
 

A peer-reviewed version of this preprint was published in PeerJ
on 12 May 2016.

View the peer-reviewed version (peerj.com/articles/1979), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Simeon S, Spjuth O, Lapins M, Nabu S, Anuwongcharoen N,
Prachayasittikul V, Wikberg JES, Nantasenamat C. 2016. Origin of
aromatase inhibitory activity via proteochemometric modeling. PeerJ
4:e1979 https://doi.org/10.7717/peerj.1979

https://doi.org/10.7717/peerj.1979
https://doi.org/10.7717/peerj.1979


Origin of aromatase inhibitory activity via proteochemometric

modeling

Saw Simeon, Ola Spjuth, Maris Lapins, Sunanta Nabu, Virapong Prachayasittikul, Jarl ES Wikberg, Chanin Nantasenamat

Aromatase, which is a rate-limiting enzyme that catalyzes the conversion of androgen to

estrogen, plays an essential role in the development of estrogen-dependent breast cancer.

Side effects due to aromatase inhibitors (AIs) necessitate the pursuit of novel inhibitor

candidates with high selectivity, lower toxicity and increased potency. Designing a novel

therapeutic agent against aromatase could be achieved computationally by means of

ligand-based and structure-based methods. For over a decade, we have utilized both

approaches to design potential AIs for which quantitative structure-activity relationship

and molecular docking were used to explore inhibitory mechanisms of AIs towards

aromatase. However, such approaches do not consider the effects that aromatase variants

have on different AIs. In this study, proteochemometrics modeling was applied to analyze

the interaction space between AIs and aromatase variants as a function of their

substructural and amino acid features. Good predictive performance was achieved, as

rigorously verified by 10-fold cross-validation, external validation, leave-one-compound-out

cross-validation, leave-one-protein-out cross-validation and Y-scrambling tests. The

investigations presented herein provide important insights into the mechanisms of

aromatase inhibitory activity that could aid in the design of novel potent AIs as breast

cancer therapeutic agents.
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ABSTRACT12

Aromatase, which is a rate-limiting enzyme that catalyzes the conversion of androgen to estrogen, plays

an essential role in the development of estrogen-dependent breast cancer. Side effects due to aromatase

inhibitors (AIs) necessitate the pursuit of novel inhibitor candidates with high selectivity, lower toxicity

and increased potency. Designing a novel therapeutic agent against aromatase could be achieved

computationally by means of ligand–based and structure–based methods. For over a decade, we have

utilized both approaches to design potential AIs for which quantitative structure–activity relationship and

molecular docking were used to explore inhibitory mechanisms of AIs towards aromatase. However,

such approaches do not consider the effects that aromatase variants have on different AIs. In this study,

proteochemometrics modeling was applied to analyze the interaction space between AIs and aromatase

variants as a function of their substructural and amino acid features. Good predictive performance was

achieved, as rigorously verified by 10-fold cross-validation, external validation, leave-one-compound-

out cross-validation, leave-one-protein-out cross-validation and Y-scrambling tests. The investigations

presented herein provide important insights into the mechanisms of aromatase inhibitory activity that

could aid in the design of novel potent AIs as breast cancer therapeutic agents.
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INTRODUCTION15

Cancer exerts a great impact on the quality of life of patients and is the leading cause of death worldwide.16

Breast cancer is the most common cancer type and is the second most common cause of death in17

women worldwide (Fontham et al., 2009). Despite the continuous efforts being made towards improving18

diagnostic tests, the incidence rate of breast cancer has gradually increased (May, 2014). It is estimated19

that around two-thirds of breast cancers in women are dependent on the steroid hormone estrogen, which20

regulates tumor cell growth and drives the progression of the cancer (Lipton et al., 1992). Therefore, two21

major therapeutic approaches are involved in breast cancer treatment and prevention: the first involves22

the development of drugs that target the estrogen receptor, which are also known as selective estrogen23

receptor modulators (SERMs), whereas the second approach involves the development of drugs that target24

aromatase, i.e., the enzyme that converts androgens to estrogens, the latter of which are also known as25

aromatase inhibitors (AIs).26

Aromatase, also known as cytochrome P450 19A1 (EC 1.14.14.1), is the expression product of the27

CYP19A1 gene. The enzyme comprises 503 amino acids spanning twelve α-helices and ten β -strands,28

inside which sits a heme co-factor that is coordinated by a cysteine residue at position 437 (Ghosh et al.,29

2009). Aromatase is a major producer of estrogen in post-menopausal women, and it catalyzes the30
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rate-limiting step of converting androgens to estrogens (Simpson et al., 1994). The aromatase conversion31

of androgens to estrogens involves three steps, whereby androgen’s methyl group at carbon 19 is oxidized32

to form formic acid, which is followed by the aromatization of the A ring to the phenolic A ring of33

estrogen. (Eisen et al., 2008). As aromatase catalyzes the biosynthesis of estrogen from androgens,34

inhibition of aromatase activity has become the standard treatment for hormone-dependent breast cancers35

in women.36

Previously, our group utilized the quantitative structure-activity relationship (QSAR) method in37

our efforts towards understanding the origin of aromatase inhibition (Nantasenamat et al., 2013a,b;38

Worachartcheewan et al., 2014a,b; Nantasenamat et al., 2014; Shoombuatong et al., 2015). We also used39

structure-based approaches to elucidate how selected compounds of interest interact with aromatase to40

give rise to their inhibitory activity (Suvannang et al., 2011; Worachartcheewan et al., 2014b; Pingaew41

et al., 2015). Although robust, both ligand–based and structure–based approaches have limitations: the42

former will only allow the study of how modifications to functional moieties of ligands influence the43

bioactivity, whereas the latter will only provide insights into how the spatial location of amino acid44

residues influences the bioactivity.45

In this study, we developed a unified proteochemometric (PCM) model to investigate the interaction46

between a series of ligands and a series of aromatase variants. Such computational approaches present47

methodological differences with the systems-based approach (i.e., the PCM model) described herein. To48

this end, aromatase protein variants were represented using highly interpretable and position-specific49

z-scale descriptors, while AIs were represented using substructure fingerprint descriptors. Each interacting50

pair of AIs with aromatase variants was assigned a pIC50 value. Various machine learning methods were51

then employed to model the interaction between the ligands and the aromatase variants. Compared to the52

conventional ligand-based QSAR approach, the PCM technique represents a leap forward for structure-53

activity relationship investigations due to its ability to simultaneously consider descriptive information of54

several proteins and several ligands as well as its inherent interpretability in which the relative significance55

of descriptors in relation to the dependent variable (i.e., pIC50) can be derived. Furthermore, such PCM56

strategy provided important insights into the molecular basis for the inhibition of a set of AIs against a set57

of aromatase variants and may aid in the combat against aromatase inhibitor resistance.58

MATERIALS AND METHOD59

Data Set60

A data set of compounds, site-specific variations of residues, and bioactivity values for protein-compound61

pairs was obtained from previous studies by Kao et al. (1996) and Auvray et al. (2002). The general62

workflow for PCM modeling of this data set is summarized in Figure 1. The compounds included in63

this study are 4-OHA (1), MDL101, 103 (2), 7α-APTADD (3), aminoglutethimide (4), CGS 2026764

(5), vorozole (6), ICI D1033 (7), MR20814 (8), MR20492 (9) and MR20494 (10), and their chemical65

structures are shown in Figure 2. These compounds interact with target proteins to induce pharmacological66

effects. However, the interaction occurs at the active site, where the compounds bind to only a small67

portion of residues in the target proteins. However, residues that are involved both near and far way from68

the active site can be considered in the PCM model. In this study, residues at positions K119, C124, K130,69

