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Exploring the chemical space of influenza neuraminidase

inhibitors

Nuttapat Anuwongcharoen, Watshara Shoombuatong, Tanawut Tantimongcolwat, Virapong Prachayasittikul, Chanin

Nantasenamat

The combat against the emergence of mutant influenza strains has led to the screening of

a growing number of compounds for inhibitory activity against influenza neuraminidase.

This study explores the chemical space of neuraminidase inhibitors (NAIs) provides an

opportunity for further gaining molecular insights on the underlying basis of the

bioactivity. Particularly, a large set of 347 and 175 NAIs against influenza A and B,

respectively, was compiled from the literature. Molecular and quantum chemical

descriptors were obtained from low-energy conformational structures geometrically

optimized at B3LYP/6-31G(d) level. The bioactivity of NAIs were classified as active and

inactive NAIs according to their half maximum inhibitory concentration

(\(\textrm{IC}_{50}\)) value in which \(\textrm{IC}_{50}\) < 1 \(\mu\)M and > 10 \(\mu\)M

were defined as active and inactive compounds against influenza neuraminidase,

respectively. Interpretable decision rules were derived from a quantitative structure-

activity relationship (QSAR) model established using 13 descriptors by means of decision

tree analysis. Good predictive performance was achieved as deduced from ten-fold cross-

validation where accuracy and MCC of 87.5% and 0.731, respectively, were obtained for

influenza A NAIs while values of 89.78% and 0.786 for influenza B NAIs. Both univariate

and multivariate analyses revealed the importance of lowest unoccupied molecular orbital,

number of hydrogen bond donor and number of hydrogen bond acceptors in the predictive

model of NAIs against influenza A while the number of hydrogen bond donor, number of

hydrogen bond acceptor and energy gap between highest occupied and lowest unoccupied

molecular orbital were important in the predictive model for influenza B NAIs. Analysis of

molecular scaffold was performed on both data sets in combination with functional group

analysis for discriminating important structural features amongst active and inactive NAIs.

Furthermore, molecular docking was deployed to investigate the binding mode and their

moiety preferences of active NAIs against both influenza A and B neuraminidase. Results

from this study is anticipated to be beneficial for guiding the rational drug design of novel

NAIs for treatment of influenza infection.
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ABSTRACT12

The fight against the emergence of mutant influenza strains has led to the screening of an increasing

number of compounds for inhibitory activity against influenza neuraminidase. This study explores

the chemical space of neuraminidase inhibitors (NAIs), which provides an opportunity to obtain further

molecular insights regarding the underlying basis of the bioactivity. In particular, a large set of 347 and 175

NAIs against influenza A and B, respectively, was compiled from the literature. Molecular and quantum

chemical descriptors were obtained from low-energy conformational structures geometrically optimized

at the B3LYP/6-31G(d) level. The bioactivities of the NAIs were classified as active or inactive according

to their half maximum inhibitory concentration (IC50) value, in which IC50 <1 µM and >10 µM were

defined as active and inactive compounds against influenza neuraminidase, respectively. Interpretable

decision rules were derived from a quantitative structure-activity relationship (QSAR) model established

using 13 descriptors via decision tree analysis. Good predictive performance was achieved, as deduced

from ten-fold cross-validation, in which an accuracy and MCC of 87.5% and 0.731, respectively, were

obtained for influenza A NAIs, while values of 89.78% and 0.786 were obtained for influenza B NAIs.

Both univariate and multivariate analyses revealed the importance of the lowest unoccupied molecular

orbital, number of hydrogen bond donors and number of hydrogen bond acceptors in the predictive

model of NAIs against influenza A, while the number of hydrogen bond donors, number of hydrogen

bond acceptors and the energy gap between the highest occupied and lowest unoccupied molecular

orbitals were important in the predictive model for influenza B NAIs. Molecular scaffold analysis was

performed on both data sets in combination with functional group analysis for discriminating important

structural features among active and inactive NAIs. Furthermore, molecular docking was employed to

investigate the binding modes and their moiety preferences of active NAIs against both influenza A and B

neuraminidase. The results from this study are anticipated to be beneficial for guiding the rational drug

design of novel NAIs for treating influenza infections.
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Keywords: influenza, neuraminidase, neuraminidase inhibitor, chemical space, QSAR, scaffold

analysis, fragment analysis, functional group analysis, molecular docking, rational drug design
14

INTRODUCTION15

Influenza is one of the most concerning diseases for global public health, and it is caused by influenza16

viruses, which are enveloped segmented-RNA viruses that belong to the Orthomyxoviridae family. The17

global estimate for cases of seasonal influenza infection is as high as 1 billion cases per year, in which18

approximately 3 to 5 million cases often develop a progressive severe illness and lead to 250,000 to19

500,000 fatalities per year worldwide (World Health Organization, 2014). Among the severe cases, high20

fatality rates are observed particularly in very young children and elderly people >65 years of age, who21

are considered to be a risk group vulnerable to influenza infection. Thus, influenza infections significantly22
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increase the number of hospitalizations, lead to substantial economical losses from disease intervention23

and impact the productivity of society (Peasah et al., 2013).24

The current strategy for treating influenza focuses on inhibiting the function of neuraminidase, which25

is an enveloped enzyme located on the surface of both influenza type A and B. Influenza neuraminidase26

is an exosialidase that recognizes the α-ketosidic linkage between neuraminic acid (or sialic acid) and27

carbohydrate residues (von Itzstein, 2011). The influenza virus requires this enzyme to facilitate viral28

budding of progeny virions out of the cells and to prevent viral aggregation of virus particles. The29

interaction allows the mature virus to detach from the host cell, resulting in the release of progeny virions30

from the surface of the host cell. Moreover, neuraminidase also plays a role in the cleavage of neuraminic31

acid of mucin inside the respiratory tract, thereby facilitating the movement of the virus toward its target32

cells (Shtyrya et al., 2009). Thus, neuraminidase is a crucial enzyme that facilitates viral spreading and33

transmission. To prevent the spreading of influenza viruses, neuraminidase inhibitors (NAIs) are currently34

an effective choice for treatment and prophylaxis.35

Currently, only three NAIs have been approved for use as therapeutic and prophylaxis agents of36

influenza virus: zanamivir (Relenza), oseltamivir (Tamiflu) and peramivir (Rapivab). Zanamivir is the first37

approved nasally administered NAI, and it exerts highly effective inhibitory activity against both types of38

influenza virus. This dihydropyran-based NAI was developed based on the structural modification of a39

sialic acid analogue called DANA (Meindl et al., 1974). Due to its high polarity, zanamivir exhibits low40

oral bioavailability and requires administration via nasal inhalation. Oseltamivir is a second-generation41

NAI approved for use as an oral anti-influenza agent, and it exhibits efficacy comparable to that of42

zanamivir (Tuna et al., 2012). This cyclohexene-based NAI is less polar than the previous generation, thus43

making it easier to administer than the inhalation route. The most recently approved intravenous NAI,44

peramivir, was announced in December 2014. This intravenous formulation was developed as a single45

dose for the treatment of acute uncomplicated influenza infection, and it potentially reduces the duration46

of illness in participants. Although current NAIs exhibit high therapeutic efficacy against circulating47

influenza virus, searching for novel anti-influenza agents is continuously performed to address newly48

emerging or mutant strains with resistance to anti-influenza agents.49

Nevertheless, a number of drug candidates have failed in the late stages of the drug development50

process, primarily during clinical trials. These failures are a result of either insufficient therapeutic efficacy51

or adverse drug reactions at therapeutic doses. Balancing between favorable bioactivity and desirable52

adverse effects is essential for improving the therapeutic outcome after treatment (Greene and Naven,53

2009). The bioactivity of compounds is facilitated by interactions between functional groups aligning54

inside the molecule and target residues in the binding pocket of the drug target. Thus, insights into the55

structure-activity relationship are important for filling the knowledge gap during the lead optimization56

process. Currently, advanced computational-aided drug design approaches are employed in medicinal57

chemistry research, which potentially reduce costs and the amount of time spent for optimizing a set58

of novel compounds for pre-clinical and clinical assessments. Chemical space exploration enables the59

determination of important molecular substructures that contribute to bioactivity against drug targets. In60

combination with quantitative structure-activity relationships, the informative physicochemical properties61

and molecular features that are relevant to the bioactivity of compounds can be obtained for discriminating62

between active and inactive compounds through various machine-learning approaches.63

To reduce the failure rate in the late stages of drug design and development, it is necessary to64

understand both important molecular substructures and informative molecular features relevant to the65

activity of interest. Herein, we report the application of chemical space for exploring the important66

structure distributions related to neuraminidase inhibitor activities and the creation of a set of simple67

physicochemical properties that define the preferred physicochemical properties for neuraminidase68

inhibition. To achieve this objective, a large data set of neuraminidase inhibitors was collected from a69

publicly available binding database (Liu et al., 2007). This data set provides considerable opportunity for70

investigating the fundamental profiles that dominate neuraminidase inhibition. Analysis of the maximum71

common substructures of compounds in the data set is performed to explore the chemical space of NAIs.72

A classification model for investigating structure-activity relationships is constructed using decision tree73

analysis.74
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Figure 1 Schematic workflow of neuraminidase inhibitor chemical space exploration.

