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NEATG is a simple non-physiological tumour growth model which displays emergent

properties which are analogous to a number of characteristics common to physical tumour

growth. NEATG employs a novel dual-scale evolutionary algorithm which models both cell-

autonomous and non-cell autonomous behaviours. The components of the model are

outlined briefly, with reference to the core algorithm and data structures. Experimental

results are presented which illustrate the behaviour of the model under different

evolutionary scenarios, including homeostasis, tumour growth and a number of anti-

tumour interventions. In particular the system is used to explore the impact of cytotoxic

interventions, (analogous to high-dose chemotherapy), with respect to adaptive responses

and evolutionary change. Finally, a number of avenues for further development of the

system are discussed.
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Abstract 7 

NEATG is a simple non-physiological tumour growth model which displays emergent properties 8 

which are analogous to a number of characteristics common to physical tumour growth. NEATG 9 

employs a novel dual-scale evolutionary algorithm which models both cell-autonomous and non-10 

cell autonomous behaviours. The components of the model are outlined briefly, with reference to 11 

the core algorithm and data structures. Experimental results are presented which illustrate the 12 

behaviour of the model under different evolutionary scenarios, including homeostasis, tumour 13 

growth and a number of anti-tumour interventions. In particular the system is used to explore the 14 

impact of cytotoxic interventions, (analogous to high-dose chemotherapy), with respect to 15 

adaptive responses and evolutionary change. Finally, a number of avenues for further 16 

development of the system are discussed. 17 

 18 

Introduction 19 

Tumour growth is a complex process characterised by multi-scale phenomena involving both 20 

cancer and non-cancer cell populations. Where once our focus was directed primarily at the 21 

activities of the cancer cell populations, often conceptualised as a single homogeneous mass, our 22 

increased understanding of cancer  biology now incorporates a more nuanced evolutionary or 23 

ecological view of cancer growth (Gatenby, Gillies & Brown, 2011; Kareva, 2011). Key 24 

elements of this view of cancer as an evolutionary system are a focus on the genetic 25 

heterogeneity of tumour cell populations (De Sousa E Melo et al., 2013; Fisher, Pusztai & 26 

Swanton, 2013), the importance of the tumour microenvironment and the cross-talk between 27 

cancer and non-cancer cell populations (Allen & Louise Jones, 2011; Hanahan & Coussens, 28 

2012; Quail & Joyce, 2013). A concern among some investigators is that in the absence of an 29 

evolutionary understanding of population dynamics in cancer, therapeutic interventions may be 30 

doomed to failure (Silva & Gatenby, 2010; Tian et al., 2011; Gillies, Verduzco & Gatenby, 31 

2012). In other cases there is interest in understanding the role of the microenvironment in the 32 

process of cancer initiation (Pantziarka, 2015) or the metastatic cascade (Psaila et al., 2007; 33 

Barcellos-Hoff, Lyden & Wang, 2013).  34 

More fundamentally, there are also competing theoretical views of cancer at the most basic level. 35 

The predominant view of cancer – termed the somatic mutation theory (SMT) – is that it is a 36 

disease caused, and then driven, by genetic mutations in cells. An alternative view – termed the 37 

tissue-organisation field theory (TOFT) – views cancer as a disease caused by tissue dysfunction, 38 

development gone astray, with genetic changes not as the drivers but as a consequence of the 39 

disease. A number of recent publications outline these competing views of cancer (Baker, 2014; 40 

Bizzarri & Cucina, 2014; Sonnenschein et al., 2014). 41 

Computational models can provide ideal platforms for developing conceptual understanding of 42 

complex biological systems (Saetzler, Sonnenschein & Soto, 2011; Janes & Lauffenburger, 43 

2013). A range of techniques are available to build software models of cancer growth 44 

specifically designed to explore evolutionary or ecological hypotheses at an abstract and non-45 

physiological level, including techniques from evolutionary game theory (Basanta et al., 2008; 46 

Krzeslak & Swierniak, 2014) and machine learning (Gerlee, Basanta & Anderson, 2011). 47 

NEATG (Non-physiological Evolutionary Algorithm for Tumour Growth) is a simple software 48 

model of tumour growth which models cell-to-cell and tissue-level interactions and population 49 

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1558v1 | CC-BY 4.0 Open Access | rec: 3 Dec 2015, publ: 3 Dec 2015



 

3 

 

dynamics under different evolutionary scenarios. This paper describes the structure of this model 50 

and explores a range of results under different scenarios, in particular there is a focus on results 51 

which are pertinent to real cancer growth and which reflect on some of the issues outlined above. 52 

Methods 53 

NEATG is implemented as a hybrid model incorporating elements from both genetic algorithms 54 

and cellular automata. It is dual scale, non-deterministic and represents both cell-level and tissue-55 

level behaviour. It is coded in the Java programming language. 56 

Grid or Tissue-Level 57 
The tissue-level is represented as an N x M grid, with each grid element containing a set of 58 

modelled cells (which may be malignant or normal). The relative proportion of normal and 59 

malignant cells in a grid element determines the state of that grid element. These states are: 60 

E = {Normal, Majority Normal, Majority Malignant, Tumour, Necrotic} 61 

Transition of a grid element from one state to another takes place at every clock tick and is 62 

determined by the proportions of different cell populations within that element, but also by the 63 

state of neighbouring grid elements. Grid elements which are in the Tumour state, that is they do 64 

not have any normal cells within them, can transition to a Necrotic state if they are surrounded 65 

by an extended neighbourhood which consists exclusively of other Tumour grid elements. By 66 

default the neighbourhood is a Moore neighbourhood of radius 2 (see Figure 1), though this is a 67 

configurable model parameter. 68 

 69 

Figure 1 - Moore Neighbourhood of radius 2 70 

Grid elements in the Necrotic state are suspended and do not take part in further computational 71 

activity unless the neighbouring grid population changes, in which case the Necrotic state reverts 72 

to Tumour. 73 

Each grid element is populated with an initial, optimum population of normal cells. The size of 74 

this optimum population is a model parameter that can be varied. The size of the population can 75 

vary over time and can increase to a defined maximum value after which cellular competition 76 

takes place (as described below). 77 

Each grid element receives as input a Nutrient, represented as an integer value, and a set of Gene 78 

Factors, represented as real values. The number of Gene Factors is equal to the number of genes 79 

in the cell structure, again this is a model parameter that can vary, but the default number is 3. 80 
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The Nutrient score can be loosely interpreted as a combination of oxygen and cellular nutrients 81 

(e.g. glucose), while the Gene Factors may be viewed as generic growth factors required for 82 

cellular growth and survival. 83 

The grid element has a distribution function to compute the share of Nutrient (DN) assigned to 84 

each cell in its population of P cells based on the relative demand represented by the Nutrient 85 

Target values T: 86 ÿ�� = ��∑ ����=1  

Similarly the Gene Factor values which are inputs into each grid element are distributed to each 87 

cell according to the transfer function based on the Gene Targets (G): 88 ÿĂ� = Ă�∑ Ă���=1  

 89 

Cell Level 90 
Each cell is a data structure that encodes a Genome and an internal clock. The internal clock, 91 

implemented as an integer value, counts down from a maximum value, known as the Lifetime, to 92 

zero. When the system is first instantiated each cell is initialised with an internal clock value that 93 

is equal to a random integer between the Lifetime and zero. The Genome is a set of N genes, 94 

which are defined by a Target and a Tolerance, both represented as real numbers. The Genome 95 

and is defined as: 96 

G = {(Target0, Gene Tolerance0)…(TargetN, ToleranceN)} 97 

The Target is the optimum required level of the corresponding Gene Factor that is supplied by 98 

the local grid environment, and the Tolerance defines a band of values on either side of the 99 

Target which is considered the healthy range for that gene.  100 

Gene health is therefore defined as a Boolean value: 101 

Health = (Gene Factor < (Gene Target + Gene Tolerance)) & (Gene Factor > (Gene Target – 102 

Gene Tolerance)) 103 

In addition to flagging health status, Genes are also used as a mechanism for the cell to influence 104 

the local grid environment. This is a simple feedback mechanism by which each cell attempts to 105 

alter the local environment in order to achieve the level of Gene Factor required for its own 106 

optimum health. The expression function is: 107 Ā = 1 −  �2(�2ý) 
Where T is the Gene Target value and F exogenously supplied Factor. 108 