I133, F235, E302, P308, D309, T310, F320, I395, I474 and D476 were considered. These residues cover70

the AI binding site as well as residues near the aromatase active site. Aromatase inhibitory activities were71

originally defined using IC50 values, but to obtain a more distributed spread of the data points, they were72

subjected to negative logarithmic transformation, yielding pIC50 values. A summary table of the pIC5073

values for each pair of aromatase variant and compound is provided in the Supplementary Data.74

Compound descriptors75

The chemical structures of the compounds were drawn using Marvin Sketch version 6.2.1 (ChemAxon76

Ltd., 2014) and subsequently pre-processed according to the QSAR data curation workflow described by77

Fourches et al. (2010). In the workflow, metal ions containing compounds were removed because reliable78

descriptors cannot be calculated when compounds contain metal ions. The second part involved removing79

the salts from the compounds, followed by the normalization of the chemotypes and standardization of80

tautomers using the built-in function of the software program PaDEL-Descriptor (Yap, 2011). The curated81

compounds were subsequently coded using substructure fingerprint counts (Laggner, 2009). Fingerprint82

descriptors are numerical values that are used to describe the structure of compounds, including the83
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number of hydroxyl groups and the number of benzene rings. In particular, substructure fingerprints84

were chosen to describe the compounds because they are interpretable and can therefore pinpoint the85

substructures in compounds that are important for inhibiting aromatase.86

Protein descriptors87

Aromatase comprises a polypeptide chain of 503 amino-acid residues and a prosthetic heme group at88

its active site. An androgen-specific cleft, consisting of hydrophobic and polar residues, is situated at89

the aromatase binding site (Simpson et al., 1994). Of the 503 amino acids, 13 amino acid positions90

were found to be mutated in the investigated variants, as shown in Figure 3. Each of the amino acid91

positions was encoded using a set of three z-scale descriptors, thus giving 39 z-scale descriptors for92

each of the 22 aromatase proteins. z-scale descriptors characterize the 20 naturally occurring amino93

acids by encapsulating 29 physicochemical descriptors, comprising 9 experimentally determined values94

for retention times in thin-layer chromatography, 7 nuclear magnetic resonance shift values, 2 pK95

values of amino acids from amino groups and carboxylic acid groups, van der Waals volume, MW,96

isoelectric point, paper chromatography value, dG of the transfer of amino acids, hydration potential,97

salt chromatography value, and log P, log D and dG of accessible amino acids along three principal98

components. This high-dimensional set of values is reduced to a low-dimensional set of variables99

using principal component analysis, giving rise to a set of 3 z-scale descriptors, where z1 essentially100

represents the hydrophobicity/hydrophilicity, z2 represents the side-chain bulk volume, and z3 represents101

the polarizability and charge of the amino acids (Hellberg et al., 1987).102

Data partitioning103

The K-means clustering algorithm was used to partition the data into two groups, the internal and external104

sets. The algorithm selects a set of cluster centers to start the K-means clustering directly in Euclidean105

space whereby samples closest to the center cluster are picked from each cluster. The naes function106

prospectr from the R package was used to split the data; 80% of the protein-ligand pairs were used as the107

internal set and the remaining 20% were used as the external set (Stevens and Ramirez-Lopez, 2013).108

Feature Selection109

Intercorrelation, also known as collinearity, is a condition in which pairs of descriptors are known to have110

substantial correlations. Because it adds more complexity to models than the information they provide111

and also could potentially give rise to bias, it therefore has a negative impact on PCM analysis. Thus, the112

cor function from the R package stats (R Core Team, 2014) was used to calculate the pairwise correlation113

between descriptors, and a descriptor in a pair with a Pearson’s correlation coefficient greater than the114

threshold of 0.7 was filtered out using the findCorrelation function with the cutoff set at 0.7 from the R115

package caret so as to obtain a smaller subset of descriptors (Kuhn, 2008).116

Principal Component Analysis117

Principal component analysis (PCA) is a widely used method for finding the linear combination of a set118

of observations with the most possible variance, and it can reveal important characteristics of the data119

structures, which are otherwise difficult to distinguish. PCA results in mutually orthogonal axes, called120

principal components (PCs), which are linearly uncorrelated. Two important features of PCA are the121

loadings and scores. The loadings reveal correlations between all variables simultaneously, whereas the122

scores reveal similarities and differences between samples. The fundamental assumption is that PCs123

with a high explained variance possess systematic variance, whereas PCs with a low explained variance124

represent noise. Thus, it is important to decide on the number of PCs that sufficiently represent the125

information present in the data. Including higher-order PCs may just over-fit a model and result in a poor126

generalization of the data structures. To obtain the optimal number of PCs, Horn’s parallel analysis was127

applied to the biological space of aromatase variants (Zwick and Velicer, 1986). To allow comparisons,128

the same number of PCs as that obtained from Horn’s parallel analysis of aromatase variants was used also129

for the chemical space of AIs. Four PCs were deemed as sufficient for providing meaningful information130

on the chemical space of both AIs and aromatase variants. PCA was performed using the R statistical131

programming language. Descriptors with a variance close to zero were removed using the nearZeroVar132

function of the R package caret (Kuhn, 2008). The prcomp and kmeans functions from the R package133

stats were used to perform PCA and K-Means clustering, respectively (R Core Team, 2014). Prior to134

PCA analysis, all the data were centered and scaled to have a unit variance using the center and scale135
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Figure 1. Workflow for PCM modeling of aromatase inhibitory activity.
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Figure 2. Chemical structures of aromatase inhibitors.

functions. The paran function with the argument for the iterations set as 5000 from the R package paran136

was utilized to perform Horn’s parallel analysis to determine the optimal number of PCs (Dinno, 2012).137

Plots were created using the R package ggplot2 with a 95% confidence ellipse drawn around the clusters138

(Wickham, 2009).139

Compound-receptor cross-terms140

The goal of PCM analysis is to relate the compound and target spaces with the interaction activity

by creating a mathematical representation of the interaction space. Thus, unlike QSAR in which the
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Figure 3. Three-dimensional structure of aromatase showing the investigated sites of mutations.

compounds’ chemical spaces are independently related to biological activities, PCM links the unified

compounds and protein space to represent their ability to form non-covalent interactions. In addition to

compound descriptors and protein descriptors, PCM also makes use of cross-terms as a representation

of interactions between compounds and proteins. In this study, cross-terms were calculated as the

mathematical product of the compounds descriptors with those of the protein descriptors. Cross-terms

were computed using the getCPI function from the R package Rcpi Cao et al. (2014). Moreover, the total

number of cross-terms computed for self interaction (i.e., compound×compound and protein×protein)

was obtained as follows:

N(N −1)

2
(1)

where N is the total number of descriptors of compounds or proteins.141

Multivariate analysis142

Descriptors of the chemical compounds and investigated amino acids residues were modeled for the143

pIC50 activities using partial least squares (PLS) modeling. PLS is an extension of PCA that correlates144

the X matrix of predictors with the Y dependent variables by simultaneously projecting X onto the145

latent variables and finding linear relationships between them. PLS is a robust regression method that146

can handle a large amount of predictors without severely affecting the predictive power of its models.147