MATERIALS AND METHODS75

Data collection76

A schematic workflow is presented in Figure 1. Bioactive compounds that exhibited an inhibitory effect77

against neuraminidase of both influenza virus type A and B were collected from BindingDB (Liu et al.,78

2007), which was primarily compiled from 27 original articles. The bioactivities of the NAIs were79

indicated by IC50 and converted to pIC50 by taking the negative logarithm to the base of 10 using the80

following equation:81

pIC50 =− log(IC50) (1)

We first excluded the compounds with similar compound names, SMILES structures and protein82

targets to avoid bias in the prediction model. After the pre-preprocessing procedure, non-redundant83

data sets consisting of 347 and 175 NAIs for influenza type A and B, respectively, were obtained. To84

categorize compounds as active or inactive, pIC50 cut-off values were used, in which compounds with85

pIC50 values of greater than 6 (corresponding to an IC50 value of less than or equal to 1 uM) were86

categorized as “active”, and compounds with pIC50 values of less than 5 (corresponding to an IC5087

value of greater than or equal to 10 uM) were categorized as “inactive”. Moreover, the intermediate88

biological activity NAIs with pIC50 values ranging between 5 and 6 were not selected in this study, which89

consist of 62 and 44 NAIs for influenza virus type A and B, respectively. Finally, sets of non-redundant90

compounds consisting of 285 influenza A NAIs and 131 influenza B NAIs were obtained and subjected to91

further investigation. These data sets are provided as supplementary data on figshare and is accessible at92

http://dx.doi.org/10.6084/m9.figshare.1612484.93

Table 1 Summary of the data set used for predicting the inhibitory activity of influenza type A and B.

Data set Initial
Internal data set External data set

Active Inactive Active Inactive

Type A 410 204 124 51 31

Type B 171 54 83 13 21
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Molecular descriptor generation94

A molecular descriptor is a numerical description that represents the physicochemical properties and95

chemical information of compounds. The chemical structures of curated NAIs in the form of SMILES96

structures were converted to 3D structures using MolConverter from ChemAxon (ChemAxon Ltd.,97

2015b) and then subsequently converted to Gaussian input file format using Open Babel (O’Boyle et al.,98

2011). Geometrical optimization was performed using density functional theory (DFT) calculations99

at the B3LYP/6-31G(d) level as implemented in Gaussian09 (Frisch et al., 2009). In this study, low-100

energy conformations obtained from geometrical optimizations were used to extract thirteen easy-to-101

interpret molecular descriptors, consisting of six quantum chemical descriptors and seven molecular102

descriptors, accounting for the physicochemical properties of compounds according to our previous study103

(Nantasenamat et al., 2013). The obtained quantum chemical descriptors include the mean absolute charge104

(Qm), energy (E), dipole moment (µ), highest occupied molecular orbital (HOMO), lowest unoccupied105

molecular orbital (LUMO), and energy gap of the HOMO and LUMO state (HOMO-LUMO gap).106

Furthermore, the second sets of molecular descriptors were calculated using DRAGON 5.5 Professional107

(Talete srl., 2007). The obtained descriptors include the molecular weight (MW), rotatable bond number108

(RBN), number of rings (nCIC), number of hydrogen bond donors (nHDon), number of hydrogen bond109

acceptors (nHAcc), Ghose-Crippen octanol-water partition coefficient (ALogP), and topological polar110

surface area (TPSA).111

Univariate analysis112

As an exploratory data analysis (EDA), univariate statistical analysis was performed to investigate the113

different patterns and trends of individual molecular descriptors between active and inactive NAIs using 6114

descriptive statistical parameters: the minimum (Min), first quartile (Q1), median, mean, third quartile115

(Q3) and maximum (Max). In addition, statistical differences of descriptors among active and inactive116

NAIs were evaluated using the p-value obtained from Student’s t-test (Goodman, 1999). Finally, histogram117

plots of the thirteen descriptors were generated using in-house R language scripts to visualize the different118

distributions of active and inactive NAIs.119

Data splitting120

The aforementioned non-redundant data sets were divided into internal and external sets with the Kennard-121

Stone sampling algorithm (Stevens, 2014) using ratios of 80% and 20%, respectively (Table 1). The122

internal set was subjected to full training calculations and was evaluated using a ten-fold cross-validation123

(10-fold CV) scheme, which was applied to confirm the reliability and robustness of the proposed models.124

Furthermore, the external set was used to assess the generalization ability of the model when extrapolating125

to unknown data samples.126

Multivariate analysis127

Decision tree (DT) is a simple, transparent and interpretable learning method that produces decision rules128

for the underlying data (Quinlan, 1993). Practically, the prediction task using the decision model can129

be easily implemented without complicated computations, and this model can also be applied in both130

continuous and categorical variables (Prachayasittikul et al., 2015). This algorithm has been widely used131

for the interpretable analysis of various tasks, such as hepatitis virus C NS5B polymerase (Nantasenamat132

et al., 2010), aromatase inhibitors (Nantasenamat et al., 2013; Shoombuatong et al., 2015b), dipeptidyl133

peptidase IV inhibitors (Shoombuatong et al., 2015a), and metabolic syndrome (Worachartcheewan et al.,134

2013). This study employs Weka’s (Hall et al., 2009) J48 algorithm (a Java implementation of the C4.5135

algorithm) for constructing a predictive model for discriminating influenza virus type A and B into its136

class (active or inactive group). The model is constructed as a function of a set of thirteen molecular137

descriptors. In the J48 algorithm, the information gain is used to rank features for constructing a decision138

tree based on feature usage. The feature usage score can be obtained after constructing a decision tree and139

then counting the firing frequency of associated rules (nodes). The feature usage provides an easy way to140

rank and identify important features. A molecular descriptor with a high feature usage is considered to be141

an important feature.142

Principal component analysis (PCA) is a tool used for analyzing data sets that possess several inter-143

correlated quantitative dependent variables (Prachayasittikul et al., 2015; Jolliffe, 2005). To manipulate144

these inter-correlated variables, PCA essentially transforms the original data into a number of principal145

components (PCs) or new co-ordinate axes, where the axes are located on the center of the data points.146
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Mathematically, PCs depends on the eigenvectors and eigenvalues of a data covariance (or correlation)147

matrix. The eigenvector associated with the largest eigenvalue has a direction that is identical to the148

first principal component (PC1), whereas the eigenvector associated with the second largest eigenvalue149

determines the direction of the second principal component (PC2) and so forth. In the present study,150

PCA was utilized in influenza virus type A and B, cooperating with the thirteen molecular descriptors to151

provide a better understanding of neuraminidase by using the FactoMineR (Lê et al., 2008) package of152

the R statistical language. Prior to PCA analysis, all data were first standardized to a comparable scale by153

transforming variables to zero mean and unit variance.154

Statistical assessment155

Four measurements were used to evaluate the prediction performance of the proposed model, namely,156

accuracy (Acc), sensitivity (Sen), specificity (Spec), and Matthews correlation coefficient (MCC), which157

are defined by the following equations:158

Sensitivity =
TP

TP+FN
(2)

Specificity =
TN

TP+FP
(3)

Accuracy =
TP+TN

TP+TN+FP+FN
(4)

MCC =
TP×TN−FP×FN

√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(5)

where TP, TN, FP and FN are the numbers of true positive, true negative, false positive and false negative,159

respectively.160

Maximum common substructure analysis161

The chemical substructure analysis or molecular fragment analysis was performed to analyze the properties162

of the NAIs expressed by molecular descriptors using LibMCS software as implemented in ChemAxon’s163

JChem technology to identify and display the maximum common substructures of compounds in the data164

set (ChemAxon Ltd., 2015a). In brief, all chemical structures in SMILES format were initially converted165

to SDF format as an input file using MolConverter (ChemAxon Ltd., 2015b). LibMCS subsequently166

generated maximum common substructures present in the data set. The fragments were ranked according167

to structure-based hierarchical clustering algorithms, in which the bottoms of the hierarchy are the initial168

structure, and then the next level contains the maximum common substructures of initial molecule clusters169

where all molecules that share the same common structure are placed in a cluster. Active and inactive170

fragments were distinguished according to pIC50 cut-off values of >6 and <5, respectively, and the171

chemical substructures were ranked according to their fragment occurrence in both the active and inactive172

groups of the data set.173

Functional group analysis174

Functional group analysis was performed to identify the important functional groups relevant for bioactiv-175

ity against neuraminidase of influenza A and B. Low-energy conformation structures of both NAI data sets176

were employed to calculate functional group descriptors using DRAGON 5.5 (Talete srl., 2007). A total of177