The actual level of Gene Factor available in each Grid Element is calculated as the sum of the 109 

exogenously supplied Factor, which is an input parameter in the model, and the sum of the 110 

expression values from each cell in that grid element. 111 
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Additional components of the cell are the Lifetime value (the maximum number of clock ticks 112 

before cell division takes place), a Nutrient Target and a Nutrient Rate, which represent the 113 

demand for nutrient and the metabolic rate at which nutrient is consumed respectively. Nutrient 114 

which is not consumed is stored in the Nutrient Store. Each cell also has a Mutation Rate and an 115 

Invasion Rate, which are used when cell division is necessitated for Malignant cells.  116 

Cells can exist in a number of states: 117 

CS = {HEALTHY, DIVIDING, APOPTOTIC, TO_BE_CLEARED, NECROTIC} 118 

Note that the cell state of Healthy implies viability, rather than whether or not a cell is Normal or 119 

Malignant. 120 

Additionally there are two types of cell in this model, Normal and Malignant. Note that the 121 

structure of cells is the same regardless of cell type. However, while the structure is the same the 122 

behaviour is type-dependent during cell division. 123 

At every clock tick the health status of the cell is assessed and the cell clock decremented 124 

according to the state of health. A healthy cell, that is with adequate Nutrient and Gene Factors, 125 

will decrease the cell clock by 1. Each unhealthy gene will also decrement the cell clock by one, 126 

whereas a cell that has a value of zero for Nutrient store will have the cell clock set to zero, to 127 

indicate that the cell must divide. 128 

All cells undergo a similar cell cycle. A cell starts as Healthy and undergoes a number of 129 

iterations (clock ticks) in which nutrient and gene factors are processed, the cell clock decreases 130 

at rates that depend on how well the cell is adapted to the local grid environment defined by the 131 

available Nutrient and Gene Factors. When the cell clock or nutrient store reaches zero the cell 132 

changes state according to the following cycle: 133 

Healthy > Dividing > Apoptotic > To Be Cleared 134 

Cells that are flagged as To Be Cleared are removed from the grid element. At each iteration 135 

dividing cells undergo cell division during which a new daughter cell is generated and enters the 136 

local population in the grid element. When the grid element contains fewer than the maximum 137 

supported cells (termed the carrying capacity of the grid element) a new cell is cloned from the 138 

dividing cell. In the case of Malignant cells this cloning can also incur a mutation in which one 139 

of the elements of the cell can change value, for example the Nutrient Target, a Gene Tolerance 140 

value or the cell Lifetime itself may undergo an increase or decrease. Note that the rate of 141 

mutation events is controlled by the Mutation Rate, which is itself mutable and can increase or 142 

decrease through mutation. 143 

If the grid element is already supporting the maximum number of cells then the cell division 144 

process is more complex. In addition to undergoing the chance of mutation, Malignant cells may 145 

also undergo a migration event in which the cell moves into a randomly selected adjacent grid 146 

element. The rate of such migration events is controlled by the Invasion Rate, which, like the 147 

Mutation Rate, is itself mutable. Cells which are not selected for migration are added to the local 148 

population. To preserve the carrying capacity of the grid element, all cells are then ranked 149 

according to fitness and the least fit cells are removed. This ranked selection algorithm is not 150 

biased by cell type, and both Malignant and Normal cells are included in the process. 151 
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The fitness function F is defined as: 152 

ā =  ∑ �2(|��2��| ��⁄ )þ
�=1  

where T is the Gene Target and A is the Gene Factor value for each Gene in the Genome G. 153 

The fitness function is designed to penalise cells which are poorly adapted to the local 154 

environment. 155 

Evolutionary Strategies 156 
Each iteration the processing of Nutrient and Gene Factors is controlled by a treatment strategy 157 

object. This software component enables the NEATG system to model multiple evolutionary 158 

strategies, each of which can implement different algorithms in terms of controlling the rate of 159 

cellular attrition, ageing and division. For example it is possible to implement a strategy which 160 

mimics high-dose chemotherapy and stops dividing cells from successfully completing the 161 

replication process. Alternatively a treatment strategy may alter the nutrient supply to mimic 162 

starvation or over-feeding. 163 

Treatment strategies can be designed so that they become active at specific time points, either by 164 

activation at a specified iteration or a specified level of tumour growth. Once triggered a 165 

treatment strategy can remain active until the final iteration or remain active for a specified 166 

number of iterations. There is also a default 8do nothing9 strategy which remains active for the 167 

iterations before and after the 8active9 strategy has been triggered. 168 

Run-time Behaviour 169 
The run-time behaviour of NEATG is specified using a scenario file which sets the key 170 

parameters which describe both the structure of the grid and the cell populations. Initial 171 

parameters include the size of the grid, in terms of width and length, optimum and maximum cell 172 

counts for grid elements, the number of iterations or clock-ticks, the active strategy and the 173 

trigger point and duration of action. In terms of cell structure the key parameters include the 174 

number of genes, the gene structure, the mutation and invasion rates and the lifetime of each cell. 175 

Another key input to the system is the structure of the Malignant cell, both in terms of the gene 176 

structure but also in terms of the number of malignant cells to insert into the system and at which 177 

iteration they should be inserted.  178 

There are numerous logging, statistics and output generation features implemented by the 179 

system, and these too are controlled via the scenario file. As the system is non-deterministic and 180 

displays considerable variation in behaviour depending on the evolutionary processes of 181 

mutation and invasion, an additional scripting mechanism is implemented so that multiple runs 182 

can be performed and the data stored together for analysis and reporting. 183 

 184 
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Results 185 

Homeostasis 186 
Before exploring the results for different tumour growth scenarios it is important to validate the 187 

behaviour of the system during homeostatic and non-tumour scenarios. Cells in this scenario 188 

should be supplied with target Nutrient and Gene Factor values, ensuring that they are unstressed 189 

and in 8good health9. In the absence of tumour cells we would expect that the system will display 190 

homeostatic behaviour characterised by regular cellular turn-over as cells age and die, and that 191 

cell populations will fluctuate but remain relatively constant.  192 

To represent this scenario a series of experiments were run using a 25 x 25 grid. The optimum 193 

cell population for each grid was set at 5, with a population of 10 cells as the maximum carrying 194 

capacity. The Nutrient Target used was 10, with a Nutrient Rate of 1. The Nutrient input to each 195 

grid element was also set at 10, ensuring that at optimum population level each cell would 196 

receive a Nutrient input of 10 / 5 = 2. A genome of three identical genes was used: 197 

G = {(5.0, 1.0), (5.0, 1.0), (5.0, 1.0)} 198 

The Gene Factor supplied to each grid element was set at {25.0, 25.0, 25.0}, to ensure that each 199 

cell received the Gene Target value of 5.0.  200 

The system was run five times, with 1000 iterations per run, and the results averaged for this 201 

analysis. Given our input parameters for a grid of 625 elements (25 x 25), and an optimum cell 202 

density of 5 cells per grid element, we would expect a total cell count of 3125. However, not all 203 

of these cells will be healthy, some will be dividing or being cleared. Figure 2 shows the overall 204 

population density over time. 205 

 206 

Figure 2 - Total cell count and healthy cell count 207 

We can also see the number of dividing cells over time, as in Figure 3. 208 
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 209 

Figure 3 - Number of dividing cells over time 210 

Note that the average number of dividing cells over the 1000 iterations is 31.25. This is as we 211 

would expect given that the Lifetime for the cells is 100, so that at any one time 1% of cells is 212 

dividing. The total population cell count includes dividing cells and those in the process of being 213 

cleared, therefore it is higher than the 3125 we might expect, but clearly it fluctuates around a 214 

constant value. The average over the 1000 iterations is 3187.4, which is actually 2% above 3125 215 

– this value represents 1% of cells which are dividing and another 1% of cells which are being 216 

cleared during any single iteration. 217 

Finally we can assess the average fitness of the cells, shown in Figure 4, and the average age of 218 

the cells, shown in Figure 5. 219 

 220 

Figure 4 - Average fitness of cells 221 
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 222 

