Multilayered Model of Speech

Andrey Chistyakov*

Abstract

Today there are no grammar systems, which allow the creation of
a fundamentally new word and concept. All existing grammar systems
only work by referring to previously chosen terms, on the bases of which
all definitions are created. Implementation of operation on grammar
systems are introduced for creation of new terms. The main prerequi-
site of the research was the rejection of finding a universal solution,
which is true for any person. Instead of this, all people were divided
into groups according MBTT classification. Each group was expected
to have standard perception of new knowledge. Assessment has been
conducted to each group. A mathematical model was created as result
of the communication. The scheme of dividing words and sentences
into components are shown in the first section of the article. The se-
cond section shows a notation construction from the components and
the notation packing in memory. The third section shows the ability
for conscious memory access (self-action and self-image). As a result,
the model of human speech was structured, in where it is possible to
create new terms from new knowledge independently.

Keywords: Artificial Intelligence; Natural language processing; Speech
recognition

1 Introduction

The problem of human speech modeling has been solved more than once,
but each time it faced paradoxes and contradictions. The scientific approach
was initiated by Boolean algebra, which transgressed into logic of predicates.
The human speech is more complicated than the predicate logic, but at the
same time it is free of paradoxes, which occur at the first or higher orders.
This article is an attempt to solve certain problems by introducing special
restrictions.

Speech analysis will be done in some consecutive stages. We should
create automata, which can work over context—sensitive grammer, at first.
This grammer will be defined in section 2. This definition based on concept of

*Email: andrey.chistyakov@ghoort.com

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

mask, which is responsible to symbol from ingress aphabet. The automata’s
transition function devides on some parts, which has specific logic operations
over its. The main difference with previous studies is the specific function
®, which can represent any class as data and some data as the class. The
section 3 describe the automata’s algorithm. There introduced the simple
context as the set of symbols between two terminals.

We describe the hierarchical system of one-modifying automatas in section 4.
The automata system should recognise symbols in context-sensitive gram-
mer. Analogies for the hierarchical system exists in scientific literature, but
the article has the significant difference. The difference is in memory system
with selfmodifications by the operations over the classes from section 3. The
selfmodification ability has some special restrictions because we need to pass
over infinite looping of any logical algorithm, related to Gédel theorem.

We now turn to generalized grammar in speech, generally independent
of a specific language. Basic elements of speech are lexemes, they are the
words with a meaning. We will use following lexemes - Nouns, Verbs and
Adjectives. Nouns and Verbs are clear, because they exist in all human lan-
guages. Nouns names objects and subjects, Verbs - actions between them.
Adjectives marks qualities and quantities. Lexemes do not exist by them-
selves, but only being bound to sentence with subjects, predicate, and other
words, including function words.

Adjectives represent some qualities of the object, which a person initially
receives from feeling an interaction with an object, so it is possible to say that
adjectives are linked with feelings. Verbs represent actions, which are perfor-
med by a person or any other subject. Those actions are usually performed
through muscle reflexes. Therefore Verbs are linked with muscle reflexes.
Nouns serve as markers of feelings/reflexes triggers. It will be shown from
which they originate. Basic sentence are some stable sequences of ingress
and egress signals. In this sense, words or lexemes, as letters sequences, are
also lower level sentences.

But speech consists of not only egress and ingress sentences, it also in-
cludes the human memory. Memory is presumed to be multilevel, objectual,
and context oriented. It contains complex, processed reflexes. Memory is
arranged in a hierarchical graph, its nodes are classes and objects. Class
is a Noun collection of Adjectives and Verbs. Object is an implementation
of class. Also classes can be represented as data and they may be included
in the object. Based on this feature, classes can be converted between each
other and packed into memory.

A concept of option is introduced for definition of memory work. This is
the main innovation of the concept of the proposed model. In the option’s
scope there will be two possible options of information decryption. Both of
these concepts are not equivalent and they can exist in two different people,
but not together in the one person. Every option is fixed randomly, during
the creation of the brain, and will not change during the whole lifetime of

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

the person.

A total of four independent options will be introduced, which means
that a possibility of 16 different options of human speech are possible in this
model. It is the most significant difference from all other attempts of creating
human speech modeling mechanisms. It is presumed that this division was
made possible in the result of evolution, for the interpretation of all incoming
information, while every individual can intake only a part from the "raw"
flow, to process and transfer to other individuals, prepared in way which can
be used.

The possibility of introducing optionalization is grounded on different
psychological theories, based on Karl Jung’s archetypes [Jun71], primarily
Myers—Briggs Type Indicator [MM95].

For the modeling of the brain I will use terms and principles from Compu-
ter Science, such as addressed memory, search operations of certain symbols
in sequence and Boolean operations. Names for some terms are taken from
Socionics, a special discipline about typology of the human personality.