154 functional group descriptors were obtained for both NAI data sets against influenza A and B. Prior to178

analyzing the informative descriptors, constant variables with a standard deviation (SD) of less than 0.05179

were eliminated from the data set, which resulted in 59 and 46 descriptors remaining for NAIs against180

influenza A and B, respectively. In this study, decision tree models were constructed to distinguish active181

compounds from inactive compounds using the J48 algorithm implemented by Weka (Hall et al., 2009).182

Furthermore, the informative functional group descriptors were observed from the percentage of feature183
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usage as calculated by the C5.0 package of the R statistical language (Kuhn et al., 2015). Thus, rules184

for classifying active and inactive NAIs for both types of influenza were obtained, and the influence of185

functional groups relevant to bioactivity was determined from decision models. In addition, the propensity186

scores of functional group descriptors were calculated to reveal distribution patterns between active and187

inactive NAIs from both data sets. This score was calculated according to the following equation:188

PSFn(i) =
SumAcFn(i)

SumAc
−

SumInAcFn(i)

SumInAc
(6)

where PSFn(i) is the propensity score for the ith functional group; SumAcFn(i) and SumInAcFn(i) are the189

total number of ith functional group in the active and inactive NAI data sets, respectively; SumAc and190

SumInAc are the total number of all functional groups in the active and inactive NAI data sets. Finally,191

the propensity scores of all amino acids were normalized into the range of [0,1000] (Charoenkwan et al.,192

2013).193

Binding analysis194

To further understand the protein-ligand interaction site, a structure-based molecular docking approach195

was employed in this study. Sets of 148 and 45 active NAIs against influenza type A and B, respectively,196

were subjected to docking with neuraminidase. In this study, the crystal structures of neuraminidase197

N1pdm2009 (PDB accession code 3TI4) and B (PDB accession code 1A4G) were retrieved from the198

Protein Data Bank (Berman et al., 2000) and were responsible for neuraminidase of influenza A and199

B, respectively. The proteins were initially prepared by removing water molecules and alternative side200

chains. Hydrogens and Gasteiger charges were added to the macromolecules, which were subsequently201

cleaned up by merging the charges, repairing bonds and removing non-polar hydrogens and lone pair202

atoms. Low-energy conformers of active NAIs obtained from the geometrical optimization process were203

employed to dock with the binding site of neuraminidase. Grid boxes were generated by centering on204

the ligand with dimensions of 40 Å 30 Å 32 Å and 40 Å 40 Å 40 Å to cover the active site of influenza205

type A and B neuraminidase, respectively. Molecular docking was performed using AutoDock Vina206

(Trott and Olson, 2010) with default parameters. The docking protocols were subsequently validated by207

calculating the root-mean-square deviation (RMSD) of atomic positions between co-crystallized ligand208

and re-binding ligand, which are laninamivir octanoate and zanamivir for PDB ID: 3TI4 and 1A4G,209

respectively. The protocol is accepted with an RMSD ≤ 2.0 Å, which was observed to be 1.153 and 1.277210

Å for 3TI4 and 1A4G, respectively.211

RESULTS AND DISCUSSION212

Univariate analysis of influenza type A and B neuraminidase inhibitors213

A total of 313 NAIs collected from the BindingDB consist of 285 and 131 NAIs targeting influenza214

type A and B neuraminidase, respectively, as shown in Table 1. Because NAIs are used to inhibit both215

influenza type A and type B neuraminidase, in which distinct protein structures alter the efficacy of216

treatment, the influenza type A and type B neuraminidase were analyzed separately to obtain a better217

understanding of individual pharmacokinetic properties. To determine the different characteristics between218

active and inactive on both influenza A and B NAIs, a univariate analysis approach based on EDA and219

histogram plots was used, as shown in Tables 2–5 and Figure 2. The thirteen descriptors responding to the220

pharmacokinetic properties of the compounds were used to provide an overview of the distribution of data221

values. The bioactivities of the NAIs were determined by observing the mean pIC50 value, which was222

5.788 ± 2.023 (1.30 µM) and 5.107 ± 1.695 (7.80 µM) for type A and B neuraminidase, respectively.223

It could be observed that NAIs for influenza type A neuraminidase possessed significantly different224

therapeutic activity than those for type B neuraminidase with p <0.05.225

Herein, the physicochemical properties of the NAIs were used to analyze either individual descriptors226

or several descriptors in conjunction. The statistical analysis results showed that the NAIs exhibited227

good agreement with the properties of known drugs, as suggested and mentioned by Lipinski’s rule228

of 5 for drug-like molecules (Lipinski et al., 2001). Molecular features of FDA-approved drugs were229

observed and used for establishing the simple rule for drug-like molecules, which generally exhibited230

the following molecular features: (1) MW <500 Da, (2) LogP <5, (3) nHDon <5, and (4) nHAcc <10.231
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Figure 2 Histogram representing the molecular descriptors for NAIs against influenza type A. Note:

Active and inactive NAIs are represented with red and blue bars, respectively, whereas the purple represents

their overlap region.

Structure-activity relationships of the NAIs were further observed based on their molecular features and232

bioactivities. As described above, the compounds were classified as active or inactive using pIC50 cut-offs233

of ≥ 6 (IC50 ≤ 1 µM) and ≤ 5 (IC50 ≥ 10 µM), respectively; however, compounds that exhibited a pIC50234

value in the range of 5 to 6 were not considered in this study (similar to the Data Collection section).235

MW is the response to the molecular size of compounds. Following Lipinski’s rule of five for drug-like236

molecules, MW was indicated as one of the important parameters according to Lipinski’s rule of five.237

Statistical analysis showed that the average molecular size of active compounds for influenza type A NAIs238

(343.234±56.916) was not significantly different from that of inactive compounds (328.415±83.823)239

with p = 0.085, where the values of the descriptive statistics are Min = 254.4, Q1 = 300.4, Median =240

332.4, Q3 = 372.3, and Max = 665.9 for active influenza type A NAIs and Min = 145.2, Q1 = 265.3,241

Median = 344.4, Q3 = 383.4, and Max = 665.9 for inactive influenza type A NAIs, as shown in Table242

3. However, for influenza type B NAIs, the average MW of the active (312.466±44.641) and inactive243

(357.692±76.866) groups were significantly different with p <0.05. A 6-term descriptive statistic also244

confirmed that the active and inactive influenza type B NAIs differed from each other, with Min = 242.3,245

Q1 = 284.4, Median = 300.4, Q3 = 328.5, and Max = 443.5 for the active influenza type B NAIs and Min246
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Table 2 Summary of statistical analysis of active and inactive classes of influenza type A neuraminidase

inhibitors.

Descriptor Active Inactive p-value

MW 343.234 ± 56.916 328.415 ± 83.823 0.085

RBN 7.061 ± 2.183 5.248 ± 2.681 <0.001

nCIC 1.514 ± 0.655 2.109 ± 1.316 <0.001

nHDon 4.743 ± 1.257 4.321 ± 2.029 0.038

nHAcc 7.777 ± 1.502 7.204 ± 2.153 0.01

ALogP 0.049 ± 1.256 0.853 ± 2.475 <0.001

TPSA 125.205 ± 24.370 120.033 ± 37.060 0.169

Qm 0.163 ± 0.020 0.179 ± 0.055 0.002

Energy -0.274 ± 0.083 -0.246 ± 0.119 0.026

Dipole moment 4.101 ± 1.972 4.328 ± 2.003 0.336

HOMO -0.352 ± 0.011 -0.343 ± 0.015 <0.001

LUMO -0.006 ± 0.018 -0.021 ± 0.022 <0.001

HOMO-LUMO 0.346 ± 0.023 0.322 ± 0.030 <0.001

= 194.2, Q1 = 309.8, Median = 357.5, Q3 = 390.5, and Max = 665.9 for the inactive influenza type B247

NAIs, as shown in Table 5.248

RBN is the number of rotatable bonds in a molecule and provides a relative measure of molecular249

flexibility. RBN is defined as any single bond, not in a ring, bound to a non-terminal heavy atom. Amide250

C–N bonds are excluded from the count because of their high rotational energy barrier. As shown in251

Table 2, the number of rotatable bonds in a molecule of the active group (7.061±2.183) for influenza type252

A NAIs is distinctly dissimilar from that of the inactive group (5.248±2.681). In the case of influenza253

type B NAIs, the active group (5.689±2.043) is also dissimilar from the inactive group (7.233±2.561),254

as shown in Table 4. Additionally, a 6-term descriptive statistic also revealed that active and inactive255

influenza type A and B NAIs are different. All results indicate that the number of rotatable bonds in a256

molecule of the active group for both influenza type A and B NAIs is significantly different from that of257

the inactive group at the p <0.05 level.258

The number of rings (nCIC) is calculated as the cardinality of the set of independent rings known as259

the smallest set of smallest rings (SSSR). As shown in Tables 2 and 3, the average number of rings of the260

active group (1.514±0.655) of influenza type A NAIs is less than that of the inactive group (2.109±1.316).261