Figure 5 - Average age of cells 223 

Again the values for fitness and age are as we would expect. The average fitness is high, 224 

fluctuating just below the maximum possible value of 1.0. And the average age fluctuates just 225 

below a value of 50. These latter two figures display more clearly a pronounced periodicity 226 

which is also evident in the population density figure. This is due to the random distribution of 227 

ages in the initial cell population. In the absence of stress or environmental perturbation the 228 

population of cells ages and divides in a uniform manner that preserves that initial distribution of 229 

ages in the initial cell population. 230 

 231 

Stress Conditions 232 
In the next experiments we assess the behaviour of NEATG when homeostasis is disturbed. In 233 

particular we are interested in the responses to changes in Nutrient and Gene Factors as these 234 

both have an influence on cell ageing and survival. Again this series of experiments does not 235 

include Malignant cells as we are primarily interested in exploring the behaviour of the system in 236 

non-tumour scenarios. For both of the following experiments the same basic parameters as in the 237 

previous experiment are used. The results shown are the average of 5 runs of the system. 238 

The first stress experiment varies the Nutrient input to each grid element in the range 1 to 15, in 239 

integer steps. Given that the Nutrient Rate is set at a value of 1 and the optimum cell population 240 

is set to 5, we would expect that if the Nutrient Supply to each grid element falls below a value 241 

of 5 each cell in the grid would consume more nutrient than it receives as input and eventually 242 

deplete the value in its Nutrient Store (which was set to an initial value of 10). When we look at 243 

the number of healthy cells with different Nutrient Supply values we see a decline in cell 244 

numbers over time, as shown in Table 1. It is clear that number of healthy cells declines sharply 245 

when there is insufficient Nutrient supplied, but that 8over-feeding9 (any Nutrient Supply value 246 

above 5) does not increase cell numbers. 247 

 248 
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The change in the number of Healthy cells is shown more clearly for Nutrient Supply values in 250 

the range 1 to 5 in Figure 6. 251 

 252 

Figure 6 - Change in Healthy Cell count in response to underfeeding 253 

If we look at the change in Fitness in response to different Nutrient Supply values, Table 2, we 254 

see a concomitant decrease in over time in the case of 8under feeding9 but no additional increase 255 

in fitness in response to over-feeding.  256 

 257 
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Gen NS=1 NS=2 NS=3 NS=4 NS=5 NS=6 NS=7 NS=8 NS=9 NS=10 NS=11 NS=12 NS=13 NS=14 NS=15 

0 3094 3093 3095 3092 3097 3099 3092 3095 3091 3091 3090 3096 3093 3097 3096 

5 2884 2877 2876 2884 3095 3094 3094 3093 3093 3093 3095 3096 3095 3093 3091 

10 2600 2593 2601 2636 3098 3096 3092 3099 3094 3094 3091 3097 3097 3098 3093 

15 45 2242 2264 2375 3090 3094 3097 3093 3097 3094 3092 3095 3088 3095 3093 

20 0 577 1920 2129 3096 3090 3091 3092 3093 3094 3095 3089 3094 3093 3093 

25 0 331 778 1906 3095 3097 3089 3093 3091 3095 3093 3086 3091 3095 3094 

30 0 379 660 1731 3093 3094 3099 3094 3091 3097 3089 3093 3097 3094 3090 

35 0 381 605 1591 3093 3091 3097 3093 3097 3090 3091 3094 3096 3093 3091 

40 0 355 598 1455 3097 3094 3093 3096 3094 3096 3101 3094 3093 3094 3095 

45 0 373 584 1370 3095 3094 3093 3094 3094 3095 3095 3095 3091 3094 3097 

50 0 358 578 1188 3089 3094 3094 3092 3094 3092 3095 3095 3090 3096 3093 

Table 1 - Healthy cells for different Nutrient Supply values 
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Gen NS=1 NS=2 NS=3 NS=4 NS=5 NS=6 NS=7 NS=8 NS=9 NS=10 NS=11 NS=12 NS=13 NS=14 NS=15 

0 0.990 0.990 0.990 0.989 0.991 0.992 0.990 0.990 0.989 0.989 0.989 0.991 0.990 0.991 0.991 

10 0.696 0.709 0.700 0.694 0.973 0.974 0.969 0.974 0.969 0.971 0.971 0.970 0.973 0.972 0.968 

20 0.000 0.005 0.510 0.468 0.971 0.969 0.970 0.970 0.973 0.972 0.971 0.969 0.971 0.971 0.971 

30 0.000 0.000 0.003 0.294 0.970 0.971 0.972 0.971 0.969 0.973 0.969 0.970 0.972 0.967 0.969 

40 0.000 0.000 0.000 0.167 0.969 0.971 0.969 0.971 0.970 0.972 0.971 0.971 0.972 0.970 0.970 

50 0.000 0.000 0.000 0.021 0.970 0.970 0.971 0.971 0.971 0.968 0.970 0.971 0.969 0.971 0.969 

60 0.000 0.000 0.000 0.014 0.970 0.969 0.971 0.970 0.970 0.971 0.969 0.971 0.971 0.970 0.973 

70 0.000 0.000 0.000 0.013 0.971 0.971 0.971 0.972 0.971 0.972 0.973 0.968 0.972 0.971 0.969 

80 0.000 0.000 0.000 0.013 0.970 0.972 0.969 0.970 0.969 0.971 0.972 0.971 0.971 0.970 0.970 

90 0.000 0.000 0.000 0.013 0.971 0.971 0.971 0.969 0.970 0.971 0.971 0.970 0.971 0.970 0.971 

100 0.000 0.000 0.000 0.013 0.971 0.971 0.969 0.970 0.969 0.970 0.969 0.971 0.971 0.971 0.972 

Table 2- Change in Average Fitness in response to underfeeding 258 

It is clear then that cell populations are sensitive to the supply of Nutrient, and that under-feeding 259 

can deplete numbers and in some cases 8starvation9 reduces cell numbers to zero. Over-feeding, 260 

on the other hand, does not increase cell numbers nor does it increase fitness. 261 

The supply of Gene Factors is the other external input to each grid element. These are analogous 262 

to generic growth and survival factors and are used to assess the health or otherwise of each cell 263 

in a grid element. As described previously, each Gene is defined as a Target and a Tolerance, and 264 

cells are able to 8express9 a Gene Factor in order to influence the local environment so that it 265 

matches the desired Target value. In this experiment the same parameters are used as before, but 266 

the Gene Factor Supply is varied from {0.0, 0.0, 0.0} to {45.0, 45.0, 45.0} by incrementing each 267 

element of the by 5.0 for every step. Five runs were completed for each setting and the averages 268 

used in the analysis. 269 

In terms of cell numbers the results are shown in Table 3. While there are no significant 270 

reductions in cell numbers, it is clear that at the optimal level (Gene Factor Supply = {25.0, 25.0, 271 

25.0}) the number of healthy cells is highest. Figures are shown for the first 100 generations only 272 

as there is limited change beyond this point. 273 

Gen GS=0 GS=5 GS=10 GS=15 GS=20 GS=25 GS=30 GS=35 GS=40 GS=45 

0 2998 3001 2998 2998 3010 3095 3002 3001 3009 2993 

10 2994 3003 2999 2994 3098 3096 3003 2998 2986 3000 

20 2997 3000 2999 3003 3096 3093 2992 2997 2996 3002 

30 3005 3001 3008 3007 3092 3094 2990 2993 3002 3002 

40 3003 2995 3000 3000 3093 3096 3002 3002 3008 3004 

50 2998 3001 2998 2998 3091 3096 3035 3001 3009 2993 

60 2994 3003 2999 2994 3089 3092 3002 2998 2986 3000 

70 2997 3000 2999 3003 3094 3093 2992 2997 2996 3002 

80 3005 3001 3008 3007 3089 3092 2990 2993 3002 3002 

90 3003 2995 3000 3000 3090 3095 3001 3002 3008 3004 

100 2998 3001 2998 2998 3010 3095 3035 3001 3009 2993 

Table 3 - Healthy cell counts vs Gene Factor Supply 274 
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 If we look at the numbers of dividing cells, a measure of cell turnover, as shown in Table 4, then 275 

we can see that there is a pronounced effect. 276 

Gen GS=0 GS=5 GS=10 GS=15 GS=20 GS=25 GS=30 GS=35 GS=40 GS=45 

0 127 124 127 127 115 30 123 124 116 132 

10 131 122 126 131 27 29 122 127 139 125 

20 128 125 126 122 29 32 133 128 129 123 

30 120 124 117 118 33 31 135 132 123 123 

40 122 130 125 125 32 29 123 123 117 121 

50 127 124 127 127 34 29 90 124 116 132 

60 131 122 126 131 36 33 123 127 139 125 

70 128 125 126 122 31 32 133 128 129 123 

80 120 124 117 118 36 33 135 132 123 123 

90 122 130 125 125 35 30 124 123 117 121 

100 127 124 127 127 115 30 90 124 116 132 

Table 4 - Cell turnover vs Gene Factor Supply 277 

The number of dividing cells at the optimal Gene Factor Supply value is around 1% of the total 278 

cell count, whereas for non-optimal Supply values there is an increased rate of cell division. This 279 

is as we would expect given that unhealthy genes (i.e. those in which the Gene Factor Supply is 280 

outside of the range defined by the Target and Tolerance values) cause an increased rate of cell 281 

aging by increasing the rate at which the cell clock is decremented to zero. 282 

In addition to being a factor in the cellular aging process, the Genes are also used in calculations 283 

of cell fitness. Cell fitness is used in the rank selection process to identify the least fit cells when 284 

the population density in a grid element exceeds the maximum capacity. In this experiment no 285 