2 Basic Definitions

Lets introduce basic definitions for the beginning.

Definition 1. Let a point be a pair from an address, where the address is
a natural number, and value equal to 0 or 1.

Definition 2. Layer is one-dimensional finite array of points, with consistent
and continuous numbering of addresses from 0 to N, where N is the array
length. The array length is fixed during the working process, but values of
points are variable.

Definition 3. Let the stack be finite, consistent, and continuous array of
layers.

Definition 4. Mask p is a fixed, finite array of a pair (¢, [0, 1]), where 7 are
natural numbers from 0 to V.

It is necessary to clarify that even though the mask is consistent, i.e.
it has no points, which have equal addresses, but all addresses of the mask
cannot be continuous. Mask’s addresses should have gaps, and their meaning
will be discussed below.

Basic operations, in the system of layers and masks, are offset by defini-
tion and by blocking the mask range. Suppose that at some point of time
values, at a layer, are unchangeable. Then it becomes possible to check all
layers, and find a combination of values in the layer, which are represented in
the mask. The least address element, of first point of the layer, appropriates
to the mask, is called begin of block or offset. The last address is called

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

as end of block. The gap between the beginning and the end - including, is
called block of layer. A block of layers always matches to a specific mask.
Operation of finding entry of a mask - is called obtaining an offset.

Block

101112 13 14.15.16]17 18
0{1i1 0i1i0.0[1:0

1:1:0ixix:0

Figure 1: Mask

Requirement 5. Blocks on the same layer should not intersect each other.

Definition 6. Let B be a block of a layer, which consists of serial, continuous
set (bo,b1,...,bm). Then it is possible to define the set of the Boolean
function F(B) of the type f(b;,...,br) — [0,1]. The set §(B) will be closed
under Boolean operations @ (XOR) and & (AND). Let’s call F(B) as set of
Adjectives and the result of these values as quantities.

Block

Adjective

Quantity

Figure 2: Quality and Adjective

Definition 7. Let there be a set of qualities @ = (qo,. .. ¢») and block B.
Then it is possible to define the set of the Boolean function B(Q, B) of the
type f(qo,--- qn,bis ..., b)) — [0,1]. The set P(Q, B) will be closed under
the Boolean operations @ (XOR) and & (AND). Let’s call P(Q, B) as set of
Verbs and the resulting values as actions.

Definition 8. Let’s call the mask set p, as an array of quantities @ =

(qo,--. qn) and an array of actions A, where each element of A is an offset
from the beginning of mask, as Noun

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

Quantities Block

N

l Block

Action

Figure 3: Action of Verb

Definition 9. Let’s call the Noun set N, Adjectives (Ay,...,Ax), and Verbs
as simple class. Moreover, verb for simple class will be the ingress. Verb
will use qualities and blocks as arguments.

We note that an action may be employed, but not on every point of a
layer.

Definition 10. Let’s call a class without any verbs, or adjective, as an empty
class. An empty class will contain only a noun.

Class

Mask <«—— Noun
— Quantities «—— Adjectives

—— Actions «— Verbs
Figure 4: Simple class structure

Under a simple class six operations can be performed:

Noun Specialization Create a new class with a new noun N which equals
to N with additional adjective condition A; = 1.

Noun Argumentation Create a new class with a new noun N’ which equals
to N with additional verb condition V, = 1.

Verb Addition Add to class a new verb V' which equals V; @ V,,.

Verb Multiplication Add to class a new verb V' which equal V; & V,,.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

Adjective Addition Add to class a new adjective A’ which equals to A; @
A

Adjective Multiplication Add to class a new adjective A’ which equals to
A& A,

Due to finiteness of the quantity of verbs and adjectives in the class, it is
possible to introduce the specific bijective function ®, such that it will display
a class of operation to the layer.

If for a new adjective creation there is a unique operation, then the
creation of the new verb has an internal ambiguity. It is because for a new
verb we need to find a new point of action. In order to solve the ambiguity,
we need to show one or more active adjectives, which are changed by the verb
action point. The action point should be an argument of all active adjective
and should not be an argument of all others.

Definition 11. Let’s set classes C and six operations between them. There
is a fixed finite array of elements (Cy,...,Cx), which are called as basis.
Now we can introduce the subset of classes C C C, which can be created from
the basis, by a finite count of operations. And we can introduce bijection ®
from C to the natural number set N. Let’s call it as overclass mapping.

The specific form of & mapping is not important for the further conside-
ration, note that it is invariant during the whole life.

3 Layers Working

The mind system is made of stack and common objective memory. First,
let’s describe layers and their interactions. Null or signal layer is responsible
for working with sensory and motor neurons. They excite and inhibit under
the influence of the external environment. The current job does not put
a purpose to solve the problem of response, so we will not consider the
generation of egress signals.