Similar to type B, the average number of rings of the active group (1.444±0.546) is not greater than that262

of the inactive group (1.709±0.852). A 6-term descriptive statistic confirms that the active and inactive263

groups of influenza type A and B NAIs are significantly different at the level of p <0.05, where the nCIC264

values of influenza type A NAIs are in the range of [1.000, 5.000] and [1.000, 5.000] for active and265

inactive groups, respectively; in the case of influenza type B NAIs, ranges of [1.000, 3.000] and [1.000,266

5.000] are obtained from active and inactive groups, respectively, as demonstrated in Tables 3 and 5.267

nHDon is the descriptor responsible for the number of hydrogen bond donors in a molecule. In brief,268

the active group was found to possess higher mean values of nHDon than the inactive group for influenza269

type A NAIs, where as for influenza type B NAIs, the active group was found to possess lower mean270

values of nHDon than the inactive group. As shown in Tables 3 and 5, the nHDon values of influenza271

type A NAIs are in the ranges of [2.000, 9.000] and [1.000, 10.000] for the active and inactive groups,272

respectively, whereas the nHDon values of influenza type B NAIs range from [2.000, 9.000] and [2.000,273

10.000] for the active and inactive groups, respectively. As shown in Figure 2, the histograms of nHDon274

in the active/inactive groups indicate that the distributions for influenza type A NAIs are significantly275

different, whereas the distributions for influenza type B NAIs are not significantly different at the p <0.05276

level.277

nHAcc is the descriptor responsible for the number of acceptor atoms in a molecule. Table 2 shows that278

the number of acceptor atoms in a molecule of the active group for influenza type A NAIs (7.777±1.502)279

is greater than that for inactive groups (7.204±2.153). Similar to influenza type B NAIs, the numbers280

of acceptor atoms in a molecule of the active (7.156±1.731) and inactive groups (8.337±1.334) are not281

similar to each other. The histogram plots clearly indicate that the active and inactive groups of influenza282
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Table 3 Exploratory data analysis with the 6-term descriptive statistic of influenza type A neuraminidase inhibitors.

Statistics MW RBN nCIC nHDon nHAcc ALogP TPSA Qm Energy Dipole HOMO LUMO HOMO-

moment LUMO

Active

Min 254.4 3.00 1.00 2.00 5.00 -3.669 90.65 0.139 -0.548 0.564 -0.373 -0.03 0.308

Q1 300.4 6.00 1.00 4.00 6.00 -0.619 101.65 0.151 -0.317 2.517 -0.36 -0.016 0.331

Median 332.4 7.00 1.00 4.00 8.00 0.076 121.96 0.161 -0.256 3.791 -0.352 -0.014 0.34

Mean 343.2 7.061 1.514 4.743 7.777 0.049 125.21 0.163 -0.274 4.101 -0.352 -0.006 0.346

Q3 372.3 8.00 2.00 6.00 9.00 0.595 148.61 0.169 -0.221 5.338 -0.345 -0.009 0.351

Max 665.9 15.00 5.00 9.00 11.00 5.614 200.72 0.272 0.00 9.977 -0.326 0.041 0.405

Inactive

Min 145.2 1.00 0.00 1.00 1.00 -3.807 20.23 0.115 -0.681 0.208 -0.385 -0.066 0.272

Q1 265.3 3.00 1.00 3.00 6.00 -0.858 94.14 0.152 -0.301 2.82 -0.355 -0.033 0.301

Median 344.4 5.00 2.00 4.00 7.00 0.523 114.37 0.162 -0.237 4.176 -0.341 -0.026 0.316

Mean 328.4 5.248 2.109 4.321 7.204 0.853 120.03 0.179 -0.246 4.328 -0.343 -0.021 0.322

Q3 383.4 6.00 4.00 5.00 8.00 2.599 140.57 0.182 -0.172 5.459 -0.332 -0.015 0.339

Max 665.9 14.00 5.00 10.00 14.00 6.834 218.97 0.434 0.00 10.561 -0.311 0.044 0.403

9
/3

1

P
e
e
rJ P

re
P
rin

ts | h
ttp

s://d
x
.d

o
i.o

rg
/1

0
.7

2
8
7
/p

e
e
rj.p

re
p
rin

ts.1
5
5
4
v
1
 | C

C
-B

Y
 4

.0
 O

p
e
n
 A

cce
ss | re

c: 1
 D

e
c 2

0
1
5
, p

u
b
l: 1

 D
e
c 2

0
1
5



Table 4 Summary of statistical analysis of active and inactive classes of influenza type B neuraminidase

inhibitors.

Descriptor Active Inactive p-value

MW 312.466 ± 44.641 357.692 ± 76.866 <0.001

RBN 5.689 ± 2.043 7.233 ± 2.561 <0.001

nCIC 1.444 ± 0.546 1.709 ± 0.852 0.033

nHDon 4.578 ± 1.340 4.849 ± 1.561 0.302

nHAcc 7.156 ± 1.731 8.337 ± 1.334 <0.001

ALogP -0.128 ± 1.291 -0.017 ± 1.602 0.67

TPSA 114.592 ± 27.661 134.168 ± 25.007 <0.001

Qm 0.158 ± 0.013 0.168 ± 0.018 <0.001

Energy -0.276 ± 0.099 -0.249 ± 0.089 0.129

Dipole moment 3.831 ± 1.601 4.364 ± 2.011 0.101

HOMO -0.351 ± 0.009 -0.350 ± 0.013 0.573

LUMO -0.013 ± 0.010 -0.003 ± 0.023 0.002

HOMO-LUMO 0.339 ± 0.014 0.347 ± 0.029 0.031

type A and B NAIs are quite dissimilar, as shown in Figures 2 and 3. In summary, all of these results283

indicated that the number of acceptor atoms in a molecule between active and inactive groups of influenza284

type A and B NAIs were significantly different at the p <0.05 level.285

ALogP is a computational method for estimating the 1-octanol/water partition coefficient (logP),286

which is a well-known measure of molecular hydrophobicity also known as lipophilicity. As shown in287

Figures 2 and 3, the histogram of ALogP of influenza type B has a greater overlapping region (purple)288

than that of type A. Tables 2 and 4 demonstrate that these results were compatible with the average value,289

with 0.049±1.256 and 0.853±2.475 for active and inactive influenza type A NAIs, respectively, whereas290

for influenza type B NAIs, the average values of active and inactive are -0.128±1.291 and -0.017±1.602,291

respectively. In summary, for ALogP, the active group of influenza type A NAIs is significantly different292

from the inactive group at the p <0.05 level, as shown in Table 2, whereas in the case of influenza type B293

NAIs, the active is quite similar.294

TPSA describes the contribution of polar atoms to the molecular charge based on an empirical295

measurement of the polar surface area of a molecule. Tables 2 and 4 show that the statistical analysis296

of influenza A NAI is not significant at the p <0.05 level, whereas statistically significant results can be297

observed among the active and inactive groups of influenza type B NAIs. The corresponding TPSA values298

were 125.205 ± 24.370 (active) and 120.033 ± 37.060 (inactive) for influenza A NAIs, whereas the TPSA299

values of influenza B NAIs were 114/592 ± 27.661 (active) and 134.168 ± 25.007 (inactive). A 6-term300

descriptive statistic is compatible with the statistically different results of both influenza A and B NAIs,301

where Min = 90.650/20.230, Q1 = 101.650/94.140, Median = 121.960/114.370, Q3 = 148.610/140.570,302

and Max = 200.720/218.970 for actives/inactives of influenza A NAIs, and in the case of influenza B303

NAIs, Min = 95.660/69.640, Q1 = 95.660/121.960, Median = 101.650/135.600, Q3 = 121.960/148.610,304

and Max = 200.720/192.700.305

The mean absolute charge (Qm) is the response to the global measurement of molecular charge. The306

histogram plot showed different distributions of mean absolute charge among influenza type A and type307

B NAIs. Moreover, the Qm here exhibited a distinct mean absolute charge of compounds with 0.171308

± 0.042 and 0.165 ± 0.017 for influenza type A and type B NAIs, respectively. This study suggested309

that the inactive group had higher Qm values compared to the active group, as shown in Tables 2 and310

4. The Qm values for the active and inactive influenza type A NAIs were 0.163 ± 0.020 and 0.179 ±311

0.055, respectively, whereas those for the influenza type B NAIs were 0.158 ± 0.013 and 0.168 ± 0.018312

for the active and inactive groups, respectively. Statistical analysis indicated that the active and inactive313

compounds for influenza type A and B exhibited significant differences in their charges at the p <0.05314

level.315

Energy is the response to the summation of the atomic energy. Overall, insignificant differences in316

energy among inhibitors of influenza type A (-0.260 ± 0.103) and type B (-0.258 ± 0.093) neuraminidase317

were observed at the p = 0.823 level. It was found that the active group (-0.274 ± 0.083) had a slightly318
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Table 5 Exploratory data analysis with the 6-term descriptive statistic of influenza type B neuraminidase inhibitors.