Briefly, PLS finds linear combinations of the predictors, called components or latent variables. The latent148

variables are chosen to maximally summarize the covariance with the response, thus yielding components149

that maximally summarize the variation of the data set in terms of the descriptors while simultaneously150

having these components correlated with the response. Therefore, PLS finds a compromise between151

predictor space dimension reduction and the predictability of the relationship with the response (i.e.,152

pIC50). Because PLS identifies the optimal predictor sample dimension reduction to perform regression153
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with the response, it is important to select the optimal principle component. Each extracted component154

increases the explained variation of the predictors, where the first component normally identifies the real155

correlation between the predictors and response. The PLS model was fine-tuned with the train function156

from the caret package, and this operator was used to extract the optimal number of PCs for building the157

predictive model. Finally, the plsr function from the R package pls was used to build PLS models with158

different combinations of predictors (Mevik and Wehrens, 2007).159

When the number of descriptors is large compared to the number of samples, linear regression tends160

to exhibit very high variance. Thus, a small number of changes in a few samples will produce substantial161

changes in the coefficient. Ridge regression is effective at reducing the predictive model variance by162

minimizing the residual sum of squares. This is done by dividing the values of all the descriptors by their163

variance. Ridge regression was performed using linearRidge from the R package ridge. The parameter164

for the model was fine-tuned with the train function from the R package caret. To avoid random seeds,165

the model was trained 100 times, and the values of the statistical assessment parameters (i.e., R2, Q2 and166

RMSE) were reported as the mean and standard deviation.167

Random forest (RF) is an ensemble classifier that comprises multiple decision tress. Decision trees168

are powerful and transparent classifiers, which use a tree structure to model the relationship between the169

descriptors and the classes. The route towards an activity class of HDPs begins at the root node, where it is170

then passed through decision nodes that require choices to be made based on the features (i.e., compound,171

protein and cross–terms). These outcomes split the data across branches that indicate the potential class172

of a decision. The final decision can be made when the tree terminated by leaf nodes provides a particular173

expected class as the result of a series of decisions. This provides tremendous insights into how the model174

works for a particular task of prediction, which makes it especially appropriate for classification. In175

RF, the classification is obtained by averaging the results of all tress by a majority vote based on each176

tree. Optimal tuning parameters (i.e., mtry) for RF were obtained by training the model with different177

ranges of mtry accompanied with 5–fold cross validation. The train function from caret was used with178

the argument trControl set as 5–fold cross validation with 100 iterations. The randomForest function179

from the R package randomForest was used to build the predictive models with 500 decision tress (Liaw180

and Wiener, 2002). To avoid the possibility of chance correlation that may arise from random seed of a181

single data partition, the models were built from 100 independent data partitions as described above using182

K-means clustering.183

Validation of model performance184

The internal validation set (i.e., the 80% data subset) was subjected to 10-fold cross-validation (10-fold185

CV). This was performed by splitting the internal validation set further into 10 folds. Afterwards, 1 fold186

of the data was left out as the testing set, while the remaining were used as the training set for building the187

predictive model. This was repeated iteratively until all folds were left out once. The defaultSummary188

function from the R package caret was used to obtain statistical assessment parameters for validating the189

PCM models Kuhn (2008). The external set was used to validate the predictability of the constructed190

PCM models, and the goodness-of-fit (R2), predictive ability (Q2) and root mean squared error (RMSE)191

were determined.192

In addition, leave-one-protein-out (LOPO) validation and leave-one-compound-out (LOCO) cross-193

validation were also used to externally validate the PCM models for their extrapolation abilities in terms194

of new proteins or compounds. In the LOPO scheme, data annotated for single protein are left out as the195

test set while the remaining data are used to build the predictive model. Similarly, in the LOCO scheme,196

one compound is iteratively left out as the test set and evaluated against the trained model. Both processes197

were repeated iteratively until each aromatase variant and compounds had a chance to be left out as the198

test set.199

To assess the statistical significance of R2 and Q2, the Y-scrambling test, a well-established statistical200

method also known as permutation testing, was used to ensure the robustness of the PCM models to rule201

out the possibility of chance correlations or redundant data sets. In the test, the true Y-dependent variable202

is randomly shuffled, and the statistical assessment parameters are recalculated. The permute function203

from the R package gtools was used to scramble the Y-dependent variables (i.e., pIC50) Warnes et al.204

(2015).205
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Figure 4. Plots of the PCA scores (A) and loadings (C) of 10 compounds. Plots of the PCA scores (B)

and loadings (D) of 22 aromatase variants. In sub-plot (A), each dot represents an aromatase inhibitor

derived from the first two PCs, while in sub-plot (C), each dot represents substructure fingerprint count

descriptors. In sub-plot (B), each dot represent aromatase variants, and in sub-plot (D), each dot represents

z-scale descriptors.

RESULTS AND DISCUSSION206

Biological and chemical space of aromatase variants and compounds207

PCA was utilized to analyze the z-scale descriptors of the aromatase variants for a better understanding208

of the biological space. Horn’s parallel analysis deemed four PCs sufficient to yield information for209

satisfactorily explaining the biological space.The overall percentage of the total explained variance of the210

first four PCs was 75.02%, which is indicative of the good coverage of the data modeled by these PCs.211

PC1 accounted for 22.07% of the data variance, in which the positive ends were dominated by212

p133z2 (side-chain bulk volume of the amino acid at position 133 of the aromatase variants), p133z3213

(polarizability and charge of the amino acid at position 133 of the aromatase variants), and p133z1214

(hydrophobicity/hydrophilicity of the amino acid at position133 of the aromatase variants), whereas215

p474z3 (polarizability of the amino acid at position 474 of the aromatase variants), p474z2 (side-chain216

bulk volume of the amino acid at position 474 of the aromatase variants), p476z3 (polarizability and217

charge of the amino acid at position 476 of the aromatase variants), p476z1 (hydrophobicity/hydrophilicity218
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of the amino acid at position 476 of the aromatase variants) and p474z1 (hydrophobicity/hydrophilicity of219

the amino acid at position 474 of the aromatase variants) had high loadings for the negative ends. It can be220

observed that the physicochemical properties of position 133 have a strong influence, as they provide high221

loadings on one side, whereas the physiochemical properties of position 474 account for high loadings on222

the other side. The descriptors p119z3 (polarizability and charge of the amino acid at position 119) and223

p119z2 (side-chain bulk volume of the amino acid at position 119) did not provide much variance for224

PC1.225

PC2 explained 21.21% of the variance for the protein descriptors. The descriptors with the highest226

loadings were p474z3 (polarizability and charge of the amino acid at position 474 of the aromatase227

variants), p474z2 (side-chain bulk volume of the amino acid at position 474 of the aromatase variants)228

and p474z1 (hydrophobicity/hydrophilicity of the amino acid at position 474 of the aromatase variants)229

for the positive ends, while the negative ends were dominated by p133z2 (side-chain bulk volume of the230

amino acid at position 133 of the aromatase variants), p133z3 (polarizability and charge of the amino acid231

at position 133 of the aromatase variants), p476z3 (polarizability and charge of the amino acid at position232

476 of the aromatase variants) and p476z1 (hydrophobicity/hydrophilicity of the amino acid at position233