Let’s consider layers by induction. There are three layers, ¢+ 1, i +2 and
i+ 3. For brevity let’s call them as 1st, 2nd and 3rd, and remembering that
they are not absolute numbers of layers.

On the 1st layer, there seems to be an excitement of elements. Thereafter,
regularities are detected on a layer by overlaying noun’s masks. Let all
possible nouns be detected and the whole layer will be covered by blocks.
It is not necessary to block all points of layer, some points can be free from
blocking.

After this, on the 2nd layer, masks are forcibly excited of the same nouns
in the same order, but without duplicated elements and gaps. i.e. if on the
1st layer nouns created in a sequence of (A, B, B, B,C,C, D, A,C), then at
the 2nd layer there will be a sequence of (A, B,C, D, A, C).

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

On the next stage, the excitement state will be transmitted to the 3rd
layer, also by detecting the noun’s masks. Let the sequence (A, B, ..., A,C)
be responsible for the noun F, and this sequence be called sentence of F.
It is the simplified version, in any case the nouns which will be important of
2nd layer, are those which were covered in the ask of the 3rd.

Requirement 12. Masks, which are forcibly excited on the layer, will not
be detected on it.

5 3-rd layer
D detected

AT BICI excited 2nd layer

AT BIBIBICI

1-st layer

Figure 5: Object detection

Definition 13. Let’s call the simple class example which has specific quali-
ties and actions as simple object. Every simple object is linked to the simple
class, on which it acts. In the current examination objects were created on
1-st, 2-nd and 3-rd layers.

Definition 14. Let’s call the set of the simple classes and simple objects,
which are denoted by the classes, as 0-level context. Let’s call the pair of
simple class and 0-level contexts as complex class 1-level.

Context is made on the 3rd level, made in the 1st and 2nd levels, in
which further changes are contained. Now the 2nd layer controls the classes
of context and 1st layer controls the objects.

Let’s consider the behavior of objects of the 1st layer. They are in one
context of 3rd layer, so they are connected together. In the beginning, they
load their qualities from appropriate blocks of the 1st layer. In pseudocode:

for all object o in context do
for all adjective a in o do
let g, is quality of a
let B(o) is block of o
qa <+ a(B(0))
end for
end for

Then placement of verbs happens. Let the verb f acts on the class D, and its
quantities (qo, . - ., qn) be its arguments. Let B(d) be the block of the object
b. Then we should find classes with required quantities in context. Let class

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

C}p contain such quantities. Then objects of the class (' act on each object
d of class D:

d— d = f(B(d),b;) for each i € (0,...,k)

In pseudocode:

for all object d in context do
for all verb v in d do
let a, is action of v
let B(d) is block of d
let qualities (qo, ..., qx) are linked with v
for all object b in context do
let Cy is a class of b
if Cp has qualities (qo,...,qr) then
a, — v(B(d),b)
end if
end for
end for
end for

It is very important to note that if verbs change the state of the block,
instead of adjectives which change the objects, then it affects the following
verb’s actions.

4 Context Working

Let’s introduce a series of definitions by induction:

Definition 15. Let’s call a pair from the set (N — 1)-level a complex class
and the set (N — 1)-level a complex objects as N-level context. Let’s call
the pair from a simple class and set of pairs of (N — 1)-level complex objects
and (N — 1)-level contexts as N-level complex class.

Complex Class N-level

—Simple Class

Context (N-1)-level

——{Complex Classes (N-1)-level}
——{Object Map}

Figure 6: Complex Class

In previous section there was a mind stack which contained 3 layers.
Later we will consider a mind stack which will contain 6 layers. It this case

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

verbs actions can be applied on 4 lower layers. Let us understand what will
happen to them sequentially.

Suppose that required masks were identified at the lowest layer, and
after that masks were found on all layers, including the 6th layer. Now let’s
consider what happens at the 2nd layer. Because contexts are found on the
4th layer, the 2nd one has objects with adjectives and verbs. So excitation
will spread onto the 2nd layer. The points on the 2nd layer are responsible
for classes on the 1st layer. And due to existence function ®, which connects
data with class operations, modified classes will act on the 1st layer rather
than original ones.

Since basic classes were in a global context, they were chosen from com-
mon memory of the system. So the modified classes on 2nd layer are already
local ones for the their contexts. The local classes are placed into context and
completely replace the lower layers for global classes with the same masks.
Further operations on local classes only fulfill this context.

The next stage begins when the 5th layer happens. After this, it is
possible to modify objects on the 3rd layer. So what happens when object
with attached context are changed? There are 2 options: current context is
modified or new empty context is created. Mentioned above, every object
has qualities and actions. So it is possible to have two situation, each with
its own named:

Static New context will be created if any quality on object is modified.
Object with old attached context be placed into memory and will be
available when specific qualities combination is met. item[Dynamic|
New context will be created if any action on object is modified. Object
with old attached context be placed into memory and will be available
when specific actions combination is met.