Statistics MW RBN nCIC nHDon nHAcc ALogP TPSA Qm Energy Dipole HOMO LUMO HOMO-

moment LUMO

Active

Min 242.3 3.00 1.00 2.00 6.00 -3.669 95.66 0.139 -0.548 1.407 -0.368 -0.025 0.315

Q1 284.4 4.00 1.00 4.00 6.00 -0.722 95.66 0.148 -0.302 2.78 -0.358 -0.017 0.329

Median 300.4 6.00 1.00 4.00 6.00 0.18 101.65 0.157 -0.248 3.468 -0.353 -0.015 0.337

Mean 312.5 5.689 1.444 4.578 7.156 -0.128 114.59 0.158 -0.276 3.831 -0.351 -0.013 0.339

Q3 328.5 7.00 2.00 5.00 8.00 0.585 121.96 0.165 -0.207 4.811 -0.346 -0.01 0.345

Max 443.5 11.00 3.00 9.00 11.00 2.727 200.72 0.189 -0.135 8.19 -0.329 0.024 0.383

Inactive

Min 194.2 2.00 1.00 2.00 5.00 -3.389 69.64 0.145 -0.679 0.564 -0.384 -0.033 0.297

Q1 309.8 5.25 1.00 4.00 8.00 -1.052 121.96 0.156 -0.301 2.94 -0.359 -0.019 0.326

Median 357.5 8.00 2.00 4.00 9.00 -0.205 135.6 0.166 -0.264 4.006 -0.35 -0.014 0.342

Mean 357.7 7.233 1.709 4.849 8.337 -0.017 134.17 0.168 -0.249 4.364 -0.35 -0.003 0.347

Q3 390.5 9.00 2.00 6.00 9.00 0.615 148.61 0.176 -0.195 5.782 -0.344 0.017 0.363

Max 665.9 14.00 5.00 10.00 10.00 5.614 192.7 0.272 0.00 9.791 -0.314 0.041 0.405
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Figure 3 Histogram representing the molecular descriptors for NAIs against influenza type B. Note:

Active and inactive NAIs are represented with red and blue bars, respectively, whereas the purple represents

their overlap region.

higher energy than the inactive group (-0.246 ± 0.119) for influenza type A. However, the values of319

(-0.276 ± 0.099) and (-0.249 ± 0.089), which were observed in the active and inactive groups, respectively,320

of influenza B NAIs exhibited insignificant differences at the p <0.05 (p = 0.129) level. Tables 3 and 5321

also summarize the exploratory data analyses, which are consistent with the statistical analyses with Min322

= -0.548/-0.681, Q1 = -0.317/-0.301, Median =-0.256/-0.237, Q3 = -0.221/-0.172, and Max =-0.135/0.000323

for actives/inactives of influenza A NAIs, and in the case of influenza B NAIs, Min = -0.548/-0.679, Q1 =324

-0.302/-0.301, Median =-0.248/-0.264, Q3 = -0.207/-0.195, and Max =-0.135/0.000.325

Dipole moment is the response to the asymmetric distribution of charge in the molecule. A high dipole326

moment value indicates a high charge distribution and vice versa. The overviews of the dipole moments327

of influenza type A (4.210 ± 1.987) and B (4.181 ± 1.891) NAIs were not significantly different at the p328

<0.05 (p = 0.737) level. Statistical analysis was also performed to reveal the informative pattern of type329

A and B between the active and inactive groups. Remarkably, the dipole moments of both influenza type330

A and B NAIs are not significantly different, with p = 0.336 and p = 0.537, respectively. Remarkably, the331

exploratory data analyses clearly indicate that the dipole moments of both influenza type A and B NAIs332

between active and inactive groups are quite similar, as shown in Tables 3 and 5.333
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The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)334

are the highest- and lowest-energy molecular orbitals that are occupied and unoccupied by electrons,335

respectively. For the mean values of the HOMO of the active and inactive groups of influenza type A336

and B NAIs, it could be observed that the HOMO value of the active group is significantly different337

from that of the inactive group at the p <0.05 level. Moreover, in the case of influenza type B NAIs, the338

HOMO value of the active group is not a statistically significant result (p = 0.573) at the p <0.05 level,339

as summarized in Tables 2 and 4. However, the mean values of the LUMO of influenza type A and B340

NAIs present statistically significant results between the active and inactive groups at the p <0.05 level,341

as summarized in Tables 2 and 4. Additionally, a 6-term descriptive statistic also confirmed that the active342

and inactive influenza type A and B NAIs are different.343

In quantum chemistry, the energy gap between the HOMO and LUMO (HOMO-LUMO) has been344

used to measure the kinetic stability and chemical reactivity of molecules. The energy of the HOMO is345

associated with ionization potential (ability to donate electrons), whereas the LUMO is responsible for346

electron affinity (ability to accept electrons). A small energy gap between these two states is related to a347

low kinetic stability and provides high chemical reactivity and vice versa (32). The histogram plot shows348

a slightly different pattern of distribution of the NAIs for influenza type A and B between the active and349

inactive groups (Figures 2 and 3, respectively). The overviews of the HOMO-LUMO values of influenza350

type A (4.210 ± 1.987) and B (4.181 ± 1.891) NAIs were significantly different at the p = 0.737 level.351

For analysis of influenza type A and B NAIs, the HOMO-LUMO value of the active group is shown with352

the statistically significant results at the p <0.05 level for both type A and B, as summarized in Tables 2353

and 4.354

In summary, all of these results indicated that nearly all of the 13 descriptors were significantly355

different between the active and inactive groups of influenza type A NAIs at the level of p <0.05, except356

for MW (p = 0.085), TPSA (p = 0.169) and dipole moment (p = 0.0336). With the exception of the357

MW, TPSA and dipole moment descriptors, the remaining descriptors are significantly different for the358

active and inactive groups of influenza type A NAIs and are efficient for discrimination. Similar to359

influenza type B NAIs, with the exception of the nHDon (p = 0.302), ALogP (p = 0.670), energy (p =360

0.129), dipole moment (p = 0.573), and HOMO (p = 0.085) descriptors, the remaining descriptors are361

efficient for discrimination. However, in practice, the compounds used for treating influenza type B are362

the same compounds used to develop treatments for influenza type A. Thus, the univariate analysis of363

compound properties cannot provide the important relationships among molecular features that affect the364

treatment efficacy. Herein, multivariate analysis and classification of structure-activity relationships were365

performed to investigate such important features using principal component analysis (PCA) and decision366

tree analysis.367

PCA analysis of influenza type A and B neuraminidase inhibitors368

The PCA method was used to transform the data set of influenza type A (Figure 4 (Upper)) and B (Figure369

4 (Lower)) to a few principal components (PCs), in which significant variances among variables are370

revealed by the eigenvalues or variance. PC1 had the highest variance in the data of influenza type A371

NAIs, with 36.28% of the original variance for the active and inactive groups. Meanwhile, PC2 and PC3372

provided the highest second and third variances, with 19.67% and 13.29% of the original variance for373

the active and inactive groups, respectively. In summary, the first three PCs indicated that the amount of374

cumulative variation of these PCs is as high as almost 70% of the original variance, which was sufficiently375

informative data for further analysis. Figure 4 (A) shows that the descriptors of nCIC, HOMO and ALogP376

are the main descriptors responsible for the inactive group. MW had a considerable influence on the377

segregation of two samples in the inactive group and one sample in the active group from the remaining378

data points, whereas nHDon, TPSA, nHAcc, and RBN primarily contributed to the segregation of eight379

samples of the inactive group from the other data. The results still showed that the descriptors of Qm,380

energy, ALogP, HOMO, and nCIC may be the main descriptors allowing for the discrimination of active381

and inactive groups.382

In the case of the data for influenza type B NAIs, PC1 had the highest variance in the data of influenza383

type B NAIs, with 33.47% of the original variance for the active and inactive groups. Meanwhile, PC2 and384

PC3 provided the highest second and third variances, with 23.02% and 23.04% of the original variance385

for the active and inactive groups, respectively. Similar to type A, the first three PCs still indicated that the386

amount of cumulative variation of these PCs are as high as almost 70% of the original variance. Figure 4387
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Figure 4 PCA score plots and loading plots of NAIs against influenza type A (A) and B (B). Left and

right panels are the score and loading plots, respectively, and the active and inactive compounds are

represented by green and purple dots in the score plots.