476 of the aromatase variants).234

PC3 accounted for 20.04% of the data variation. It can be observed that PC1 and PC2 have the same235

explained variance as PC3, accounting for a total explained variance of 63.31%. For PC3, the descriptor236

providing the highest loadings for the positive end was p119z3 (polarizability and charge of the amino237

acid at position 119 of the aromatase variants), whereas p199z1 (hydrophobicity/hydrophilicity of the238

amino acid at position 119 of the aromatase variants), p119z2 (side-chain bulk volume of the amino239

acid at position 119 of the aromatase variants) and p113z2 (side-chain bulk volume of the amino acid240

at position 113 of the aromatase variants) and p113z3 (polarizability and charge of the amino acid at241

position 113 of the aromatase variants) had a large influence on the negative ends.242

PC4 accounted for 11.70% of the explained variance. For PC4, the descriptors with high loadings for243

the positive side were p474z3 (polarizability and charge of the amino acid at position 474 of the aromatase244

variants) and p474z2 (side-chain bulk volume of the amino acid at position 474 of the aromatase variants),245

whereas p119z1 (hydrophobicity/hydrophilicity of the amino acid at position 119 of the aromatase246

variants) and p119z2 (side-chain bulk volume of the amino acid at position 119) had the highest loadings247

for the negative side.248

For a comparison, 4 PCs were selected from the PCA analysis of the substructure fingerprint descriptors249

of the chemical compounds in order to provide a general account of the chemical space. The cumulative250

proportion of the explained variance of the first 4 PCs was 81.22%, which can seem to provide enough251

information for insights on the data, as the data appear geometrical in the feature space. PC1 accounted252

for 38.89% of the data variance. It can be noted that the first PC was the most informative, as it explained253

the highest data variation among the PCs. It can be observed that the highest descriptor effects of PC1254

were SubFPC49 (ketone), SubFPC300 (1,3-tautomerizable), SubFPC301 (1,5-tautomerizable), SubFPC4255

(quaternary carbon), SubFP2 (secondary carbon) and SubFPC3 (tertiary carbon) on one end, while the256

other end was dominated by SubFPC295 (C ONS bond), SubFPC184 (heteroaromatic), SubFPC181257

(hetero N nonbasic), SubFPC275 (heterocyclic) and SubFPC302 (rotatable bond). SubFPC12 (alcohol),258

SubFPC76 (enamine), SubFPC135 (vinylogous carbonyl or carboxyl derivative) and SubFPC13 (primary259

alcohol) had low loadings on PC1, suggesting that they only provide low data variation in terms of AI. It260

can be seen that in substructures, chemical conjugation, a phenomenon in which p-orbitals are connected,261

thereby allowing electrons to flow within the conjugated system, provided the highest afforded loadings262

in PC1.263

PC2 accounted for 18.45% of the data variance, and descriptors providing the high loading on the posi-264

tive ends were SubFPC1 (primary carbon), SubFPC35 (ammonium), SubFPC134 (isonitrile), SubFPC296265

(charged), SubFPC297 (anion), SubFPC298 (cation) and SubFPC299 (salt), whereas SubFPC287 (con-266

jugated double bond), SubFPC13 (primary alcohol), SubFPC12 (alcohol), SubFPC76 (enamine) and267

SubFPC135 (vinylogous carbonyl or carboxyl derivative) dominated the negative ends. Interestingly,268

the substructures associated with charge showed the most variance in describing the data variation at269

PC2. In contrast, SubFPC49 (ketone), SubFPC5 (alkene) and SubFPC275 (heterocyclic) provided little270

information.271

PC3 accounted for 12.63% of the data variance for AI. PC3 thus represented just a small proportion272

of the data variance compared with the lower-order PCs. However, the spread of the data for PC3 was273
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sufficiently large for it to be viewed as informative. The loadings of PC3 mainly comprised SubFPC13274

(primary alcohol), SubFP12 (alcohol), SubFPC76 (enamine) and SubFPC135 (vinylogous carbonyl or275

carboxyl derivative) on the positive ends, whereas SubFPC307 (chiral center specified), SubFPC5 (alkene),276

SubFPC171 (arylchloride) and SubFPC180 (hetero N basic no H) dominated the negative ends.277

PC4 had an explained variance of 11.25%. The descriptors that capture high loadings at the positive278

end were SubFPC20 (alkylarylthioether), SubFPC38 (alkylarylthioether), SubFPC96 (carbodithioic ester),279

SubFPC137 (vinylogous ester) and SubFPC303 (Michael acceptor). In contrast, the negative ends280

were dominated by SubFPC88 (carboxylic acid derivative), SubFPC105 (imide acidic), SubFPC171281

(arylchloride), SubFPC275 (heterocyclic) and SubFPC72 (enol).282

A closer look at the data structures for both chemical descriptors and protein descriptors revealed that283

the chemical descriptors provided better systemic data types when compared to the protein descriptors.284

It can be observed that of the overall explained variance of the first two PCs, 57.34% and 43.28% were285

accounted for by compound and protein descriptors, respectively. Thus, in comparison, it can be concluded286

that the compound descriptors represent data structures with more useful information, whereas the protein287

descriptors contain noise in the data. Noise in the data structure may just add to the complexity of288

the model, causing overfitting and thereby producing unstable models. Nevertheless, the first four PCs289

afforded overall variance in the data of 81.22%, and 75.02% for compounds and proteins, respectively.290

PCM modeling of aromatase inhibitory activity291

PCM allows the study of ligand-protein interactions by simultaneously investigating the interaction of292

several compounds against several proteins (i.e., in this case several aromatase variants). Our earlier293

QSAR models of the inhibitory properties of AI used only information from chemical compounds while294

the potential effects of protein binding sites and residues on the inhibitory properties of AI were not295

considered. This study addresses this issue by applying PCM modeling to integrate information on the296

interaction space of both proteins and ligands into one unified model.297

The approach seems rational in view of an earlier PCM investigation by Prusis et al. (2006), where298

the amino acid position located very far from the binding site of a peptide hormone receptor could be299

effectively studied via PCM. One of the biggest problems with PCM modeling is that the data matrix tends300

to be very large, which leads to a high computational cost and may be prone to overfitting. To remove301

irrelevant descriptors that contribute more noise to the model than the information they provide, therefore302

feature selection was performed by removing descriptors that have pairwise Pearson’s correlations higher303

than the cutoff threshold of 0.7. Such threshold was chosen because Pearson’s correlation coefficients that304

are larger in value are indicative of high collinearity between descriptors (Booth et al., 1994).305

The results from PCM modeling are shown in Table 1. It can be observed that the sizes of descriptor306

blocks, C, P, C ×P, C ×C and P×P are 13, 18, 234, 78 and 153, respectively. As seen in Table 1,307

the predictive performances of the PCM models were R2 = 0.92±0.01/Q2
CV 0.87±0.09, R2 = 0.82±308

0.01/Q2
CV = 0.62±0.22 and R2 = 0.84±0.01/Q2

CV = 0.74±0.19 for models 6, 10 and 13, respectively.309

A closer inspection revealed that the linear models using PLS models 1, 2 and 6 showed R2 values ranging310

from 0.20± 0.02 to 0.92± 0.01, Q2
CV values ranging from 0.16± 0.20 to 0.87± 0.09 and Q2

Ext values311

ranging from 0.21±0.11 to 0.93±0.01. Despite the low accuracy provided by the 10–fold CV set, the312

results were compared using the standard criteria described by Tropsha (2010), where R2 > 0.6 and313

Q2 > 0.5 are indicative of good, validated predictive models. The plot of predicted versus experimental314

pIC50 for the 13 models is shown in Figure 5. As seen in Table 1, the differences between R2–Q2
Ext range315

from (–0.08) to (–0.32), whereas R2–Q2
CV ranges from (0.04–0.25). Generally speaking, the performance316

of the 10–fold CV and external sets should be lower than those of the training sets, as some samples were317

left out when training the models. However, models 1, 2, 4 and 5 showed differences of –0.05, –0.01,318

–0.06 and –0.08, respectively. Typically, the training set should not only be representative of the test set,319

but it should also be completely independent. This was ensured by applying the K-means clustering320

algorithm in which the algorithm selects training samples from the initial data set to construct a complete321

sample of independent variables. However, when the training samples are selected in such a way that322

they are representative of the test samples, the prediction error for the test set may be lower than expected.323

This may explain why the differences between R2 and Q2
Ext for some models are negative in value.324

The PCM models after feature selection were then compared with other machine learning algorithms325

(i.e., ridge regression and random forest). The results of the ridge regression were comparable to those of326

the PLS model where the predictive performances of the PCM models were as follows: R2 = 0.93±0.01 /327
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Table 1. Summary of the predictive performance of PCM models of pIC50 of aromatase after feature selection using PLS.