In every mind system only one version of the system happens. It does not
change during the lifetime [MM95]. Such a case is called option, this option
is between static and dynamic. Let’s call it context option.

In the layer system, described in the previous section, the upper layer
creates classes on the lower one. In context memory the reverse process
takes place, where upper class is modified by a set of classes from the lower
level. For that there are so-called spontaneous class operations. Every
mind system has 3 spontaneous operations, one for nouns, one for verbs,
and one for adjectives. Let’s introduce appropriate options:

For nouns:

Ratio Noun Specialization operation is spontaneous.
Irratio Noun Argumentation operation is spontaneous.

For verbs:

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

Logic Operation XOR for verbs is spontaneous.

Ethics Operation AND for verbs is spontaneous.

For adjectives:

Intuition Operation XOR for adjectives is spontaneous.
Sensorics Operation AND for adjective is spontaneous.

Now it is possible to show how spontaneous operations work. First, we
introduce some notations. Let’s represent an object by the symbol as O
and classes by C. Upper index of classes and objects will represent a level.
Apostrophe in classes C’ will represent what class is modified with the respect
to the global class of C.

The 3rd layer has an object O with a class C’f/. The object Of has con-
text within which there are objects {O?} and the classes {CZ',C% ..., CIQVI}.
The task is to modify the class Cio’/ and the {Cg,, 012/, e C'JQV/} so that the
methods (verbs and adjectives) of Cf'” could create lower level classes, and to
modify lower level classes, so they could create objects {O?} So the objects
have to be immutable and classes in context could be modified. Later we
will describe the algorithm step by step. But it should be noted that the
algorithm creates not the only result, but many available results, and only
the final step will choose the most appropriate one.

Algorithm Begin

Step 1 Described previously, there is a bijection ® between natural num-
bers and class, based on a global basis. Now consider the inverse transforma-
tion of @1, which presents the class as ones and zeros. Let call it as binary
representation of class. We will give the table a conventional example of the
changes taking place.

c?'" 10101010...10
c?' 11101010...11

C%' 10101110...00

Step 2 Binary representation of all classes in context is modified by using
noun spontaneous operation with condition that modified classes should des-
cribe all of its objects {O(Q), ceey O%/[} in same context. The aim is to find same
parts in all classes of the binary representations. All later steps will only be
about the differences of binary classes representations.

cZ’ 0101 001...10 10
c?” 0101 101...11 10

c3” 0101 010...00 10

10

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

Step 3 Let’s move to the class 013/. It has some adjectives, each of which
take on a binary representation, and as a result gives meaning of quality.
It is necessary to create new adjectives via adjective spontaneous operation,
which will distinguish all different binary parts through C’f’/ qualities.

q0,4q1, - - -
¢z’ 0101 001...10 10
c?’ 0101 101...11 10

S
270101 010...00 10

Step 3.1 An additional step will be taken into action, if all possible al-
gorithm results are considered invalid. In this step it is possible to introduce
new adjectives which directly represent bits from layers to new qualities.

Step 4 Before this step, let’s remember that all classes in contexts were
created from global contexts, by a series of verbs transformations. It is very
important to note that verbs from C%I were used sequentially, when action
from one was argument for another. Now it is necessary to do so what lower
class will be created faster.

Let there be two verbs V7, — A; and Vo — As, which create actions A
and As. Also Ajp is an argument for V5. Therefore the verb V3 o Vo — Ag
leads to the required value of As. A subtask of this step is to find a way,
how it is possible, by using spontaneous verb operation, to create new verbs
without intersections, by its arguments, and the ability to create classes for
its contexts or parts of them.

Step 4.1 is also an additional step for invalid results. Let there be
context attached to Of and it be contained in the context of OF. And let
this context detect sentences where the quality from O3 has always the same
value with the bit z from the block of OF. Then in the mind, after a few
tries, the system will create a verb, which connects quality to action over bit
T.

Step 5 All previous steps gave some set of possible realizations of class
Ci;?. But the final version will be chosen after a uniqueness and an accuracy
check. The memory system waits when the object O% will be loaded to
layer. The upper layer will contain the sentence with OF. The lower layer
will contain a set of sentences with the set of that class. If all lower classes
are in proposed realization, then it will be chosen as C’f’” instead of 013/.

Algorithm End

The process is simplification of memory system, it reduces the whole
classes count and creates new verbs and adjectives. It called as abstraction.
It is important to note that division into spontaneous and non-spontaneous
operations required for solving problems with infinite looping. If count of
nouns, verbs and adjective is finite then system will have finite count of there
derivatives by spontaneous operations. The different combination of context

11

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

creation and spontaneous operations options give 16 variants of behavior of
the entire system.

