expectations because a larger volume of 

519 water will require more energy to heat and at high flows the streams are generally deeper 

520 resulting in a lower relative surface area in contact with the air. Additionally, higher flow is 

521 often a result of surface and ground water inputs originating over the previous days and 

522 weeks and therefore influenced by heat transfer over that time and less on that day�s 

523 current air temperature. Here, flow was our only external variable. Our model can easily 

524 accommodate additional factors such as forest cover, agriculture, impervious surfaces, 

525 impoundments, and ground water when these data are available and vary over the streams 

526 of interest. The model could also easily be extended to model daily minimum (Hughes, 

527 Subba Rao & Subba Rao, 2007) or maximum (Caissie, El-jabi & Satish, 2001; Li et al., 2014) 

528 stream temperature in addition to the daily mean modeled here.

529 Local variation of environmental drivers at very small spatial scales can have a strong 

530 influence on stream temperatures. For example, ground water input can moderate air 

531 temperature effects in the summer and winter (Poole & Berman, 2001; Kanno, Vokoun & 

532 Letcher, 2013; Westhoff & Paukert, 2014; Snyder, Hitt & Young, 2015). We did not model 

533 groundwater effects because we lack information on the spatial distribution of 

534 groundwater inputs in our small system, but we did observe marked differences in water 

535 temperature across streams (Fig. 4). Water temperatures in the WB and OS were 

536 considerably warmer than temperatures in OL and IL. Stream-specific intercepts reflect the 

537 raw stream temperature data, with a range of 1 °C across streams (�mu.year� parameters in 
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538 Table A1). The most likely explanation for the temperature differences is the presence of 

539 upstream impoundments (Webb & Walling, 1996; Dripps & Granger, 2013); the warmer 

540 streams have either an upstream reservoir with a surface release (WB) or a beaver 

541 impoundment (OS). The cooler streams do not have any impounded water. Even small 

542 temperature differences among streams can have important consequences for production 

543 and phenology of stream biota (Quinn et al., 1994; Miller et al., 2011; Wheeler et al., 2014; 

544 Letcher et al., 2015), reinforcing the value of statistically robust stream temperature 

545 models. 

546 By accounting for many of the issues that make stream temperature estimation difficult, 

547 our stream temperature model provides robust estimates with low error. Most current 

548 stream temperature models do not address all of these issues and generally report higher 

549 error rates, especially models of daily stream temperature. One reason error rates of our 

550 model are low is that we limit analysis to the synchronized period, but this has the added 

551 benefit of generating data for the beginning and end of the synchronized period which can 

552 be very useful for evaluating shifting stream phenology. Our model can also accommodate 

553 missing data which, unfortunately, is common in streams as temperature logger availability 

554 limits data to incomplete spatial coverage and often incomplete temporal coverage within a 

555 year. The structure of our model is flexible enough that a data time series even as short as 

556 10 days could contribute important information in an analysis of multiple (100�s) sites. 

557
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737 Tables 

738 Table 1. Number of days with stream temperature data for each combination of year and 

739 site.

740

Open Large Open Small Isolated

West 

Brook

1999 0 0 0 233

2000 0 0 0 256

2001 0 0 0 230

2002 0 81 0 237

2003 179 183 180 191

2004 214 215 214 222

2005 203 102 200 235

2006 0 83 214 210

2007 192 204 192 0

2008 198 199 197 121

2009 243 251 247 0

2010 245 265 246 273

2011 205 248 205 233

2012 234 237 235 210

2013 218 0 212 226

741
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743 Table 2. Root mean square error (RMSE, °C) for various scenarios described in the text. The 

744 scenarios involved a training dataset and a test dataset (data left out).

745

Scenario RMSE train Test streams RMSE test RMSE 

difference

All data 0.59 ± 0.09 - - -

30% data 

randomly 

left out

0.69 ± 0.003 All 0.86 ± 0.010 0.17

For each 

year, West 

Brook left 

out

0.59 ± 0.09 West Brook 1.07 ± 0.26 0.48 

For each 

year, all 

streams left 

out

0.59 ± 0.09 All 1.16 ± 0.35 0.57 

746

747
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748

749 Fig. 1. Map of the study area. Dots indicate locations of temperature loggers and shading 

750 represents elevation (range approximately 100 m -250 m).

751  
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752  

753 Fig. 2. Water temperature data (daily means) from all sites and years overlain by a spline (white line).

754
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755

756 Fig. 3. Examples of raw air (red) and water (black) temperatures from the WB (above) and the temperature index (below) 

757 used to calculate the temperature breakpoints (vertical lines). Horizontal lines in the lower panels are the 99% confidence 

758 intervals of the temperature index for day of year 125 to 275. Vertical axis on the lower panels are truncated to -20 to 20.

759
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760

761 Fig. 4. Cumulative residuals from the spline in Fig. 2 for each site and year combination. Curves on or near the horizontal line 

762 indicate �typical� years whereas curves above the line indicate warm years and below the line indicate cool years.
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763

764 Fig. 5. Parameter estimates from the stream temperature model. �B[x]� stands for the  in Eq. 5, the �ar1[x]� are the  from Eq. �� ��
765 3, and the �mu.year[x]� and the  from Eq. 7, where x=1=WB, x=2=OL, x=3=OS, and x=4=I.���
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766

767

768 Fig. 6. Fall and spring breakpoints across years for the four streams.
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769

770  Fig. 7. Predicted maximum temperature for each year (y axis value of dot in Fig. S4) and predicted day of the maximum 

771 temperature (x axis value of dot in Fig. S4).
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772  

773 Fig. 8. Root mean square error (RMSE) difference from the base case (all data included) for the WB for the cross-validation 

774 analyses changing the proportion of days included in estimation. Estimation data included either no data from any of the 

775 streams for each year (triangles, dashed line) or data from the three other streams but no data for the WB for each year 

776 (circles, solid line).

777
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778  

779 Fig. 9. Root mean square error (RMSE) difference from the base case (all data included) for the WB for the cross-validation 

780 analyses changing the starting day of a non-overlapping 30-d moving window. Estimation data included either no data from 

781 any of the streams for each year (triangles) or data from the three other streams but no data for the WB for each year (circles, 

782 solid line).
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