(B) shows that almost thirteen descriptors were considered sufficient for describing the active and inactive388

groups, except for RBN and MW. Note that using these descriptors may improve the performance of a389

predictive model for discriminating influenza type B into the active or inactive group.390

Prediction of inhibitory activity against neuraminidase from influenza A and B391

An interpretable predictive model is more useful for providing insights into the basis of the biological and392

chemical properties of influenza A and B NAIs. Therefore, in this study, a QSAR model based on the J48393

algorithm is presented for discriminating between active/inactive groups of influenza A and B NAIs. Each394

compound was calculated as an M-dimensional vector, where M=13. To construct a predictive model, the395

J48 algorithm was applied using the encoded compounds from the internal sets. Moreover, to evaluate the396

ability of our proposed QSAR model, two different experiments were performed: one experiment was397

performed on the full training data, and the other experiment was evaluated using a 10-fold CV procedure,398

as shown in Table 6. The CV procedure was performed by first partitioning the data into 10 equally sized399

segments or folds; then, 9 folds were used as the training data, while the remaining fold was used for400

validation. Finally, the results were averaged across the 10 experiments. Four measurements were used to401

assess the performance of the QSAR models, namely, accuracy (Acc), sensitivity (Sen), specificity (Spec),402

and the Matthews correlation coefficient (MCC).403

Table 6 demonstrates that using the sets of thirteen descriptors provides promising results with an404

accuracy of 87.50%, sensitivity of 93.63%, specificity of 77.42%, and MCC value of 0.731 for influenza405

type A NAIs, whereas these descriptor sets also perform well for influenza type B NAIs with an accuracy406

of 89.78%, sensitivity of 87.04%, specificity of 91.57%, and MCC value of 0.731. As shown in Table407

1, the used data set is not balanced because the number of positive samples (active group) is larger than408

that of negative samples (inactive group). Therefore, the sensitivity accuracy is considerably greater409

than the specificity accuracy (for influenza type A NAIs). To address this problem, the original data set410
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should first be balanced between the active and inactive groups. In addition, to assess the reliability of411

the predictive model on unknown data, an external set was considered. Table 6 shows that our proposed412

model still performs well for predicting influenza type A NAIs with an accuracy of 82.93%, sensitivity of413

86.27%, specificity of 77.72% and MCC value of 0.637, while the performance for predicting influenza414

type B NAIs is acceptable with an accuracy of 70.59%, sensitivity of 76.92%, specificity of 66.67% and415

MCC value of 0.424. It was well recognized that a decision tree-based classifier utilized the estimated416

threshold to predict a sample. Thus, it was not surprising that the prediction result of type B for external417

validation was lower than 10-CV. However, our proposed model aims to maximize both the simplicity and418

interpretability of the classification method.419

Molecular descriptors play an important role in representing the physicochemical properties of420

compounds. Identifying informative molecular descriptors will provide insights into the underlying421

mechanism of influenza type A and B NAIs. The feature importance for molecular descriptors is shown422

in Figure 5. The feature with the largest value of descriptor usage is the most important. Figure 5(a)423

shows that the top-three informative descriptors of influenza type A NAIs are LUMO, nHDon and nHAcc.424

Moreover, Figure 5(b) shows that the top-three informative descriptors of influenza type B NAI are nHAcc,425

nHAcc and HOMO-LUMO.426

Maximum common substructure analysis427

The molecular substructure analysis revealed the important molecular fragments that facilitate the bio-428

logical activity against influenza neuraminidase. The top-ranking fragments for both active and inactive429

NAIs are indicated in Tables 7 and 8 for influenza type A and in Tables 9 and 10 for influenza type430

B, respectively. The top-five fragments sorted by fragment occurrence, which resulted in high or low431

activity, correspond to common structures found in the chemical space of the NAIs. The results of the432

top-five active fragments indicated that cyclohexene-based, dihydropyran-based and cyclopentane-based433

fragments are relevant to inhibitory activity against influenza neuraminidase, in which these six- and434

five-membered non-aromatic rings possess a marginal ligand-binding conformation comparable to the435

tetrahydropyran ring of the sialic acid substrate of influenza neuraminidase.436

The top-ranked common substructure was a cyclohexene-based moiety, which can be found in the437

current drug of choice for influenza treatment: oseltamivir. This drug was developed to lower the polarity438

effect of the dihydropyran scaffold of the first-generation NAIs, which led to the low bioavailability439

observed in zanamivir. Initially, zanamivir was developed based on a dihydropyran scaffold and exerts440

good inhibitory activity against influenza neuraminidase (Meindl et al., 1974; von Itzstein et al., 1993),441

which became the first approved NAI for use as a therapeutic agent against the influenza virus. Structure-442

based drug design based on the availability of N2 sialidase X-ray co-crystal structure with α-Neu5Ac443

and Neu5Ac2en (Varghese et al., 1992) was used as the guideline for the development of novel NAIs. In444

silico analysis of enzyme active sites revealed energetically favorable interactions of amino acid residues445

in the active site and various functional group probes, such as carboxylates, amines, methyl groups and446

phosphates (von Itzstein et al., 1996). The molecular structure overlay of predicted favorable functional447

groups against co-crystal structure of N2 sialidase and Neu5Ac2en, as template molecules, suggest that448

substituting the C-4 hydroxyl group of the template with amino and guanidino groups should improve449

the binding affinity with the N2 active site. As a result of amino substitution at the C4 hydroxyl group,450

the binding affinity is enhanced by the formation of a salt bridge between the amino group and E199451

Table 6 Summary of prediction results from decision tree analysis of influenza A and B neuraminidase

inhibitors.

Influenza Performed with Accuracy (%) Sensitivity (%) Specificity (%) MCC

Type A full training data 96.95 97.55 95.97 0.935

10-CV 87.50 93.63 77.42 0.731

Testing set 82.93 86.27 77.42 0.637

Type B full training data 97.81 98.15 97.59 0.954

10-CV 89.78 87.04 91.57 0.786

Testing set 70.59 76.92 66.67 0.424
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Figure 5 Plots of the descriptor usage derived from decision tree. The descriptor with the largest

percentage of descriptor usage is the most important.

residue, whereas guanidino substitution interacts with E119 and E227 via its terminal nitrogen (von452

Itzstein et al., 1993, 1996). Nevertheless, this acid-based inhibitor processed high polarity due to the ring453

oxygen and polar glycerol side chain, resulting in low bioavailability. Thus, this drug was considered to454

be administered by inhalation, which is difficult to provide in some patients, particularly children. The455

development of orally administrated NAIs was required to overcome this problem.456

As previously mentioned, the polarity of dihydropyran-based NAIs affects their pharmacokinetic457

properties and the route of administration. To reduce the polarity effect of the dihydropyran scaffold,458

scaffold hopping was employed to identify appropriate molecular scaffolds that would exert desirable459

properties. A cyclohexene scaffold was used to replaced the ring oxygen, which was previously reported to460

be a non-essential moiety required for neuraminidase inhibition (Taylor and von Itzstein, 1994). Replacing461

dihydropyran with a cyclohexene ring in which the double bond position is similar to the sialosyl transition462

state provided significantly higher inhibitory activity (Kim et al., 1997). Moreover, the glycerol side463

chain is also considered to be a main source of polarity due to its high number of oxygen atoms. The464

modification of the hydrophilic glycerol side chain with a 3-pentyl ether side chain based on the structure-465

activity relationship study led to the development of GS 4071, which was subsequently named oseltamivir466

carboxylate, a potent sialidase inhibitor. As a result of introducing the 3-pentyl ether side chain, the467

binding interaction is reorganized by reorientation of E276 from this side chain to form a salt bridge with468

R224, leading to the generation of a substantial hydrophobic patch, which increases the binding affinity469

with the ligand’s hydrophobic side chain (Itzstein and Thomson, 2009). Elimination of the oxygen atom470

in combination with functional group modification led to lower polarity and increased the bioavailability471

of molecules. Thus, the second NAI was developed and consequently approved, named oseltamivir, which472

is currently used as a drug of choice for treating influenza. In addition, the successful development of473

cyclohexene-based NAIs results in the generation of extensive studies for developing novel NAIs using474
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Table 7 Summary of the top-five maximum common substructures in the active set of NAIs against

influenza A.

Rank IUPAC Name Substructure
Substructure

Occurrence

1 N-(6-aminocyclohex-3-en-1-yl)acetamide H2N

HN O

63

2
3-acetamido-2-methyl-3,4-dihydro-2H--

pyran-6-carboxylic

acid

O

H
N

O OH

O O

53

3 3-amino-4-(1-acetamidoethyl)

cyclopentane-1-carboxylic acid

HN O
H2N

OH

O

27

4
5-(1-acetamido-3-methylbutyl)-4-methyl-

oxolane-2-carboxylic

acid

N
H OO

OH

O

2

5 N-[(pyrrolidin-2-yl)methyl]acetamide

NH

HN

O

2

this scaffold.475

Recently, the cyclopentane scaffold in furanose was found to possess an inhibitory effect against476

influenza NA as strongly as the lead compound of sialidase inhibitor, called DANA. The report on477

inhibitory activity by furanose revealed the potential of cyclopentane as a novel scaffold for the devel-478

opment of NAIs (Yamamoto et al., 1992). Structure-based analysis of the cyclopentane scaffold using479

protein crystal structure information indicates a distinct binding mode, in which the cyclopentane ring480

re-organized the functional groups of NAI to interact with amino acid residues inside the binding pocket481

of influenza neuraminidase (Stoll et al., 2003). This evidence revealed an opportunity for introducing482

NAIs with novel scaffolds. The most recently approved NAI, named peramivir, was developed based on a483

five-membered ring scaffold. A set of novel NAIs with five-membered ring scaffolds were synthesized484

using cyclopentane derivatives incorporating three functional group substitutions of zanamivir, which485

included carboxylate group, C5-acetamido group, and C4-guanidino group, arranged in all expected486

positions inside the N9 active site. The functional group binding with the negatively charged area in487

the active site, which previously interacted with the C4 hydroxyl group of Neu5Ac2en, was designed to488

replace with a guanidino group as similarly observed in zanamivir. The addition of n-butyl was designed489

to interact with the hydrophobic region, which was previously occupied by the glycerol side chain of490

Neu5Ac2en. The binding interaction was confirmed by co-crystallization with N9 sialidase, and the491

crystal structure indicates that the binding interactions are comparable with those of zanamivir (Babu492
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Table 8 Summary of the top-five maximum common substructures in the inactive set of NAIs against

influenza A.