5 Structure of Input-Output System

Let’s analyze/look at the input-output structure in detail. As we know,
there is a vast amount of signals from muscles and receptors; the overwhel-
ming flow can hardly be directly processed by human consciousness. For
primary processing of the flow there are classical conditionings. They can
be expressed in the following chain:

Stimulus |——| Reaction |— Result

Figure 7: Classical conditioning

The system of all classical conditionings is the dynamic stereotype. The
dynamic stereotype plays multiple roles:

e [t protects the consciousness from the huge flow of information from
all the neurons in the body.

e It takes care of actions where comprehension is not necessary, including
simple reactions like stepping, saying simple sounds, or "hit or run"
reactions.

e As a result of its work, the consciousness, instead of receiving certain
signals, receives whole images, which are recognized at the level of the
dynamic stereotype.

Let’s try to construct a classical conditioning from the suggested model. For
this purpose a special class where all verbs are connected to its qualities will
be suitable. We will call it the conditioning class. A conditioning class
is a deterministic finite automaton. A conditioning class should not only
react to stimuli, but it should send signals to the consciousness. Therefore a
conditioning class is a self-acting class, which processes signals from receptors
and reports about some combinations of the signals to the consciousness.
Therefore, all input-output can be divided into two segments: input seg-
ment and output segment. The input segment receives all signals from al-
ready working conditioning classes; the output segment is a space for gene-
ration of conditioning classes, which will be loaded to dynamic stereotype.
Also it will be possible to determine on the output segment whether a class
is suitable for the dynamic stereotype or not. If a newly generated class
has a verb which requires any external qualities, then the class will not be

12

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

conditioning and will not upload to dynamic stereotype. The algorithm of a
working conditioning class is the following:

Algorithm Begin

Step 1 A conditioning class R uploads to dynamic stereotype.

Step 2 R receives access to motor and sensor neurons, also R receives a
private area in signal layer for its output.

Step 3 R detects images from sensor neurons, influences motor ones,
outputs data to signal layer of the stack.

Step 4.1 If R detects all images successfully, after some time it will be
unloaded from dynamic stereotype by a next command from the stack.

Step 4.2 If R does not detect a signal from sensor neurons (i.e. its mask
failed to apply), it will be forcibly unloaded, and will be interpreted by input
of signal layer as a failed one. Processing of a failed class will be described
in the next section in detail.

Algorithm End

The main function of the dynamic stereotype is automated processing
outside the consciousness. However, there is one more capability of it. After
all, a human cannot only pronounce sounds, but he can think about how he
pronounces sounds. This second option is called internal speech.

Let us examine internal speech in more detail. A human can play out
actions in his head, cause sensations, conduct mental operations, along with
an internal monologue. These mental actions are absolutely similar to ordi-
nary ones; they can cause the same recoil, but do not involve any muscles.
Internal speech is that of a conditioning class which receives all signals from
receptors, but all its out-going actions are connected to the input of the
signal layer, not to muscles.

After examining this ability, we have come to the second feature of the
output — speech direction. It turns out that the output segment of the
signal layer consists of a set of pairs — conditioning class and speech direction.
Speech direction serves for determining where a conditioning class will be
uploaded for work. Speech direction has two options: the internal speech
and the external speech. In the case of external speech a conditioning
class will directly work with signals from muscles and receptors.

Now let us remember that a mentally healthy human being has two
qualities:

e First of all, a human has only a single internal voice;

e Second of all,, the human is able to distinguish an internal voice and
his fantasies from the reality.

Therefore, the internal speech has two important qualities:

Requirement 16. The internal speech can process only a single class.

13

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

Requirement 17. The Output of internal speech is directed to a specially
selected area of the signal layer, that is not intersected with signals from
external speech.

| input |G| output |

! 2 C
n

Dynamic
Stereotype

n

Spacor clal . (o

L

muscles+sensors

Figure 8: Input and output

Internal speech performs a number of important functions which extends
the model:

e Internal speech permits to mentally conduct operations that are not
spontaneous for the memory. For example, it is possible to create a
conditioning class that conducts an operation of verb addition XOR
for an ethical organization of the memory. Using this class does not
substitute for the operation, but a human will have the possibility
to remember some rules that need to be done in certain circumstan-
ces,which will give the right result.

e Internal speech also serves for control of the memory and the stack.
By continuously uploading some information to the signal layer, the
human is able to process the information as detailed as possible.

6 Decisions

The memory model has the algorithm of context packing that is able to
create more complex classes from a set of lower ones. In most cases the
algorithm is multivalued, i.e. it can give multiple results. It has two types
of multivaluency:

e Firstly, multivaluency of operations. This is when it is possible to
create multiple combinations of nouns, verbs and adjectives that are
able to create all lower classes in some circumstances.

e Secondly, multivaluency of data. It is when its impossible to determine
a point of action by the suggested adjectives.