Malignant cells are present therefore the rank selection procedure is not active; however we can 286 

still assess the influence of the Gene Factor Supply on cell fitness. Fitness, which is defined in 287 

the range [0, 1], is shown in Figure 7. 288 

 289 
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 290 

Figure 7 - Average fitness vs Gene Factor Supply 291 

Finally, we have explained that Genes attempt to influence the local environment through 292 

expression of Gene Factors. This is a simple feedback mechanism between the cell and its Genes 293 

and the exogenous Gene Factor Supply. In this experiment each Gene has been set to the same 294 

value (5.0, 1.0), and therefore we can focus on a single Gene, shown in Table 5, to view the 295 

change in Gene Expression over time: 296 

Gen GS=0 GS=5 GS=10 GS=15 GS=20 GS=25 GS=30 GS=35 GS=40 GS=45 

0 0.953 0.943 0.911 0.830 0.609 0.000 -1.651 -6.135 -18.375 -51.341 

10 0.872 0.850 0.785 0.646 0.422 0.000 -5.375 -16.239 -45.692 -126.673 

20 0.871 0.848 0.786 0.649 0.422 0.000 -5.362 -16.379 -45.604 -127.078 

30 0.875 0.850 0.787 0.649 0.421 0.000 -5.359 -16.268 -45.982 -126.558 

40 0.876 0.845 0.786 0.647 0.421 0.000 -5.364 -16.218 -45.961 -126.482 

50 0.874 0.848 0.783 0.647 0.421 0.000 -5.446 -16.393 -46.137 -125.932 

60 0.872 0.850 0.785 0.646 0.421 0.000 -5.376 -16.239 -45.692 -126.673 

70 0.871 0.848 0.786 0.649 0.422 0.000 -5.362 -16.379 -45.604 -127.078 

80 0.875 0.850 0.787 0.649 0.420 0.000 -5.357 -16.268 -45.982 -126.558 

90 0.876 0.845 0.786 0.647 0.421 0.000 -5.365 -16.218 -45.961 -126.482 

100 0.874 0.848 0.783 0.647 0.417 0.000 -5.446 -16.393 -46.137 -125.932 

Table 5 - Gene Expression vs Gene Factor Supply 297 

Note that in optimal conditions cells do not need to exert any influence on the local environment 298 

as the Gene Factor Supply matches the Target value. When the supply is deficient, the Gene 299 

expression is positive to increase the supply, when the supply is excessive the Gene expression is 300 

negative to reduce the supply. The steady state values shown in Table 5 mask a considerably 301 

noisy signal, which is more clearly apparent in Figure 8, which shows the change over time for 302 

two non-optimal Gene Factor Supply values. 303 
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 304 

Figure 8 - Gene Expressions vs Gene Factor Supply 305 

The oscillating Gene Expression is the result of each cell trying to correct the local environment 306 

to supports its own needs – and we see therefore the resultant fluctuations as cells over- and 307 

under-correct in turn.  308 

 309 

Tumour Growth – No Treatment 310 
Having established the behaviour of the system under homeostatic and non-tumour stress 311 

scenarios, we can now begin to introduce Malignant cells. Initially we will explore the behaviour 312 

of NEATG in the absence of any treatment scenarios – we first want to explore the behaviour of 313 

Malignant cells and how they model tumour growth. 314 

In this first series of experiments we will continue to use the same parameters as we have for the 315 

homeostasis and non-tumour stress experiments, although the iteration period is increased to 316 

2000 to allow greater time for the evolution of appreciable tumour masses. Tumour growth is 317 

initiated by the insertion of a single Malignant cell into the grid element in the centre of our 25 x 318 

25 grid. The only difference between this Malignant cell and the Normal cells is that the cell type 319 

is set to Malignant, and that it has a mutation rate of 5% and an invasion rate of 10%. These 320 

initial values were derived from empirical testing of NEATG and were selected for this first 321 

experiment as they yielded consistent tumour growth. In subsequent experiments these values 322 

will be varied so that we can see how tumour growth patterns are affected. 323 

The difference between the grid element level and the cell level is apparent when we begin to 324 

analyse the results of these experiments. In the non-tumour experiments all grid elements were 325 

considered Normal, and analysis looking only at the changes in cell counts was sufficiently 326 

informative as regards changes in the system. However, with the introduction of Malignant cells 327 

we can view results both in terms of the changes in cell populations across the whole system and 328 

also in the evolution of the grid elements themselves. 329 

The results shown are the average of 5 runs of the system. 330 
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The change in the global population counts in the Normal and Malignant cells is shown in Figure 331 

9. 332 

 333 

Figure 9 - Change in Normal and Malignant cell counts 334 

In terms of changes in the grid element counts we can plot the change over time of grid elements 335 

which only contain Normal cells and those that contain non-Normal cells, as shown in Figure 10. 336 

Note that the non-Normal grid elements include those with mixed cell populations, only 337 

Malignant cells or those which are classed as Necrotic.  338 

 339 

Figure 10 - Change in Normal and Non-Normal Grid Element Counts 340 

Changes in grid elements and cell populations are not the only metrics of interest. Also of 341 

interest is the process of evolutionary change in the Malignant cell populations. Our starting 342 

point has been that Malignant cells have the same structure as Normal cells, but they are 343 

endowed with proliferative and mutational properties. In terms of the initial population there is 344 

only a single genotype in the entire population, it is of interest to track how this changes over 345 
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time. As shown in Figure 11 the rate of change of the gene pool rises over time and increases in 346 

line with the increase in Malignant cell population and the process of invasion. Also shown in 347 

Figure 11 is the rise in the number of clonal sub-populations, reflecting the growth of different 348 

active Malignant cells populations in the tumour mass. 349 

 350 

Figure 11 - Change in Gene Pool and Clonal Populations Over Time 351 

To gain further insight into the process of evolutionary change we can also chart the change in 352 

fitness levels in both Normal and Malignant cells. Initially the 8seeded9 Malignant cell has the 353 

same fitness as the Normal cells in the grid element into which it is inserted, however as the 354 

number of cells increases, the number of mutations rises, Malignant cells proliferate into 355 

neighbouring grid elements and competition for Nutrient and Gene Factors takes place. Fitness, 356 

as defined is in the range [0,1], and the change over time is shown in Figure 12. 357 

 358 

Figure 12 - Change In Fitness Over Time 359 
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The noisy signals indicate a good deal of change and adaptation taking place over time. 360 

Significantly it is clear that the initial high fitness value is degraded once the cell populations 361 

start to increase and competition takes place. It is also clear that the Normal cell population 362 

retains an average fitness that is higher than the average fitness of the Malignant cell population. 363 

One plausible explanation is that many of the mutations that take place are deleterious and do not 364 

lead to improved survival for those cells. However, if we look at the maximum values for the 365 

Malignant cells we can see that there are indeed some cells which do achieve a higher fitness 366 

than maximum values for the Normal cells. 367 

We can also view the average and maximum number of mutations per Malignant cell over time, 368 

again as a measure of the degree of evolutionary change. This is shown in Figure 13. As can be 369 

seen for the first 100 generations or so there are no mutations, which accords with Figure 11.  370 

 371 

Figure 13 - Mutations per Malignant Cell 372 

We can examine the different cellular components to identify the loci of mutational change over 373 

time. The mutation rate and the invasion rate, which are both mutable characteristics, do show 374 

some change, as can be seen in Figure 14. Interestingly we see that while initially there is little 375 

change, indeed both rates dip below the starting values, both rates show an increasing trend over 376 

time. However, the scale of the increase in both these metrics is relatively low and neither rises 377 

monotonically.  378 

0

0.5

1

1.5

2

2.5

3

M
u

ta
ti

o
n

s 
/ 

M
a

li
g

n
a

n
t 

C
e

ll
 

Average Mutation Count Max Mutation Count

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1558v1 | CC-BY 4.0 Open Access | rec: 3 Dec 2015, publ: 3 Dec 2015