Model Number of descriptors Training set 10–fold CV External set
R2–Q2

CV R2–Q2
Ext

C P C×P C×C P×P Total R2 RMSETr Q2 RMSECV Q2 RMSEExt

1 13 0 0 0 0 13 0.88±0.01 0.43±0.01 0.86±0.11 0.46±0.11 0.93±0.01 0.42±0.03 0.04 –0.05

2 0 18 0 0 0 18 0.20±0.02 1.14±0.02 0.16±0.20 1.26±0.21 0.21±0.11 1.10±0.12 0.04 –0.01

3 0 0 234 0 0 234 0.86±0.02 0.48±0.03 0.61±0.22 0.79±0.24 0.54±0.12 0.88±0.15 0.25 0.32

4 0 0 0 78 0 78 0.87±0.05 0.43±0.01 0.86±0.11 0.46±0.11 0.93±0.01 0.42±0.03 0.01 –0.06

5 0 0 0 0 153 153 0.22±0.02 1.13±0.03 0.18±0.18 1.26±0.27 0.30±0.13 1.04±0.13 0.04 –0.08

6 13 18 0 0 0 31 0.92±0.01 0.36±0.01 0.87±0.09 0.46±0.12 0.89±0.04 0.43±0.06 0.05 0.03

7 13 18 234 0 0 165 0.87±0.01 0.46±0.02 0.69±0.20 0.73±0.25 0.63±0.16 0.77±0.18 0.18 0.24

8 13 18 0 78 0 109 0.90±0.01 0.40±0.01 0.81±0.13 0.55±0.14 0.88±0.06 0.44±0.08 0.09 0.02

9 13 18 0 0 153 184 0.87±0.01 0.44±0.01 0.72±0.16 0.70±0.21 0.74±0.08 0.70±0.11 0.15 0.13

10 13 18 234 78 0 343 0.82±0.01 0.54±0.02 0.62±0.22 0.81±0.26 0.58±0.13 0.80±0.12 0.21 0.24

11 13 18 234 0 153 418 0.90±0.01 0.41±0.02 0.72±0.20 0.69±0.23 0.63±0.12 0.77±0.14 0.18 0.27

12 13 18 0 78 153 262 0.83±0.01 0.52±0.01 0.72±0.19 0.67±0.21 0.79±0.09 0.60±0.09 0.11 0.04

13 13 18 234 78 153 496 0.84±0.01 0.51±0.01 0.74±0.19 0.64±0.21 0.80±0.07 0.60±0.09 0.10 0.04
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Table 2. Summary of the predictive performance of PCM models of pIC50 of aromatase after feature selection using ridge regression.

Model Number of descriptors Training set 10–fold CV External set
R2–Q2

CV R2–Q2
Ext

C P C×P C×C P×P Total R2 RMSETr Q2 RMSECV Q2 RMSEExt

1 13 0 0 0 0 13 0.88±0.01 0.43±0.01 0.86±0.11 0.46±0.11 0.93±0.01 0.42±0.03 0.02 –0.05

2 0 18 0 0 0 18 0.34±0.03 1.04±0.03 0.20±0.23 1.26±0.23 0.17±0.10 1.15±0.12 0.14 0.17

3 0 0 234 0 0 234 0.96±0.01 0.25±0.03 0.53±0.26 1.17±0.59 0.63±0.15 0.95±0.26 0.43 0.33

4 0 0 0 78 0 78 0.87±0.01 0.43±0.01 0.86±0.11 0.46±0.11 0.93±0.01 0.42±0.03 0.01 –0.06

5 0 0 0 0 153 153 0.35±0.03 1.03±0.03 0.19±0.21 1.28±0.27 0.33±0.12 1.03±0.13 0.16 0.02

6 13 18 0 0 0 31 0.93±0.01 0.33±0.02 0.86±0.10 0.47±0.14 0.87±0.05 0.47±0.08 0.07 0.06

7 13 18 234 0 0 165 0.91±0.01 0.38±0.02 0.63±0.23 0.83±0.37 0.62±0.16 0.77±0.16 0.28 0.29

8 13 18 0 78 0 109 0.90±0.01 0.42±0.01 0.75±0.16 0.65±0.18 0.82±0.06 0.59±0.10 0.15 0.08

9 13 18 0 0 153 184 0.74±0.02 0.71±0.03 0.70±0.15 0.66±0.23 0.64±0.08 0.90±0.13 0.04 0.10

10 13 18 234 78 0 343 0.93±0.01 0.34±0.01 0.67±0.24 0.74±0.30 0.63±0.12 0.75±0.11 0.26 0.30

11 13 18 234 0 153 418 0.78±0.01 0.69±0.02 0.65±0.24 0.79±0.31 0.62±0.15 0.77±0.17 0.13 0.16

12 13 18 0 78 153 262 0.91±0.01 0.38±0.01 0.75±0.18 0.62±0.20 0.82±0.07 0.55±0.08 0.16 0.09

13 13 18 234 78 153 496 0.84±0.01 0.53±0.01 0.78±0.18 0.59±0.19 0.83±0.06 0.56±0.07 0.06 0.01
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Table 3. Summary of the predictive performance of PCM models of pIC50 of aromatase after feature selection using random forest.

Model Number of descriptors Training set 10–fold CV External set
R2–Q2

CV R2–Q2
Ext

C P C×P C×C P×P Total R2 RMSETr Q2 RMSECV Q2 RMSEExt

1 13 0 0 0 0 13 0.87±0.00 0.43±0.01 0.86±0.12 0.46±0.11 0.93±0.01 0.43±0.03 0.01 –0.06

2 0 18 0 0 0 18 0.35±0.02 1.06±0.02 0.25±0.22 1.18±0.23 0.25±0.11 1.08±0.14 0.10 0.10

3 0 0 234 0 0 234 0.95±0.01 0.28±0.02 0.84±0.14 0.52±0.16 0.90±0.03 0.42±0.06 0.11 0.05

4 0 0 0 78 0 78 0.88±0.01 0.43±0.01 0.85±0.12 0.46±0.12 0.93±0.01 0.42±0.03 0.03 –0.05

5 0 0 0 0 153 153 0.32±0.03 1.06±0.03 0.18±0.19 1.25±0.23 0.33±0.12 1.01±0.14 0.14 –0.01

6 13 18 0 0 0 31 0.93±0.01 0.35±0.01 0.85±0.11 0.48±0.14 0.90±0.04 0.40±0.07 0.08 0.03