Rank IUPAC Name Substructure
Substructure

Occurrence

1 8-(aminomethyl)-5,7-dihydroxy-2-phenyl-

4H-chromen-4-one

O OH

OH

H2N

O 35

2
4-amino-3-acetamido-2-methyl-3,4-

dihydro-2H-pyran-6-carboxylic

acid

O NH

NH2

O

OHO

32

3 Benzoic acid

HO O

29

4 4-amino-1-formylpyrrolidine-3-carboxylic

acid

O

N

NH2

OH

O

11

5 [(1E)-but-1-en-1-yl]benzene 7

et al., 2000).493

Nevertheless, some of the molecular substructures that were present in the active group of NAIs, such494

as 3-acetamido-2-methyl-3,4-dihydro-2H-pyran-6-carboxylic acid and 5-amino-4-acetamidocyclohex-495

1-ene-1-carboxylic acid, can be found in the inactive group of influenza type A and B neuraminidase,496

respectively. Note that the inhibitory activities against influenza neuraminidase are facilitated by additional497

factors from both protein and ligand sides. From the protein perspective, the neuraminidase share498

approximately 90% structural homology in the same subtype, whereas the homology between subtypes499

is lower, 50% and 30%, between influenza type A and B (Shtyrya et al., 2009). The distinct structural500

homology affects the conformation of catalytic residues inside the catalytic pocket, resulting in different501

fitness binding of ligands. On the other hand, the composition of the ligand and properties affect the502

efficiency of the binding interaction. These factors are frequently observed by the type and position of503

functional groups lying in molecules, which are the crucial part for interacting with the target enzyme504

for inhibition. The overall size of the molecules and the molecular conformations are also important505

for binding with the enzyme because the binding pocket has a unique geometrical conformer that limits506

the shape and electrostatic properties of the target molecules. In addition, the drug-like properties of507

the ligand also facilitate pharmacokinetics and pharmacodynamics of ligands to reach their target and508
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Table 9 Summary of the top-five maximum common substructures in the active set of NAIs against

influenza B.

Rank IUPAC Name Substructure
Substructure

Occurrence

1
3,5-diamino-4-acetamidocyclohex-1-ene-1-

carboxylic

acid
O

HN

NH2

H2N
OH

O

21

2
5-amino-4-acetamido-3-methoxycyclohex-

1-ene-1-carboxylic

acid

O

NH2

HN

O

OH

O

10

3

4-amino-2-(diethylcarbamoyl)-3-

acetamido-3,4-dihydro-2H-pyran-6--

carboxylic

acid N O

O

H2N

N
H

O

OH

O

8

4

4-amino-3-acetamido-2-(1,2,3-trihydroxy-

propyl)-3,4-dihydro-2H-pyran-6--

carboxylic

acid
O

HN

O

HO

OH

OH

OH

O

NH2

3

5

4-carbamimidamido-3-(1-acetamido-2-

ethylbutyl)-2-hydroxycyclopentane-1--

carboxylic

acid

NH

O

OH
H
N

H2N

NH

HO

O

1

generate desirable bioactivity for therapeutic purposes.509

Functional group analysis510

Analyses of the functional group compositions among NAIs against both influenza type A and B were511

performed to observe the propensity pattern of functional group descriptors from active and inactive512

NAIs. The compositions of functional groups inside NAI molecules were generated from low-energy513

conformational structures of 285 and 131 NAIs against influenza A and B, respectively. A set of 154514

functional group descriptors were obtained and consequently preprocessed by removing constant variables515

from each data set. As a result, 59 and 46 descriptors remained for data sets of NAIs against influenza516

A and B, respectively. The remaining descriptors were used to calculate the propensity score, which517

indicated the characteristics of NAIs regarding to their functional group compositions, as summarized in518

Tables and .519

For NAIs against the influenza A data set, the number of total secondary sp3 carbon (nCs), number of520

ring secondary sp3 carbon (nCrs), number of terminal primary sp3 carbon (nCp), number of secondary521
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Table 10 Summary of the top-five maximum common substructures in the inactive set of NAIs against

influenza B.

Rank IUPAC Name Substructure
Substructure

Occurrence

1
3-amino-2-methyl-3,4-dihydro-2H-pyran-6-

carboxylic

acid

O
H2N

OH

O

42

2
3-carbamimidamido-4-[carbamoyl-

(acetamido)methyl]

cyclopentane-1-carboxylic acid

O

N
H

N
H

H2N

NH
OH

O

H2N

O

24

3 4-aminobenzoic acid

NH2

OHO

14

4
5-amino-6-acetamido-1-(2-ethylbutanoyl)-

1,4,5,6-tetrahydropyridazine-3-carboxylic

acid

O

N
N

H2N

H
NO

OH

O

2

5
5-amino-4-acetamidocyclohex-1-ene-1--

carboxylic

acid

H2N

NHO

OHO

2

aliphatic amides (nRCONHR) and number of aliphatic carboxylic acids (nRCOOH) were the top-ranked522

functional group descriptors abundant in active NAIs, whereas the number of aromatic sp2 carbon (nCar),523

number of substituted benzene sp2 carbon (nCb-), number of unsubstituted benzene sp2 carbon (nCbH),524

number of aromatic hydroxyls (nArOH) and number of aromatic ketones (nArCO) were the top-ranked525

functional group descriptors abundant in inactive NAIs. In addition, the correlation coefficient (R) between526

the difference of functional group compositions among active and inactive NAIs and the propensity score527

was 1.00. The high correlation coefficient (R) indicates that this propensity score of functional group528

descriptors can be distinguished between active and inactive NAIs for influenza A.529

For NAIs against the influenza B data set, the number of ring secondary sp3 carbon (nCrs), number of530

total secondary sp3 carbon (nCs), number of non-aromatic conjugated sp2 carbon (nCconj), number of531

aliphatic tertiary sp2 carbon (nR=Ct) and number of aliphatic tertiary amines (nRNR2) were the majority532

found in the active NAIs, whereas the number of aromatic sp2 carbon (nCar), number of unsubstituted533

benzene sp2 carbon (nCbH), number of substituted benzene sp2 carbon (nCb-), number of total tertiary534

sp3 carbon (nCt) and number of ring tertiary sp3 carbon (nCrt) were mainly observed in the inactive535

NAIs. Furthermore, the correlation coefficient (R) of propensity score against different functional group536
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compositions between active and inactive classes of NAIs against influenza type B was 1.00, which537

indicated that the propensity score can be used to discriminate between active and inactive classes of538

influenza B NAIs.539

To obtain a deeper understanding, decision tree models were used to construct classification models540

for categorizing active and inactive NAIs against both types of influenza virus. The classification models541

were separately generated using Quinlan’s C5.0 algorithm as implemented in the C5.0 package of the542

R statistical language (Kuhn et al., 2015), and the predictive performances were additionally evaluated543

by applying 10-fold CV to the models. The CV was performed by initially splitting the data into ten544

equal-sized partitions, called folds. Consequently, nine folds were deployed as a training set, whereas545

the remaining fold was used as a validation set. The trials were continuously performed until each fold546

was chosen as a validation set. Finally, the predictive performances of the 10-CV were averaged through547

ten experiments, in which the predictive performance of the decision tree model was indicated by the548

percentage of accuracy, sensitivity and specificity and by the Matthews correlation coefficient (MCC).549

The classification model for NAIs against influenza A exhibited excellent predictive performance, with550

91.58% accuracy, 88.27% sensitivity, 95.93% specificity and 0.835 MCC. Funtional group descriptors551

involved in this model include the number of aliphatic secondary amides (nRCONHR), number of aromatic552

carboxylic acids (nArCOOH), number of hydroxyl groups (nROH), number of total secondary sp3 carbon553

(nCs), number of aliphatic primary amines (nRNH2), number of aromatic sp2 carbon (nCar) and number of554

total tertiary sp3 carbon (nCt), which are ranked by percent of descriptor usage of 100.0%, 70.2%, 65.3%,555