 

18 

 

 379 

Figure 14 - Change in Mutation and Invasion Rates 380 

The metabolic demands of the Malignant cells are defined by the Nutrient Target and the 381 

Nutrient Rate, and these are shown in Figure 15. While the increasing metabolic demand is clear 382 

from the rising Nutrient Target value, the Nutrient Rate value shows no longer term increase. 383 

Note also that the lower limit of the Nutrient Rate is clear – by definition the Nutrient Rate is a 384 

non-zero integer value.  385 

 386 

Figure 15 - Change in Malignant Cell Metabolism 387 
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There is also evolutionary change in terms of the Genome. To simplify the exposition only one 390 

of the three genes is shown in this discussion although the scale and direction of change in the 391 

other two genes in our example system are similar. Each of the three genes was defined as 392 

having a Target value of 5.0 and a Tolerance value of 1.0. The change in time for the first of 393 

these genes is shown in Figure 16. Both the Target and Tolerance values show a fast and 394 

sustained decrease in average value. 395 

 396 

Figure 16 - Change in Gene over time 397 

Gene Expression also shows a marked change over time, which we can see in Figure 17, which 398 

also displays the close correlation with the degree of cell turnover in the Malignant population. 399 

Given that Gene Expression is a factor in the aging of the cells then this is as we would expect. 400 

 401 

Figure 17 - Gene Expression over Time 402 
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Finally, while we have explored the rates of change at the cellular and grid element levels, we 403 

have not explored the spatial distribution of the spread of Malignant cells. A representative 404 

example of the 8no treatment9 scenario is shown in Figure 18, an extended run of 6000 405 

generations and a grid size of 45 x 45 has been used to illustrate more fully the development of 406 

the tumour mass over time. 407 

 408 

 409 

This first set of data used a Mutation Rate of 5% and an Invasion Rate of 10%, we can vary these 410 

in turn to understand the impact they have on tumour growth. First we will vary the Mutation 411 

Rate from 2.5% to 30% in increments of 2.5%, all other settings are as before. Figures shown are 412 

the average of 10 runs of the system. Note that while figures are shown for the final time point of 413 

2000 generations, these values are representative of the trends apparent at earlier time points. 414 

Whether we look at tumour progression in terms of grid elements, as in Figure 19, or in terms of 415 

Malignant Cell counts, as in Figure 20, it is clear that there is no direct relationship between 416 

mutation rate and tumour progression. 417 

 418 

Figure 19 - Number of non-Normal Grid Elements vs Mutation Rate 419 

0

10

20

30

40

50

60

70

80

N
u

m
b

e
r 

o
f 

n
o

n
-N

o
rm

a
l 

G
ri

d
 

E
le

m
e

n
ts

 

Tumour progression at 2000 generations 

Figure 18 - Spatial distribution of tumour growth 
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 420 

Figure 20 - Number of Malignant Cells vs Mutation Rate 421 

Where we would expect to see a relationship is in the number of mutation events that occur, and 422 

here we can view a clear correlation between the mutation rate and the size of the Gene Pool, as 423 

shown in Figure 21, though even here the relationship is not completely linear as a mutation rate 424 

of 32.5% generated a larger gene pool than a mutation rate of 37.5%. 425 

 426 

 427 

Figure 21 - Size of Gene Pool vs Mutation Rate 428 

Similarly, if we look at the number of clonal sub-populations, as shown in Figure 22, we can see 429 

a correlation with the mutation rate, but again this is not linear. 430 
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 431 

Figure 22 - Number of Clonal Sub-populations vs Mutation Rate 432 

Another interesting metric is the degree of dominance of any one of the clonal sub-populations, 433 

which is shown in Figure 23. This shows the percentage of the total number of Malignant cells 434 

which belong to the largest clonal sub-population. As is clear from Figure 23, a lower mutation 435 

rate yields a greater degree of dominance by a single clonal sub-population. 436 

 437 

Figure 23 - Dominance of Single Clonal Population vs Mutation Rate 438 

We can also vary the Invasion Rate to see what impact this has on the degree of tumour growth 439 

and the size of the gene pool. In this experiment the Invasion Rate is varied from 2% to 20% in 440 

2% increments, the Mutation Rate of 5% is used; all other settings are as before. Figures shown 441 

are the average of 10 runs of the system. 442 

Clearly, as shown in Figure 24 and Figure 25, in this case there is a direct relationship between 443 

the Invasion Rate, (which is the probability of a migration event in the case when a Malignant 444 

cell divides and the grid element already contains a full complement of cells), and the rate of 445 

tumour growth. More migration events clearly correlate closely with increased tumour spread. 446 
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 448 

Figure 24 - Number of non-Normal Grid Elements vs Invasion Rate 449 

 450 

Figure 25 - Number of Malignant Cells vs Invasion Rate 451 

This increased rate of tumour growth, both in terms of grid elements and number of Malignant 452 

cells, also leads to an increase in the size of the Gene Pool, shown in Figure 26. However, when 453 

compared to the scale of the increase of the Gene Pool with a rising Mutation Rate, as shown in 454 

Figure 21, it is clearly lower and indicates a less heterogeneous Malignant cell population. 455 
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 456 

Figure 26 - Size of Gene Pool vs Invasion Rate 457 

In terms of the dominance of a single clonal population, shown in Figure 27, a lower Invasion 458 

rate is associated with an increased dominance by a single clonal sub-population, but even at a 459 

high Invasion Rate of 20% the degree of dominance is much higher than associated with a high 460 

Mutation Rate. 461 

 462 

Figure 27 - Dominance of Single Clonal Population vs Invasion Rate 463 
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Tumour Growth – With Treatment 465 
The previous experiment has detailed the salient features of the NEATG tumour growth process, 466 

both in terms of changes in cell populations, grid elements and also in the underlying 467 

genetic/evolutionary processes at work. As has been shown, in the absence of any interventions 468 

the number of Malignant cells rises and a process of invasion occurs such that Malignant cells 469 

are able to move into adjacent grid elements. In the next series of experiments we will 470 

investigate the impact on these growth patterns of a number of interventions. 471 
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The treatment strategy object is a mechanism by which NEATG can be used to model different 472 

intervention strategies and one such strategy, to be explored in this experiment, is loosely based 473 

on the example of high-dose cytotoxic chemotherapy. Just as with cytotoxic chemotherapy this is 474 

not a targeted therapy – it is applied to both Normal and Malignant cells. Where real 475 

chemotherapy causes apoptotic cell death in rapidly dividing cells, the treatment strategy in this 476 

model flags cells which are dividing, or which are arbitrarily close to dividing, with the cell state 477 

of TO_BE_CLEARED. The arbitrary cut-off is based on the value of a cell9s clock and this 478 

value is a configurable parameter in the system. By adjusting the cut-off value we can 479 

approximate control the 8toxicity9 of the treatment, the higher the cut-off value the more toxic the 480 

treatment as more cells will be flagged for disposal. The system also allows a degree of 481 

specificity in that we can make Malignant cells more susceptible to the treatment than Normal 482 

cells.  483 

In the first experiment the same parameters will be used as in the No Treatment scenario. The 484 

treatment will commence at generation 1500 (of 2000), and will be applied for 25 generations. In 485 

this experiment three different toxicity values are assessed, with both Malignant and Normal 486 

having the same cut-off values. The values used are 0, 10 and 20, which means that any cell with 487 

a clock value lower than the cut-off is 8treated9 in the respective scenarios. Note that the zero cut-488 

off value does not trigger cell division as is the default case without treatment but triggers 489 

apoptosis and cell clearance. It does though represent the least toxic scenario and is therefore 490 

close to the 8no treatment9 scenario. The results shown are the averages for 10 runs of the 491 

system. 492 

As can be seen from Figure 28, the effect of treatment on the total cell count is dramatic. In the 493 

case of the more toxic treatments, there is a sharp decline in total cell numbers followed by a 494 

recovery in cell numbers, and in the case of the highest cut-off value of 20 cell growth 495 

accelerates above the pre-treatment trend. 496 

 497 

Figure 28 - Total Cell Counts vs Treatment Toxicity 498 

We can also see how this change in growth trajectory is reflected in the Grid Element view of 499 

tumour growth, as shown in Figure 29 and Figure 30, which show the Normal and Tumour Grid 500 