7 13 18 234 0 0 165 0.96±0.01 0.27±0.02 0.83±0.15 0.50±0.14 0.89±0.05 0.41±0.08 0.13 0.07

8 13 18 0 78 0 109 0.96±0.01 0.25±0.02 0.83±0.15 0.48±0.14 0.89±0.05 0.41±0.06 0.13 0.07

9 13 18 0 0 153 184 0.96±0.01 0.25±0.02 0.85±0.12 0.45±0.14 0.89±0.04 0.44±0.08 0.11 0.07

10 13 18 234 78 0 343 0.96±0.01 0.27±0.02 0.84±0.15 0.46±0.15 0.90±0.04 0.39±0.06 0.12 0.06

11 13 18 234 0 153 418 0.96±0.01 0.27±0.02 0.85±0.12 0.50±0.16 0.88±0.04 0.43±0.06 0.11 0.08

12 13 18 0 78 153 262 0.94±0.01 0.31±0.01 0.86±0.11 0.46±0.12 0.90±0.04 0.39±0.06 0.08 0.04

13 13 18 234 78 153 496 0.94±0.01 0.31±0.01 0.86±0.11 0.48±0.14 0.90±0.04 0.40±0.05 0.08 0.04

1
3

/2
3

P
e
e
rJ P

re
P
rin

ts | h
ttp

s://d
x
.d

o
i.o

rg
/1

0
.7

2
8
7
/p

e
e
rj.p

re
p
rin

ts.1
5
5
6
v
1
 | C

C
-B

Y
 4

.0
 O

p
e
n
 A

cce
ss | re

c: 1
 D

e
c 2

0
1
5
, p

u
b
l: 1

 D
e
c 2

0
1
5



1 2 3 

4 5 6 

7 8 9 

10 11 12 

13 

0 

P
re

d
ic

te
d

 p
IC

5
0
 

1 

2 

3 

-1 

0 

P
re

d
ic

te
d

 p
IC

5
0
 

1 

2 

3 

-1 

0 

P
re

d
ic

te
d

 p
IC

5
0
 

1 

2 

3 

-1 

0 

P
re

d
ic

te
d

 p
IC

5
0
 

1 

2 

3 

-1 

0 

P
re

d
ic

te
d

 p
IC

5
0
 

1 

2 

3 

-1 

Experimental pIC50 

-1 0 1 2 3 

Experimental pIC50 

-1 0 1 2 3 

Experimental pIC50 

-1 0 1 2 3 

Figure 5. Plot of the experimental versus predicted pIC50 values for 13 PCM models. Blue circles

represent internal sets while the red circles correspond to external tests.

Q2
CV = 0.86±0.10, R2 = 0.93±0.01 / Q2

CV = 0.67±0.24 and R2 = 0.84±0.01 / Q2
CV = 0.78±0.18 for328

models 6, 10 and 13, respectively. However, when the PLS models were compared with that of the random329

forest models, it is apparent that PCM models built using random forest are highly robust. In particular,330

models 10 and 13 yielded superior predictive results when compared with both the PLS and ridge331

models where values of R2 = 0.96±0.01/Q2
CV = 0.84±0.15 and R2 = 0.94±0.01/Q2

CV = 0.86±0.11,332

respectively, were observed. This may be attributed to the fact that random forest is an ensemble machine333

learning method employing multiple decision trees in which the bagging of trees improves the predictive334
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performance over that of a single model. As can be see in Table 3, the predictive performance of the335

10–fold cross-validation as deduced from Q2
CV ranges from 0.83±0.15 to 0.86±0.11, with exception of336

models 2 and 5, which were composed of protein descriptor blocks and their cross–terms.337

External validation is an important process for assessing the predictive ability of PCM models. As can338

be seen in Table 1, results from the external validation using PLS showed Q2
Ext = 0.89±0.04,0.58±0.13339

and 0.80±0.07 for models 6, 10 and 13, respectively. However, for random forest the respective Q2
Ext340

values for models 6, 10 and 13 were 0.90±0.04, 0.90±0.04 and 0.90±0.04, respectively. Thus, it341

is apparent that external validation for random forest yielded a superior performance and were thus342

subjected to further investigation. Subsequently, the PCM models built from random forest were then343

further validated using LOCO and LOPO cross–validations to evaluate their ability to extrapolate and344

predict the inhibitory activities for unknown compounds and aromatase variants, respectively. Table 4345

summarizes the comparison of the performances of the training set and 10–fold CV set along with LOPO346

and LOCO sets. It can be seen that models 6, 10 and 13 performed well on both LOPO with Q2
LOPO =347

0.88± 0.07,Q2
LOPO = 0.89± 0.0.06 and Q2

LOPO = 0.88± 0.07, respectively. In parallel, the predictive348

performances of LOCO were Q2
LOCO = 0.88± 0.07,Q2

LOCO = 0.89± 0.06 and Q2
LOCO = 0.89± 0.06,349

respectively. In contrast, the predictive performances of models 2 and 5 are rather poor as deduced from350

Q2
LOPO = 0.22± 0.17/Q2

LOPO = 0.22± 0.0.17 and Q2
LOCO = 0.21± 0.16/Q2

LOCO = 0.21± 0.0.17. This351

may be ascribed to the fact that models 2 and 3 do not contain the C descriptor block, thereby leading to352

poor predictability.353

Y-scrambling was performed 50 times to assess the possibility of chance correlations for 13 PCM354

models. Scatter plots of R2 versus Q2 are shown in Figure 6 for the Y–permutated data set comprising355

various combinations of descriptors. It can be seen that the actual X-Y pairs from the PCM models (i.e.,356

models 1, 3, 4, 6, 8, 10, 12 and 13) are distinctly separated from the scrambled X-Y pairs.357

Interpretation of the PCM models358

It is important to select the PCM model that best represents the inhibitory properties of AI. This was359

initially performed by selecting the top three PCM models in terms of performance. The reliability of the360

PCM models can be statistically assessed based on the differences between the goodness of fit and the361

predictive ability. From the top three models (highlighted using bold text in Table 1), the most reliable362

models were those for which R2 was not greater by 0.2-0.3 units than Q2. This is because a higher margin363

in the differences between R2 and Q2 is indicative of overfitted models either due to outliers or irrelevant364

descriptors. In addition, differences in R2 and Q2 can be used to explain the accumulated chance of365

correlations. Thus, PCM models with slightly similar R2 and Q2 values were considered.366

Analysis of the feature importance can provide a better understanding on the underlying features367

that may strongly contribute to the inhibitory properties (i.e., pIC50). The efficient and effective built-in368

feature importance estimators of the RF method was utilized to identify informative features. In general,369

two measures (i.e., the mean decrease in the Gini index and the mean decrease in prediction accuracy)370

are used for ranking important features. Because the mean decrease in the Gini index is reported to be371

robust when compared with the mean decrease in accuracy (Calle and Urrea, 2011), therefore the mean372

decrease in the Gini index was used to rank features. To avoid possible bias due to random seed of a373

single data partition, the mean and standard deviation values of the Gini index was calculated from the374

aforementioned 100 data partitions.375

The top 10 descriptors are SubFPC16 SubFPC300 (43.79±12.46), SubFPC72 SubFPC300376

(17.08±3.58), SubFPC28 SubFPC300 (14.66±2.40), SubFPC12 SubFPC88 (10.69±3.13),377

SubFPC1 SubFPC5 (8.91±1.87), SubFPC5 SubFPC287 (7.29±1.00), SubFPC1 SubFPC296378

(6.14±2.66), SubFPC5 SubFPC88 (4.71±1.51), SubFPC288 SubFPC303 (4.53±2.28) and379

SubFPC35 SubFPC303 (3.58±1.36), which correspond to the following cross–terms: dialkylether×1,3–380

tautomerizable, enol×1,3–tautomerizable, primary aromatic amine×1,3–tautomerizable,381

alcohol×carboxylic acid derivative, primary carbon×alkene, alkene×conjugated double bond,382

primary carbon×charged, alkene×carboxylic acid derivative, conjugated triple bond×Michael acceptor383

and ammonium×Michael acceptor, respectively.384

It can be seen that the descriptors with cross–term features involving substructure fingerprints were385

among the top 10 descriptors thereby suggesting the importance of compound descriptors. As shown in386

Table 3, a predictive model built using compound descriptors and their associated cross-terms descriptors387

show superior performance when compared to that of the protein descriptors. The feature importance388
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Table 4. Summary of the predictive performance of PCM models of pIC50 of aromatase as assessed by 10-fold, LOPO and LOCO cross-validations.