14

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

In order to describe the multivaluency, let us suppose that using the packing
algorithm creates all possible classes. We denote the whole memory tree in an
initial state as 7. In addition, the {p;T,i =1,2,..., N} set will contain all
possible packed trees with all possible packed classes. We will have marked
with p any changed tree T', and index ¢ enumerates all possible variants. In
particular, the packing algorithm acts as the function

T — {pT}

We will call any change a patch. This term presumes that packing generates
N different patches.

Every patch is described by packed class C' and its context. The C
class has more nouns and adjectives than the original C, but class’s context
decreases. Moreover, the creation of a set of {C;} classes with difference in
an action point, is possible. We mark it as a possibility, but the specific
implementation of multivaluency will not be important later. It’s Important
is that there is a finite set of all values in multivaluency.

Ci C
[. I
ol [c] [Patching cl &l ¢
I I
Gl |G G

Figure 9: Patching

However, packing can be applied not only to the original T' tree, but to
any earlier packed tree. Let p;T be packed again, and C, changed at first
stage, will be changed one more time. The result of the packing will be a set
of memory trees {p}piT,i =1,2,...,M}. It will be the second level patch.
We will denote n-level patch as a #"7T.

Consequently, because all patches has all different classes that are don’t
intersect with each other, all possible patches #T" will form a structure like
a tree. We will call the tree the decision tree. The original state of the
memory without any modification is a root of the decision tree; leaves of the
decision tree are final states of the memory with all possible modifications,
let us denote them as 77T

Let us examine the making of a decision. Let’s say, o was the initial
state of the signal layer’s input. We may say that the o applying to the
memory tree T led to the decision tree generation, because o exactly had
additional data, that helped to simplify the original state of the memory T
It proceeded by the following algorithm:

15

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

Class Tree Patch Tree

G,

G, C,

Figure 10: Tree of patches

Algorithm Begin

Before Steps The stack is clear, but the memory has a state as T

Step 1 Data is coming to the input of the signal layer. The signal layer
has a o state; all levels of the stack are filling with decoded data.

Step 2 During the process of filling upper layers’, the memorized classes
are addressed, that are modified according by the information from the o.
The memory tree is now set to T.

Step 3 The Modified state of the memory tree T is packed by sponta-
neous operations. As a result of packing, there is a set of possible memory
trees {m;T,i=1,...,N}.

Step 4 Each of the finished 7;7 memory trees according to the signal,
generates the segment’s condition, which follows the regular algorithm of
creating a response. You can say that the o signal creates more than one
response, but instead a host of possible {x;,i = 1,..., N} responses.

Step 5 The algorithm is branched here.

Step 5.1 If N = 1, i.e., meaning the memory packed in the only possible
way, then the memory will be fixed. A fixing of the memory is replacing the
original T state by the changed one 7T’; and the k response is generated on
the output of the signal layer. The algorithm is finished here.

Step 5.2 If N > 1, there is a set of possible options. Because it is
impossible to generate multiple responses at one time, the following happens.
All possible {r;} responses from all possible packed trees will come to the
signal layer again, but not to the usual output. They all together will come
to the special zone of input; and the memory will be T" again. Let us call
it the special zone, which is responsible for resolution of multivaluency, as
an Ego. The algorithm is recursively iterated here with the new data; the

16

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

return from the iteration will be to the next steps, denoted as post-steps.

Step 5.2 post 1 If the result of the step 5.2 is the k; response, then the
final state of the memory will be m;T.

Step 5.2 post 2 In case none of suggested responses were chosen at step
5.2, but during the data processing the new 7T patch was created and the
patch gave the only one response; then the patch will be chosen as a final
state of the memory.

Step 5.2 post 3 If there is no single response, all data is dropped and
a response is not generated.

Algorithm End

Possible
nitial aChing PRI

State | P
T I
o~ o, \
T

PP,

po,T

Figure 11: All possible versions of memory tree after patching

7 Model Training

Taking a more practical approach to the task will allow us to create a model.
Let us look into a class structure that should contain all data and operations,
where operations should be able to convert to data and vice versa. . It is
shown in the following, more precise, picture:

One of the basic model requirements is the possibility to determine the
same actions and qualities in different classes. The simplest way to solve
this problem is to attach a global noun with its own mask to each action or
quality. Thus, we will be able to reach uniform interaction by connecting
same masks of different classes’ objects. It could be described by the scheme:

Therefore, we should formalize these two processes:

First, the Op operation on the following predicates:

NewPredicate = OldPredicate(AN D/ X OR)Other Predicate

17

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

=
S
0
-~

action

quality 1
quality 2

Figure 12: Class in 2D

where Other Predicate is described by the mu mask of its noun to change
predicatesof current classes.

Second, creation of a new mask for new qualities and actions necessary
for extension of current classes.