Elements respectively. In Figure 29 we see that the initiation of treatment leads to a sharp 501 

reduction in the number of Normal Grid Elements as the chemotherapy adversely affects Normal 502 
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cells, followed by a small period of recovery and then a continued decline in numbers. The 503 

corresponding view of Tumour Grid Elements, in Figure 30, shows that the slow rise in number 504 

is briefly interrupted when treatment begins but then accelerates sharply after the completion of 505 

treatment. Furthermore in both figures we see that the more aggressive treatment in terms of 506 

toxicity is related to an increased growth tumour growth rate with the cessation of treatment.  507 

 508 

Figure 29 - Normal Grid Elements vs Treatment Toxicity 509 

 510 

Figure 30 - Tumour Grid Elements vs Treatment Toxicity 511 

To gain more insight into this behaviour we can look at the change in the Normal Cell 512 

population, as shown in Figure 31. Here we can see that the treatment induces a sharp reduction 513 

in cell numbers, and that this decline continues even after the cessation of treatment, though not 514 

at the same rate. 515 
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 516 

Figure 31 - Normal Cell Population vs Treatment Toxicity 517 

In the case of the Malignant Cells, shown in Figure 32, we also see a decline in cell numbers 518 

during the treatment, followed by rapid recovery. We can assume that in this case the decline in 519 

Normal cell numbers has provided the conditions in which Malignant cells can expand rapidly in 520 

number.  521 

 522 

Figure 32 - Malignant Cell Population vs Treatment Toxicity 523 

Supporting evidence is provided by the Gene Pool trends, shown in Figure 33. Here we can see 524 

that following treatment there is an increase in the size of the Gene Pool, indicating a post-525 

treatment burst of clonal evolution. 526 
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 527 

Figure 33 - Size of Gene Pool vs Treatment Toxicity 528 

In terms of the number of active clonal subpopulations, as shown in Figure 34, the same trend 529 

emerges. The number of active clonal subpopulations shows a slow increase until generation 530 

1500, at which point treatment commences. Some of these populations are killed by the 531 

treatment and we see a dip in numbers, but following the cessation of treatment there is an 532 

evolutionary explosion and a rapid rise in the number of clonal sub-populations. 533 

 534 

Figure 34 - Number of clonal sub-populations vs Treatment Toxicity 535 

Another view of this evolutionary burst is provided by Figure 35. Here we can see that the 536 

process of tumour growth leads to an increase in genetic heterogeneity, as shown by the 537 

proportion of the Malignant cell population belonging to the largest sub-population. The 538 

increasing heterogeneity is interrupted when the treatment begins and there is a spike which 539 

shows that the largest sub-population increases as a proportion of the total, from which we can 540 

infer that a number of clonal sub-populations have been exterminated completely, in line with 541 

Figure 34.  542 
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 543 

Figure 35 - Sub-clonal Population Dominance vs Treatment Toxicity 544 

In practice maximum tolerated dose (MTD) chemotherapy does not cause equal levels of damage 545 

to all cell populations. Because it impacts rapidly proliferating cells the 8collateral damage9 to 546 

non-tumour cells is restricted to certain populations of non-cancer cells in the immune system, 547 

gut and other tissues associated with the side effects of treatment. We can model this differential 548 

impact in the NEATG system by setting a lower cut-off value for Normal cells compared to 549 

Malignant cells, thus causing fewer Normal cells to be affected by the treatment compared to the 550 

Malignant cell populations. In the following experiment the cut-off for the Normal cells is set to 551 

10, and for the Malignant cells it is set to 15, 20 and 25 in three different scenarios. All other 552 

parameters are the same as in the previous experiment and the results shown are the averages for 553 

10 runs of the system. 554 

In terms of the total cell counts, shown in Figure 36, there is a similar pattern to the previous 555 

experiment, although the rate of recovery is much lower than in Figure 28. The lower sensitivity 556 

of the Normal cells means that even when the cut-off for the Malignant cells matches the 557 

previous values, the recovery of cell populations is lower. 558 
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 559 

Figure 36 - Total Cell Counts vs Differential Treatment Toxicity 560 

We can also see the impact of treatment on the tumour spread expressed in terms of Grid 561 

Elements, as shown in Figure 37. 562 

 563 

Figure 37 - Tumour Growth vs Differential Treatment Toxicity 564 

The lower sensitivity of the Normal cells does not mean that they are immune from effects of 565 

treatment. Figure 38 shows a marked decline in Normal cell numbers on the commencement of 566 

treatment, followed by a continued decline after treatment ends. Note there is no difference in the 567 

three scenarios shown, indicating that the Normal cells are not affected directly by the different 568 

sensitivities of the Malignant cells. We can also see that the values shown here are a close match 569 

to those shown for the Cut-off 10 scenario illustrated in Figure 31.  570 

0

500

1000

1500

2000

2500

3000

3500

4000

Cut-off 15 Cut-off 20 Cut-off 25

0

20

40

60

80

100

120

140

160

180

Cut-off 15 Cut-off 20 Cut-off 25

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1558v1 | CC-BY 4.0 Open Access | rec: 3 Dec 2015, publ: 3 Dec 2015



 

31 

 

 571 

Figure 38 - Normal Cell Counts vs Differential Treatment Toxicity 572 

Finally, the pattern of increased tumour growth and evolutionary change following the cessation 573 

of treatment also occurs, as shown in Figure 39.  574 

 575 

Figure 39 - Clonal Populations vs Differential Treatment Toxicity 576 

Two rather obvious questions arise from this data. The first is what happens if the period of 577 

treatment is extended? It is clear that for the duration of treatment the number of Malignant cells, 578 

tumour grid elements and clonal populations decrease. Is it possible to extend the treatment 579 

period so that the entire Malignant cell population is destroyed? Secondly, it is clear that the 580 

treatment damages Normal cells and that this coincides with the increased cancer growth 581 

following the cessation of the treatment. Therefore we can ask what happens in the case when 582 

the differential toxicity is such that there is no damage to the Normal cells – in other words what 583 

would happen in the case of a 8magic bullet9 which has toxic effects only on Malignant cells? 584 

These questions are addressed in turn in the next two of experiments. 585 

In the following experiment a differential toxicity was used, with a Malignant cut-off value of 20 586 

and a Normal value of 10.  All other settings are as in the previous experiment, with the 587 
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exception of the treatment duration which was varied from 15 – 60 generations, in increments of 588 

5. The results shown are the averages of 10 runs of the system. 589 

In terms of the total cell counts, we can see that there is indeed a relationship between the 590 

treatment length and the size of the total cell population, as shown in Figure 40. It is clear that 591 

this is a complex and non-linear relationship, but it is apparent that treatment duration above 40 592 

causes high levels of cell damage. This result was robust to repeated runs of the system and there 593 

was essentially no difference between results for any treatment length above this level. 594 

Furthermore, this upper cut-off figure for treatment length was related to the length of the cell 595 

Lifetime (which is 100 in these experiments). In order to simplify the exposition, the rest of the 596 

results in this experiment will focus on treatment lengths of 20 – 35. 597 

 598 

Figure 40 - Total cell count vs treatment length 599 

The effect of treatment length on the Normal and Malignant cell populations is shown in Figure 600 

41 and Figure 42 respectively. In the case of the Normal cell populations it is clear that 601 

increasing treatment length is strongly associated with the scale of the decline in cell numbers. 602 

However, in the case of the Malignant cells, the treatment length is also associated with the rate 603 

of recovery.  604 
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 605 

Figure 41 - Normal cell count vs treatment length 606 

 607 

 608 

Figure 42 - Malignant cell population vs treatment length 609 

As shown in Figure 42 the longer treatment length can sometimes lead to an accelerated increase 610 

in Malignant cell numbers, though for treatment lengths beyond 40 (data not shown), there is no 611 

recovery in cell numbers, as should be clear from Figure 40 which indicates a collapse in the 612 

total cell count. The somewhat surprising result is that in some cases a more aggressive treatment 613 

(longer treatment period) can lead to an unexpected acceleration in tumour growth. This is also 614 

apparent in Figure 43, which shows the Grid Element view, again with a decline in tumour extent 615 

immediately following treatment followed by a recovery that is related to the treatment length. 616 
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 617 