Model Number of Descriptors Training Set Cross-validation set Leave-One-Compound-Out Leave-One-Protein-Out

C P C×P C×C P×P Total R2
Tr RMSETr Q2

CV RMSECV Q2
LOCO RMSELOCO Q2

LOPO RMSELOPO

1 13 0 0 0 0 13 0.87±0.00 0.43±0.01 0.86±0.12 0.46±0.11 0.88±0.06 0.45±0.10 0.89±0.05 0.45±0.09

2 0 18 0 0 0 18 0.35±0.02 1.06±0.02 0.25±0.22 1.18±0.23 0.22±0.17 1.15±0.17 0.21±0.16 1.16±0.16

3 0 0 234 0 0 234 0.95±0.01 0.28±0.02 0.84±0.14 0.52±0.16 0.89±0.06 0.46±0.08 0.89±0.06 0.46±0.08

4 0 0 0 78 0 78 0.88±0.01 0.43±0.01 0.85±0.12 0.46±0.12 0.89±0.06 0.45±0.09 0.88±0.057 0.45±0.09

5 0 0 0 0 153 153 0.32±0.03 1.06±0.03 0.18±0.19 1.25±0.23 0.22±0.17 1.17±0.18 0.21±0.17 1.17±0.18

6 13 18 0 0 0 31 0.93±0.01 0.35±0.01 0.85±0.11 0.48±0.14 0.88±0.07 0.45±0.10 0.88±0.07 0.44±0.11

7 13 18 234 0 0 165 0.96±0.01 0.27±0.02 0.83±0.15 0.50±0.14 0.88±0.07 0.44±0.10 0.89±0.06 0.44±0.10

8 13 18 0 78 0 109 0.96±0.01 0.25±0.02 0.83±0.15 0.48±0.14 0.88±0.06 0.45±0.10 0.88±0.06 0.45±0.10

9 13 18 0 0 153 184 0.96±0.01 0.25±0.02 0.85±0.12 0.45±0.14 0.89±0.07 0.44±0.12 0.88±0.068 0.44±0.12

10 13 18 234 78 0 343 0.96±0.01 0.27±0.02 0.84±0.15 0.46±0.15 0.89±0.06 0.46±0.08 0.89±0.06 0.46±0.08

11 13 18 234 0 153 418 0.96±0.01 0.27±0.02 0.85±0.12 0.50±0.16 0.88±0.06 0.46±0.10 0.88±0.06 0.46±0.10

12 13 18 0 78 153 262 0.94±0.01 0.31±0.01 0.86±0.11 0.46±0.12 0.89±0.06 0.44±0.10 0.89±0.06 0.44±0.10

13 13 18 234 78 153 496 0.94±0.01 0.31±0.01 0.86±0.11 0.48±0.14 0.89±0.06 0.44±0.10 0.88±0.07 0.44±0.11
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Figure 6. Y-scrambling plots of pIC50 as obtained from PCM models after feature selection.

as deduced from the Gini index is provided in Figure 7 where features having high values for the389

Gini index are considered to be important. It can be observed that the top 3 cross-terms consisted390

of 1,3–tautomerizable substructures. It has been known that the triazole moiety of compounds could391

interact strongly with the heme iron and thus is responsible for interacting at the active site of aromatase.392

Triazoles are able to undergo tautomerization, for which two constitutional isomers can be formed. In393

fact, compounds containing triazoles include vorozole, anastrozole and letrozole, which appear to be394

highly effective against aromatase. Letrozole, in particular, is marketed as an effective breast cancer395
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Figure 7. Plot of feature importance for RF model 13. High Gini index values are indicative of important

descriptors.

drug. In the feature importance analysis, the top self cross–terms was dialkylether×1,3–tautomerizable396

(43.79±12.46), suggesting that this feature contributed strongly to the pIC50. In general, aromatase397

inhibitors can be classified into two major types according to their chemical structures, steroids and398

non–steroids inhibitors. The steroid inhibitors are also known as mechanism–based inhibitors, as they399

bind covalently to aromatase, thus destroying the enzymes by forming irreversible interactions. On the400

other hand, non-steroidal inhibitors have reversible inhibitory interactions with the heme co–factor of401

the aromatase, thereby preserving the enzyme while also limiting its actions. The first generation of402

non–steroid inhibitors was aminoglutethimide, shown in Figure 2. Although aminoglutethimide is able to403

inhibit the action of aromatase, it exhibits poor specificity as it can also inhibit other cytochrome P450404

enzymes, which are involved in the biosynthesis of cortisol aldosterone, leading to severe side effects.405

Because of these side effects, aminoglutethimide was withdrawn from clinical use. The second-generation406

aromatase inhibitors consist of fadrozole and formestane, which are non-steroidal imidazole derivatives407

and steroidal analogs. Although fadrozole was more selective and potent than aminoglutethimide, it still408

has undesirable effects, including inhibitory action against the production of aldosterone, corticosterone409

and progesterone. Formestane was the first aromatase to be used clinically, but the effects of covalently410

binding to aromatase led to its name of suicide inhibitor. The third-generation non-steroidal aromatase411
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inhibitors include vorozole, anastrozole and letrozole,and the latter two are marketed under the trade412

names of Arimidex and Femara, respectively. The current standard–of–care compounds for preventing413

relapse of breast tumors are anastrozole, letrozole and exemestane (Ma et al., 2015). However, in the414

early and advanced stages of breast cancer, 20% of patients suffer relapse of the disease (Group et al.,415

2011), and the disease eventually progress despite AI therapy, leading to the disease becoming incurable,416

lethal and systemic. The mechanisms of aromatase resistance are heterogeneous, and the hallmarks range417

from changes in the tumor microenvironment, deregulation of the ER pathway, decrease in apoptosis418

and senescence, abnormality in the cell cycle machinery, increase in cancer stem cells, overexpression419

of EGFR in the growth factor receptor pathway and mutations in PIK3CA, PTEN and AKT1 through420

secondary messengers (Ma et al., 2015). Nevertheless, it can be observed that triazole, which can undergo421

tautomerization, is one of the building blocks of highly selective and potent aromatase inhibitors. Feature422

importance analysis also revealed that the 1,3–tautomerizable substructure fingerprint has a high weight423

in terms of the inhibitory properties of aromatase (i.e., pIC50), as the three top features were composed of424