Let us remember that a class can be in three states, when it is child on
the stack, when it is parent on the stack and when it is stored in the memory.
Parent state is the simplest one, at this moment class’s object reads qualities
from the lower layer and applies actions to them. It was described above in
detail.

The child state is more difficult than the parent one, it implies that
class itself can change. Operations can be applied to the qualities of verbs
and adjectives; new actions and qualities can be created. In addition, the
child state should be responsive to the static-dynamic option to get access
to different variants of nested contexts in the memory. The easiest way to
express it would the following:

1. Mask of the noun
2. Adjectives in binary format

3. Verbs in binary format

What is important here, is the ingress action points. Action points are
parameters that can be used to change classes by writing values into them.
Every action point has two parts, operational bit and mask of the argument.
If operational bit = 1, then AN D. If operational bit = 0, then XOR.

18

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

Class

— Noun
L Mask
— Verb
—Action

I—Noun describes the Action
— Predicate of the Verb

— Adjective

— Quality

Noun describes the Quality
—Predicate of the Adjective

Figure 13: Scheme of Class

The third state is class’s predicates serialization. Adjective’s serialization
can be carried out as follows:

1. Arguments’ offsets
2. Operations in a binary format

3. Mask of the noun that describes the quality
And verb’s serialization as follows:

1. Masks of nouns that describe adjective
2. Operations in a binary format

3. Offset of the result action point

For the ordering of binary operations we will use Zhegalkin’s polynomial
representation [Zhe27]. Thus, all operations on predicates are stored as
data.

However, the actual difficulty is not classes’ predicates storing but packing
them in the memory. Its meaning is that a parent class should be converted
to generator of one’s nested classes. We have to order children’s masks to
allow operations from the parent class create all required operations. Mo-
reover, there should be multiple variants of nested class’s recombinations, if

19

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

possible. It is possible because the nested classes have already been created
from the global ones. However, it was a multiple-step process.

The most suitable option for development of such methods would be the
genetic algorithm [Fre02]. The following parts are required to define the
Genetic Algorithm:

1. spontaneous operations described earlier; they mix predicates of parent
class for the best match to the test data;

2. fitness function that takes test data and runs it through modified pa-
rentclass to determine the one that generates more nested than others;

3. test data that is various recombinations of masks of the nested classes.

parent class

siblings of the
modified class modified class

[T I |
I

nested classes of the modified class
and all it's siblings

Figure 14: Place of the modified class

The first two parts are already determined; now we need to sort the
required test data. The main difficulty here is that fully functional perfor-
mance requires test data of all siblings of parent class and their nested and
subnested classes. Therefore, generation of test data should be intellectual;
simple recombination of the nested class would not work.

It is suggested that system of neural network be used/ We will call it an
Imaginator. Imaginator is a Generative Adversarial Networks [GPAM™] and
has two parts: a Generator and Discriminator.

The working loop of Generator G is in the following algorithm:

let C is class
let T is tree data for evolution testing
for all class D in context of Grand-Parent of C' do
let Ry are all children of D
let G(Rp) is recombination of Ry
G(Rp) MUST be covered by mask of D
G(Rp) MUST pass Discriminator
put G(Rp) to T

20

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

for all unique class P in G(Ry) do
let Ry are all children of P
let G(R;) is recombination of Ry
G(Ry) MUST be covered by mask of P
G(R1) MUST pass Discriminator
put G(Rp) to T'
end for
end for
M (C) are all classes modified by Evolution
apply T to M(C) to get new modified contexts
choose the most appropriate one

it is required that Generator G(R) output corresponds with the mask of
each parent class. However, it is not the only requirement. It is necessary
that the Generator “could” pass the Discriminator. The Discriminator must
ensure that Generator’s output is realistic. For this purpose, the Discrimi-
nator learns on real data, specifically on combinations of nested classes that
appear on the stack during work. The full learning process can be shown as
follows:

1. Discriminator gets data for self-learning from the stack and trains Ge-
nerator.

2. Generator makes test data for Genetic Algorithm.
3. Genetic Algorithm generates patches.

4. If patches are applied to the memory tree, the data from the patch are
considered as good.

5. If patches roll back, the data from the patch are considered as bad.

As the result, we see a chain of the Imaginator and the Genetic Algorithm
that creates patches for the memory tree. In general, the process is as follows:
the Discriminator takes recombinations for learning from the stack and trains
the Generator; The Generator creates test data for the Genetic Algorithm;
the Genetic Algorithm creates changed parent classes that are packed to
patches.