Figure 43 - Non-Normal grid elements vs treatment length 618 

We can also see from Figure 44 that treatment length is also associated with an increase in the 619 

size of the Gene Pool. Treatment period therefore acts as a spur to clonal evolution, as also 620 

shown in Figure 45. 621 

 622 

Figure 44 - Gene Pool vs Treatment Length 623 
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 624 

Figure 45 - Clonal populations vs treatment length 625 

A further indication of the effect that treatment length has on clonal evolution is shown in Figure 626 

46, which charts the percentage of the total Malignant population which belong to the most 627 

populous clonal sub-population. It is clear that longer treatment length increases dominance as 628 

cells from less popular genotypes are removed, whereas for the short treatment of 20 generations 629 

there is no such spike in dominance. 630 

 631 

Figure 46 - Sub-clonal dominance vs treatment length 632 

In the final experiment in this section we investigate a scenario where the treatment is applied 633 

only to Malignant cells and Normal cells are not affected at all. In this experiment three different 634 

toxicity levels are applied to the Malignant cells, representing cut-off values of 15, 20 and 25. 635 

All other parameters are as in the previous experiments and the average of 10 runs is shown. 636 

In stark contrast to Figure 28 and Figure 36, treatment does not lead to a sharp decline in total 637 

cell numbers, as shown in Figure 47. This is confirmed when we look at the Normal cell 638 

numbers, Figure 48. Here we can see a slow decline in numbers prior to the commencement of 639 

treatment at generation 1500, followed by a recovery in numbers and then a slow decline again. 640 
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 641 

Figure 47 - Total cell count vs no collateral damage 642 

 643 

Figure 48 - Normal cell numbers vs no collateral damage 644 

In contrast the impact of treatment in clear on the Malignant cell numbers, as shown in Figure 645 

49. Here we can see that the increase in cell numbers is reversed sharply by the treatment but is 646 

then followed by a recovery in numbers and a resumption of tumour growth. A similar pattern 647 

exists in the Grid element view (data not shown). However, note that while the pattern is similar 648 

to previous experiments, the numbers of Malignant cells are markedly lower than in Figure 32 649 

and Figure 42. 650 
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 652 

Figure 49 - Malignant cell numbers vs no collateral damage 653 

In terms of the impact on clonal evolution, Figure 50, while there is a pause during the treatment 654 

period, it continues at a similar rate to the pre-treatment trend afterwards. Again, while this 655 

pattern is familiar, the number of clonal sub-populations is lower than in previous experiments, 656 

as shown by Figure 39 and Figure 45. 657 

 658 

Figure 50 – Clonal Populations vs no collateral damage 659 

 660 

Discussion 661 

The NEATG model is not a computational model that attempts to emulate the biological 662 

processes involved in tumour growth, indeed it is a very simplistic model that lacks even the bare 663 

essentials of tumour physiology. It does not include any modelling of the immune system, it is 664 

completely avascular, nor does it model specific cell populations. In some respects it may appear 665 

as a simple model of stratified epithelial tissues – the model is partly cellular, the cells are 666 
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homogeneous and nutrient supply is diffusive rather than via vascular transport – but this is not 667 

the intention. Despite the non-physiological basis of the model, however, the results display a 668 

range of behaviours and phenomena which are indicative of real tumour growth. In many 669 

respects these are emergent behaviours that may be shed light on biologically relevant systems. 670 

In the first instance the model is capable of reproducing homeostatic behaviour. In optimal 671 

conditions, (i.e. with an ideal supply of Nutrient and Gene Factors), the model displays a steady 672 

turnover of cells, which age and divide in such a manner that the target cell population is 673 

preserved. However, under conditions of stress, such as a restriction in the Nutrient supply or a 674 

reduction in Gene Factors, we see a change in behaviour. In the case of underfeeding or 675 

starvation we see that cell numbers are markedly reduced, however over-feeding does not lead to 676 

an increase in cell populations.  677 

In the case of variations in Gene Factors, we see that under or over-supply of these factors does 678 

not impact cell numbers to the same extent, though both scenarios lead to a small reduction in 679 

total cell numbers. The variations in Gene Factor supply do however impact on cell turnover, 680 

with an increase in rates of cell division in both under and over-supply situations. In this respect 681 

we may view the impact of deviations from the Gene Factor target values acting as mitogenic 682 

factors. There is also a marked impact on the calculation of cell fitness, with deviations from the 683 

optimal values for Gene Factors reducing the fitness value. We may conclude, therefore, that 684 

variations in the Gene Factor supply are deleterious to some extent, but do not cause the same 685 

level of cellular damage as restriction in the supply of Nutrient.  686 

In the case of tumour growth, we see that once initiated the proliferation of cancer cells numbers, 687 

and the attendant increase in the number of affected Grid Elements, increases in the absence of 688 

any counter-measures (i.e. left untreated). As each Grid Element can support a number of cells 689 

over and above the optimum level, this initial increase in numbers does not displace or replace 690 

non-cancer cells. However, once the carrying capacity of the Grid Element has been reached 691 

there is a competition between cells in which ultimately the Malignant cells out-compete the 692 

Normal cells. Over time the number of Malignant cells increases and the rate of invasion 693 

increases, while there is a corresponding decrease in Normal cells. As with the homeostatic case, 694 

this behaviour is not pre-programmed but emerges from the interactions between the cells, 695 

interactions between neighbouring Grid Elements and the operation of a few simple rules. 696 

Additionally, there is a consistent increase in the number of clonal sub-populations as growth 697 

continues – mirroring the genetic heterogeneity which is a hall-mark of real tumour growth. 698 

What is more the system shows that in the face of changing conditions there is an increase in the 699 

number of clonal sub-populations and a decrease in the dominance of the most populous sub-700 

clone over time. 701 

Of note is the fact that in the first instance the seeded Malignant cell has the same genomic 702 

structure as the Normal cell population in these experiments. That is the Malignant cell is not 703 

conferred any genetic advantage over the rest of the non-Malignant cell population. The single 704 

difference between the Malignant cell and the Normal cell is that the Malignant cell is flagged as 705 

such and that it therefore has an ability to mutate, proliferate and undergo repeated division. In 706 

terms of Genomic structure, cell Lifetime, nutrient requirements and so on there are no 707 

differences initially between cell types. It may be assumed that the increasing success of the 708 

Malignant cells in outcompeting Normal cells may be due to an increasing evolutionary fitness 709 
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that arises through a succession of mutational events occurring during cell division. However, a 710 

simple reading of the data does not support this assumption. 711 

Evolutionary fitness is not defined in absolute or global terms in NEATG. Instead it is a local 712 

definition that reflects cellular adaption to the conditions in each Grid Element. Thus it is clear 713 

from the data, as shown in Figure 12, that in general the fitness of many Malignant cells is lower 714 

than the initial fitness of the Normal cells, and that it often decreases as a result of intra-Grid 715 

Element competition between cells. Furthermore, it is clear that many mutations are actually 716 

deleterious and do not confer evolutionary advantage over competing cells, Normal or 717 

Malignant. Some Malignant cells do experience mutations which provide an advantage, and 718 

these are the cells which manage to survive and expand in number. However, a cell with a 719 

positive advantage in one Grid Element may migrate to an adjacent Grid Element and find that it 720 

is less fit and therefore does not survive. This view of evolutionary fitness as locally responsive 721 

to the environment and therefore having an impact on the success, or otherwise, of genetic 722 

mutations is in line with more recent theoretical models of evolutionary processes in cancer 723 

(Rozhok & DeGregori, 2015). 724 

The rate of evolutionary change is initially set by the Mutation Rate, which is heritable and 725 

mutable. It may be thought that the Mutation Rate would be an important driver in the rate of 726 

cancer growth, however our data show that in this model it has a weak influence on the rate of 727 

growth of cancer – both in terms of Malignant cell numbers and affected Grid Elements. It does 728 

however directly influence the size of the Gene Pool and the number of clonal sub-populations. 729 

More influential in terms of driving growth is the Invasion Rate, which represents the probability 730 

that a dividing Malignant cell in an over-crowded Grid Element can migrate to a neighbouring 731 

Grid Element. The data show that this is a very strong driver of growth rates, but it does not lead 732 

to the same increase in the size of the Gene Pool or the number of clonal sub-populations. 733 