1,3–tautomerizable. The fourth-ranked substructure included the self cross–terms of alcohol×carboxylic425

acid derivatives. Interestingly, the carboxylic acid derivatives were used as a substructure when combating426

endocrine therapy resistance. Antoon et al. (2011) selected a sphingosine kinase–2 of MAPK pathway for427

the treatment of endocrine therapy–resistance breast cancer and stressed that the novel selective Sphk2428

inhibitor, ABC294640 (3-(4-chlorophenyl)-adamantane-1-carboxylic acid), is a potential therapeutic429

agent. Cadoo et al. (2014) claimed that cell cycle regulatory processes play an important role in the430

development of resistance in breast cancer and showed that a carboxylic acid derivative named Palbociclib431

is a promising therapy compound for dealing with endocrine therapy resistance. It can be observed that432

the top 10 features consisted of only compound descriptors, suggesting that compounds were dominant433

factors in terms of the inhibitory properties of aromatase. However, protein descriptors were found to have434

low weights for predicting activity. Recently, Ma et al. (2015) reviewed the mechanisms of aromatase435

inhibitor resistance, and it seems that aromatase inhibitor resistance does not just merely involve the436

mutation of the aromatase enzyme but also includes heterogeneous mechanisms that involve alteration437

of the carboxy–terminal ligand–binding domain region of estrogen receptor 1 (ER), cross-talk between438

growth factor receptors (GFR) and ER, mutation in the α– catalytic subunit of PI3K in ER, upregulation439

of cyclin dependent kinase 4 (CDK4) and modification of epigenetic regulators.440

Interestingly, it can be observed that the top descriptors with large positive values are electron–rich441

structures, which makes the associated compounds have a more hydrophobic portion that may interact442

with the hydrophobic core of the protein backbone through hydrophobic effects. It has been known443

that the active site of proteins are highly hydrophobic in nature. Thus, hydrophobicity is important for444

the compound–protein interaction of aromatase with its inhibitors. Interestingly, Bansal et al. (2012)445

synthesized several steroid aromatase inhibitors, including 3-keto-4-ene steroid variants, and reported446

that compounds with heteroaromatic pyridine ring were the most potent ones. Similarly, Khodarahmi447

et al. (2015) utilized quantum mechanical/molecular mechanical (QM/MM)-based docking to identify448

the strength of compounds in acting as a potential inhibitors of aromatase and stressed that the necessary449

hydrophobic interactions between aromatase and its inhibitors are facilitated via heteroaromatic rings.450

This feature reflects the binding mechanism by which ligands with the heterocyclic aromatic ring with451

an azole moiety is coordinated to the heme iron of the aromatase active site while also forming a π −π452

interaction with F221, W224, and I133 and hydrophobic interaction with W224, V369 and T310.453

PLS Model 13 showed promising predictive performance with Q2 values of 0.74±0.19 and 0.80±0.07454

for the cross-validation and external sets, respectively, and were therefore selected for further investigation.455

Figure 8 shows the feature importance of the PLS model as deduced from their coefficients, which can456

be used to explain the relative contribution to pIC50 values. It should be noted that a positive coefficient457

of substructure descriptor corresponds to an increase in the pIC50 value while negative PLS coefficient458

values contribute negatively to pIC50 values. Such knowledge could be useful for designing compounds459

to modulate the aromatase enzyme.460

Positive values of the PLS coefficient were seen for SubFP12 SubFPC88 (93.22±65.80),461

SubFPC5 SubFPC88 (88.42±62.14), SubFPC1 SubFPC5 (61.37±44.87), p130zscl1 p119zscl2462

(56.75±33.96), p119zscl1 p119zscl2 (41.96±39.47), SubFPC16 SubFPC300 (28.83±17.24),463

SubFPC5 SubFPC287 (25.21±16.02), SubFPC72 SubFPC300 (24.73±17.08), p130zscl1 p124zscl3464

(17.35±12.30) and SubFPC1 SubFPC296 (15.69±11.33). The top 3 features were those related to465

cross–terms of compounds: (i) alcohol×carboxylic acid derivative, (ii) alkene×carboxylic acid derivative466
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Figure 8. Plot of feature importance for PLS model 13 obtained using the regression coefficients.

Positive PLS coefficients are shown in red and the negative PLS coefficients are shown in blue.

and (iii) primary carbon×alkene. This indicates that the compounds have a substantial influence on the467

increase in pIC50 values. It is worthy to note that NMR studies suggests that compounds with similar468

substructures bind selectively to the target protein (McGovern et al., 2002). The analysis revealed469

that conjugated triple bond substructures have a huge impact on the increase in pIC50 values. In a470

conjugated system, an electron can delocalize around the ring through p orbitals. It can be observed that471

compounds with conjugated bonds as a substructure are able to modulate the inhibition of aromatase472

and its variants. Albrecht et al. (2011) stressed that compounds containing conjugated systems (e.g.,473

N-fused heteroaromatic compounds) are considered to be privileged compounds in drug discovery with474

notable examples such as Zolpidem (i.e., hypnotic properties) and Alpidem (i.e., anxiolytic properties),475

which are commercially available drugs that contain heteroaromatics as their substructures. This may476

therefore indicate that chemical conjugations are indeed a privileged substructure that are important for477

the inhibitory property against aromatase. Indeed, nitrogen-containing ring structures are found in both478

anastrozole and letrozole, which are drugs used as standard treatment for preventing the relapse of breast479

cancer, under the trademark names Arimidex and Femara, respectively. Furthermore, it can be seen that480

the highest PLS coefficient is that of p474zscl2 p474zscl3, which has a negative coefficient value, which481

suggested that amino acid at position 474 contribute to decreased pIC50 values (Zhou et al., 1994). Thus,482
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results from the feature analysis of PLS coefficients are consistent with the aforementioned findings from483

medicinal chemistry and computational studies.484

The following substructures with negative PLS coefficients contribute to a negative pIC50:485

p474zscl2 p474zscl3 (–49.83±44.49), p119zscl1 p320zscl3 (–30.43±24.53), p130zscl2 p130zscl3486

(–28.68±24.94), SubFPC288 SubFPC303 (–26.04±26.45), p133zscl1 p310zscl1 (–14.91±9.78),487

p474zscl1 p474zscl2 (–13.61±6.09), p310zscl1 p474zscl1 (-7.79±9.19), SubFPC35 SubFPC303 (-488

6.26±21.25), p309zscl1 p130zscl3 (-4.92±6.34) and p133zscl2 p133zscl3 (–4.15±5.88). It can be489

observed that most of the descriptors with negative values are self cross–terms of proteins, which suggests490

the importance of intramolecular interaction within the protein in contributing to decreased pIC50 values,491

which makes the compound less potent. Nevertheless, it should be noted that the mechanisms contributing492

to aromatase inhibitor resistance may be of heterogeneous nature.493

CONCLUSIONS494

Computational approaches for predicting the activities of AIs can facilitate drug discovery efforts by495

saving cost and time. The continual increase in breast cancer prevalence has led to the necessity for496

discovery of novel compounds with strong inhibitory properties towards aromatase. To consider possible497

effects of aromatase on different AIs, we present a PCM study on aromatase inhibitory activity of AI498

along with amino acid residues that are at the binding sites and/or near the binding sides. By utilizing an499

efficient feature importance estimator, we find that the tautomerizable substructures containing nitrogen500

and carboxylic derivatives are highly important based on the pIC50 value. These findings may aid in the501

design of novel compounds that not only are capable of inhibiting aromatase but can also address the502

issue of aromatase inhibitor resistance.503
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