In addition, the Imaginator learns itself during the patch creation pro-
cess. Apart from the standard learning process of the Generator and Dis-
criminator, described above, there is an additional one. Let it be the set
of patches {P;}. If patches are applied to the memory tree, it would be a
changed memory tree. This tree is then tested on the real data derived from
the stack. If during the work flow the system reserves a positive motivation,
then the changes are fixed. If the system does not receive a positive moti-
vation, the changes are dropped. However, besides the positive motivation

21

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

that reinforces the memory, there is pain. If the applied changes result in
the pain syndrome, then {P;} patches are not only fixed, but also go to
the Discriminator’s input as negative; and the Disciminator learns to avoid
them. Thus, the system is configured to prioritize pain avoidance over a
motivational reinforcement.

Prospect theory [KT79] assumes that people intuitively analyze possible
events in the wrong way. Low probabilities tend to be overvalued and the
high ones tend to be undervalued. This effect should be observed in the mo-
del because the Generator creates recombinations of nested classes excluding
the probability they occurrence in the real data. In addition, the overvalua-
tion of negative possibilities should be observed because the pain effects are
applied directly to the Discriminator.

For the sake of completeness, we should introduce one more neural net-
work, the Detector. It is also GAN that contains two parts. The Detector’s
discriminator searches repeating sequences in the stack to create new masks.
The Detector’s generator creates new unique sequences, which would never
appear on the stack, to mark new qualities and actions. The Detector’s
generator learns with the help of its Discriminator.

To give the final definition of the system with Reinforced Learning, we
have to describe the input data and its ways. The continuous working process
should have two types of data: ingress data for routine operations and control
data for approval /rejection of generated patches.

Ingress data come from two sources:

1. Signals from motor and sensor neurons with information from the ex-
ternal world. This is quite a simple type of information and the system
considers it as external. It is called feeling.

2. Signals about total changes in the sets of applied and dropped patches.
It has no precise knowledge about the information from the patches,
but only indicators that show whether a patch was applied or dropped
and in what order. This type of information is considered as internal.
It is called emotions.

The control data do not pass into the model directly. However, they
affect the learning process. There are two types of control data:

1. Pleasure. If the system receives pleasure, it applies a patch and rein-
forces the Generator.

2. Pain. If the system receives pain, it drops a patch and reinforces the
Discriminator.

It should be noted that if ingress routine data come into the system conti-
nuously, the control data come sporadically. Most of the time the patches
are created without any control data, the control data affect the final result
only: whether a patch is going to be applied to the memory tree or not.

22

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

8 Dynamics

All the previous sections described only one step in the whole system. Ho-
wever, the system should work continuously. Let us introduce the stack fre-
quency. Obviously, the memory works with the same frequency. The memory
packer and the Imaginator will work with proportional frequency. However,
it is true not for all the system components. The Detector’s frequency and
operation sequence are not directly connected to the stack frequency.

To conduct further analysis, let us remember that the brain consists not
only of neurons, but it is also affected by hormones. Let us introduce two
hormones: a happiness hormone and a sadness hormone. The hormones are
excreted proportionally to applied or dropped patches. Let an applied patch
Py excrete H(P;), and a dropped patch Py excreteS(Ps). It is required to
ensure a self-balancing model. If the process runs smoothly and all patches
are applied one by one, the model needs a motivation for new data input. If
the process fails and all patches are constantly dropped, the model needs a
motivation to do something absolutely new that has never been done before.

Let us introduce two frequencies for the Detector. wjq is the learning
frequency of the Detector’s generator and w;p is the learning frequency of
the Detector’s discriminator:

wip XY H(Py)

timeperiod

weX Y, SR

timeperiod

where the sum is the total hormone accumulated over a certain period of
time. Obviously, if the Detector’s discriminator starts finding new stable
sequences and creating new nouns, the number of errors should increase.

9 Conclusion

This model describes the process of understanding the human speech, but
now it has the following problems:

e There is no strict experimental basis, which could show how different
people process the information.

e Practical implementation may be difficult because there is no clear
understanding of the model’s neural network structure.

e The model has no hypotheses or ideas on how to start its implemen-
tation from scratch and the newborn reflexes role.

23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

10 Acknowledgments

I thank Ilya Kruglov for editing of this manuscript.

References

[Fre02] Alex A. Freitas. Data Mining and Knowledge Discovery with Evo-
lutionary Algorithms. Springer, 2002.

[GPAM™| Tan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative adversarial networks.

[Jun71] Carl Gustav Jung. Psychological Types. Princeton University
Press, 1971.

[KT79] Daniel Kahneman and Amos Tversky. Prospect theory: An ana-
lysis of decision under risk. FEconometrica, 47:263-291, March
1979.

[MM95] Isabel Briggs Myers and Peter B. Myers. Gifts Differing: Under-
standing Personality Type. CPP, 1995.

[Zhe27] Ivan Ivanovich Zhegalkin. On the technique of calculating propo-
sitions in symbolic logic. Matematicheskii Sbornik, 43:9-28, 1927.

24

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1576v3 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017