In terms of modelling interventions against the tumour growth we have explored the use of a 734 

treatment option that loosely mimics maximum tolerated dose chemotherapy in two key respects. 735 

Firstly the treatment is not genetically targeted – it applies to both Normal and Malignant cells, 736 

though we can confer an increased sensitivity to Malignant cells if required. Secondly the 737 

treatment induces cell death in affected cells, analogous to the apoptotic or necrotic cell death 738 

induced by chemotherapy. And finally cells are affected depending on where they are in the cell 739 

cycle – which is modelled in this instance by the reading of the cell clock. 740 

The response to this treatment, which we have varied in intensity and duration, is consistent in 741 

our experiments. There is an initial response marked by massive tumour kill followed by a 742 

resumption of tumour growth, which is often characterised by an accelerated and aggressive 743 

tumour expansion. This response to treatment bears some resemblance to real cancer treatment, 744 

where an initial reduction in tumour growth characterised as complete or partial remission is 745 

followed by renewed tumour growth or the appearance of metastatic disease. While the 746 

mechanisms of treatment resistance in real tumours is complex and multifactorial it is assumed 747 

that tumour heterogeneity is an important factor; a tumour may harbour clonal subpopulations 748 

which are resistant to treatment and which therefore benefit from reduced competition after 749 

chemo-sensitive populations have been destroyed by treatment. In the NEATG model treatment 750 

resistance is not related to drug efflux or other mechanisms of acquired resistance. Instead the 751 

phenomenon is associated with a pool of cells which survive due to their age (i.e. they are above 752 
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the treatment cut-off age) and which are therefore faced with a decreased level of competition for 753 

resources and a lower population density of cells in each Grid Element.   754 

Increasing the intensity or duration of treatment as a strategy to improve response is shown to be 755 

problematic in that it can cause reductions in Normal cell numbers which do not recover and 756 

therefore this strategy is assumed to be deleterious. Again, there is a clear parallel to clinical 757 

experience in which increased toxicity causes excess morbidity without necessarily leading to 758 

improved outcomes. 759 

While the NEATG model displays emergent behaviour that corresponds with clinical 760 

phenomena, the question that arises is whether there is anything that we can learn from such a 761 

system. Can a non-physiological model shed any new light on real biological systems? Clearly 762 

drawing conclusions at a molecular or genetic level is out of the question, but there are 763 

algorithmic features of biological systems that may be amenable to exploration using software 764 

models such as this one.  765 

For example, at a very fundamental level there remain competing views on the nature and origin 766 

of the cancerous state. At a simplistic level the SMT places the delinquent cell at the centre of 767 

cancer development, whereas the TOFT places the poor neighbourhood central to the story 768 

(Baker, 2014; Sonnenschein et al., 2014). A central difference between these competing theories 769 

is in the role of cellular proliferation. The SMT suggests that in the non-transformed state cells 770 

are non-proliferative by default. Mutations in genes associated with cell cycle control mean cells 771 

become proliferative and malignant. In contrast the TOFT posits that cells are proliferative by 772 

default and that this proliferative ability is kept in check at the tissue level. A disordered tissue 773 

results in the removal of the proliferative blocks and the cell can multiply without control. 774 

In our model both cell and tissue (Grid Element) level structures are featured. The process of 775 

cancer initiation consists of seeding a transformed cell into a grid element and letting it 776 

proliferate. The model does not have anything to say about how the initial cell is transformed, it 777 

is taken as a given. The initial cell has the same parameters as the untransformed cells, the only 778 

difference is that proliferative blocks have been removed. The transformed cell, and its progeny, 779 

is able to accumulate mutations during cell division and replication. Some of these mutations 780 

will be deleterious and some will be advantageous, we would expect therefore that the average 781 

fitness of the Malignant population will increase and that these advantageous mutations will 782 

drive further evolutionary change – particularly mutations that increase the Invasion rate. 783 

However this does not appear to occur. Indeed, a surprising result is that neither the Mutation 784 

Rate nor the Invasion Rate, which are both heritable and mutable, appear to undergo significant 785 

increase during the process of tumour growth. In fact, as shown in Figure 14, both show 786 

marginal rates of change, and can rise and fall rather than rising monotonically and driving 787 

malignant growth. While some mutations may provide evolutionary advantage, it is clear that the 788 

majority of mutations are passenger mutations rather than driver mutations. This is another 789 

instance where the NEATG model parallels biological systems, as it has become increasingly 790 

clear that the majority of somatic mutations in human tumours are also passenger mutations, 791 

many of which are actively deleterious to the cancer cell (Greenman et al., 2007; McFarland et 792 

al., 2013; McFarland, Mirny & Korolev, 2014).  793 

The question arises then as to whether mutational change is a necessary precondition for cancer 794 

growth in this model. To investigate this question an additional series of experiments was 795 
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performed in which the Mutation Rate was set at zero, and the Invasion Rate varied from zero to 796 

8% in increments of 2%, with all other settings as in the previous set of experiments. The results 797 

show that Malignant cell growth can occur even with a zero Mutation rate, which was verified by 798 

confirming that the Gene Pool retained a constant value of 1. The rate of growth, as shown in 799 

Figure 51, depends on the Invasion Rate, as one would expect, but that even at the lowest non-800 

zero rate tumour growth occurs, and furthermore the growth rate accelerates after treatment. 801 

 802 

Figure 51 - Malignant Cells with Zero Mutation Rate vs Changing Invasion Rate 803 

What is more, the data shows that with a zero rate of Invasion and Mutation there is growth in 804 

Malignant cell numbers to the maximum possible in the Grid Element where seeding occurred, 805 

but that without an Invasion Rate there is no possibility of a Malignant cell migrating to a 806 

neighbouring Grid Element. One implication of this result is that in the NEATG model cancer 807 

growth is not driven primarily by somatic mutation and is primarily dependent on proliferation 808 

and invasiveness. This is closer to the tissue organisation field theory view of cancer 809 

development than the somatic mutation theory view. 810 

Clearly this is a very simple model that does not incorporate many biologically relevant 811 

oncogenic mechanisms. In particular it may be argued that even within its own terms this model 812 

is perhaps too simplistic in the handling of genetic change. While the model reproduces the 813 

evolution of clonal sub-populations and an increased Gene Pool, it can be argued that scope for 814 

evolution of advantageous traits is limited. The model does not include the possibility that 815 

chance mutation can switch on pre-existing pathways and signalling networks which are 816 

common in real cancers, for example pathways that enable metabolic adaptations to nutrient 817 

stress, hypoxia, angiogenesis and so on. It might also be argued that the fundamental difference 818 

between Normal and Malignant cells in this model, which is simply the ability to proliferate and 819 

invade, is of such fundamental importance and represents such a significance difference between 820 

cellular phenotypes that a model which simply assigns this as a given does not have any real 821 

world validity.  822 

Another area where the model may benefit from further development is in the handling of Gene 823 

Factors. There is scope for the modelling of more complex feedback loops between the genes 824 
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and the environment, perhaps including some aspects of oncogene addiction (Luo, Solimini & 825 

Elledge, 2009). Addressing this issue may also address the concern that the model does not 826 

provide sufficient scope for the discovery of advantageous driver mutations. 827 

NEATG is designed as an extendable platform for investigating different interventions and how 828 

they impact the growth of Malignant cells and the spread of affected Grid Elements. In the 829 

experiments described in this paper only one intervention, loosely based on maximum tolerated 830 

dose chemotherapy, has been explored. Clearly there is scope for additional interventions to be 831 

modelled, for example combinations of Nutrient restriction and chemotherapy, a treatment 832 

strategy of some clinical interest (Raffaghello et al., 2008; Safdie et al., 2009; Lee et al., 2012), 833 

may be modelled in NEATG. Similarly the use of metronomic chemotherapy, targeted therapies 834 

and the use of different treatment schedules are also amenable to modelling using the NEATG 835 

system. 836 

 837 

Conclusion 838 

The value of agent-based evolutionary models is that they can generate biologically relevant 839 

behaviour through algorithmic means, which may in turn shed light on how these are 840 

implemented in biological systems. Obviously increasing the complexity of the model so that 841 

additional features are included, for example an improved mechanism for modelling 842 

advantageous genetic changes, may be of some value. However, in another sense retaining a 843 

simple model may be provide greater insight into the abstract processes involved in reproducing 844 

cancer-like behaviour – perhaps casting light on the disputed territory between the somatic 845 

mutation and tissue organisation field theories. 846 

  847 
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