60.0%, 12.6%, 11.9%, 5.3%, respectively. The most important functional group descriptor indicated556

by the largest value of descriptor usage was the number of aliphatic secondary amides (nRCONHR),557

which was also a root node of the model. Note that all active NAIs possessed a nRCONHR ≥ 1 in their558

molecules, whereas compounds lacking nRCONHR were classified as inactive NAIs according to the559

decision tree model summarized in Figure 6. Supported by the propensity score, nRCONHR is located in560

the top-ranked descriptors, as shown in Table . This finding suggested that compounds with this descriptor561

are prone to be active NAIs against influenza A. Moreover, nArCOOH was the following largest descriptor562

usage in model construction, which tend to be absent in active NAIs. The propensity score of nArCOOH563

suggested that there are differences in functional group occurrence among active and inactive NAIs, in564

which the majority of this descriptor was found in inactive NAIs against neuraminidase of influenza A.565

The decision tree model for classifying NAIs against influenza B exhibits high predictive performance,566

with 87.79% accuracy, 87.18% sensitivity, 88.04% specificity and 0.72 MCC. The descriptors used in567

model construction consisted of the number of aliphatic tertiary sp2 carbons (nR=Ct), number of secondary568

alcohols (nOHs), number of aliphatic esters (nRCOOR), number of aliphatic ethers (nROR), number569

nRCONHR
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Figure 6 Illustration of decision tree model for classifying the activity of NAIs against influenza type A

according to their functional group descriptors.
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of guanidine derivatives (nC(=N)N2), number of CRX3 (nCRX3), number of total tertiary sp3 carbons570

(nCt) and number of aliphatic primary amines (nRNH2), with percent of descriptor usage of 74.81%,571

70.23%, 66.41%, 36.64%, 30.53%, 9.92% and 4.58%, respectively. The largest usage of functional572

group descriptors was observed as nR=Ct, which was the root node of the decision tree model, and573

compounds that possessed nR=Ct >0 were prone to be active NAIs according to the model summarized574

in Figure 7. Interestingly, nR=Ct was located in the top-ranked propensity score, as shown in Table ,575

which supported the previous assumption. Furthermore, compounds lacking nCRX3 tend to be classified576

as inactive compounds. The propensity score of these descriptors also suggested that the majority of this577

descriptor was found in active NAIs. These results indicate the importance of functional groups inside578

NAIs molecules that facilitate bioactivity against influenza B neuraminidase. Using a combination of579

decision tree and propensity score can provide insights regarding the important functional groups relevant580

to the bioactivity of NAIs.581

Binding mode analysis582

The observations on the active set of NAIs fragments revealed a pattern of molecular scaffolds that583

exhibited activity against the NA glycoprotein of type A influenza. Note that the molecules shared a584

similar conformation substructure as the original substrate, sialic acid, and tended to exhibit inhibitory585

potential against this enzyme. The binding pocket in the active site of NA contains eight highly conserved586

amino acid residues, which interact with the substrate and provide catalytic activity in the binding pocket.587

These residues can be grouped into five minor sites, as illustrated in Figure 8. Thus, designing novel588

NAIs requires choosing functional groups that can interact and fit with these sites of conserved residues to589

prevent catalytic reactions with this enzyme. To investigate the binding modes of active compounds against590

neuraminidase of both influenza type A and B, a combination of molecular docking and post-docking591

analysis using AutoDock Vina (Trott and Olson, 2010) and SiMMAP web-server (Chen et al., 2010),592

respectively, was employed to identify key interactions and important moieties facilitating protein-ligand593

interactions.594

The analysis of 148 active NAIs against influenza A revealed four distinct binding anchors (Elec1,595

vdW1, vdW2 and vdW3) with their site-moiety preferences. Elec1 is the first anchor site, and it facilitates596

electrostatic interactions with carboxylic and alkyl phosphate groups of NAIs through the positive charge597

of the arginine side chain. The amino acid members of this anchor include R118, R292 and R371, which598

are responsible for the S1 subsite of influenza A neuraminidase active site (von Itzstein, 2011; Stoll599

et al., 2003). In contrast, another three anchor sites are facilitated by van der Waals interactions. The600

first anchor, vdW1, consisted of R152, I222 and E227, which are responsible for the S3 subsite of the601

neuraminidase binding pocket (von Itzstein, 2011; Stoll et al., 2003). The moiety preferences of this602
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Figure 7 Illustration of decision tree model for classifying the activity of NAIs against influenza type B

according to their functional group descriptors.
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Figure 8 The interactions of a-Neu5Ac with conserved amino acid residues inside the binding pocket

of influenza A/N2 neuraminidase (PDB ID: 2BAT). Amino acid residues in subsites S1, S2, S3, S4 and

S5 are labeled by green, cyan, white, blue and orange, whereas the hydrogen bonds connecting ligand

moieties and amino acid side chains are indicated by dashed lines.
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anchor are composed of a heterocyclic ring, aromatic moiety, phenol group and aliphatic moiety with603

alkene. Another van der Waals interaction site was found at the vdW2 anchor site, which contains R224,604

E227 and R292 as key residues. This anchor facilitates van der Waals contact against aliphatic moieties605

with an alkene linkage, heterocyclic and aromatic moieties. vdW3 is the final anchor site, with a moiety606

preference of heterocyclic moiety, alkene linkage of aliphatic moiety and formamidine group. These607

findings have shown that NAIs interact with both functional residues that facilitate enzymatic reactions608

and structural residues that maintain the active site architecture (Shtyrya et al., 2009).609

The analysis of the binding anchor of 45 active NAIs targeting influenza type B revealed four different610

anchor sites of the binding pocket: Elec1, Hbond1, vdW1 and vdW2. Electrostatic interactions between611

NAIs and amino acid residues primarily occurred with R115, R291 and R373 (comparable to R118,612

R292 and R371 in N2 numbering), which are members of the Elec1 anchor. The positive charge of the613

arginine side chain prefers carboxylic groups as its moiety preference. Note that this finding is similar to614

anchor Elec1 of influenza A neuraminidase. Interestingly, there are several moiety types of NAIs against615

influenza B virus that tend to form hydrogen bonds with amino acids in the Hbond1 anchor. The phenolic616

moiety of D148 and the carboxylic side chain of Y408 (comparable to D151 and Y406 in N2 numbering)617

facilitate hydrogen bonding through amino groups, carboxylic moieties, primary and secondary alcohols618

and ester moieties. It can be observed that these residues are members of the S2 subsite of influenza619

neuraminidase and are responsible for catalytic residues essential for enzyme functioning (Shtyrya et al.,620

2009). Furthermore, van der Waals contact sites are observed at two anchor site: vdW1 and vdW2. The621

first van der Waals interaction site is facilitated by R149, W176 and R222 (comparable to R152, W178 and622

R224 in N2 numbering), and their moiety preference is aliphatic moiety with alkene linkage, heterocyclic623

ring and aromatic moiety. The second van der Waals anchor is facilitated by I220, R222 and E274624

(comparable to I222, R224 and E276 in N2 numbering), which have a heterocyclic ring and alkene linkage625

of aliphatic moiety as their moiety preference. The results of the post-docking analysis revealed the626

important amino acid residues and their moiety preferences that can generate potential protein-inhibitor627

complexes to inhibit enzymatic functioning of influenza neuraminidase.628
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Table 11 Propensity score and percentage of functional group compositions in active and inactive neuraminidase inhibitors against influenza type A

Functional group Description
Percentage of Frequency (%)

Propensity score (Rank)

Active Inactive Active - Inactive

nCs Number of total secondary C(sp3) 22.59 9.27 13.32 1000 (1)

nCrs Number of ring secondary C(sp3) 15.20 5.45 9.74 878 (2)

nCp Number of terminal primary C(sp3) 8.24 5.01 3.23 655 (3)

nRCONHR Number of secondary amides (aliphatic) 3.84 1.54 2.30 624 (4)

nRCOOH Number of carboxylic acids (aliphatic) 3.54 1.32 2.22 621 (5)

nRNH2 Number of primary amines (aliphatic) 3.64 1.74 1.90 610 (6)

nROR Number of ethers (aliphatic) 2.35 1.07 1.27 589 (7)

nRCONR2 Number of tertiary amides (aliphatic) 1.62 0.37 1.25 588 (8)

nCconj Number of non-aromatic conjugated C(sp2) 8.63 7.50 1.14 584 (9)

nCt Number of total tertiary C(sp3) 1.92 0.90 1.02 580 (10)

nCrt Number of ring tertiary C(sp3) 1.65 0.62 1.02 580 (11)

nRNHR Number of secondary amines (aliphatic) 1.17 0.35 0.82 573 (12)

nR=Ct Number of aliphatic tertiary C(sp2) 1.47 0.77 0.70 569 (13)

nC(=N)N2 Number of guanidine derivatives 1.20 0.70 0.50 562 (14)

nP(=O)O2R Number of phosphonates (thio-) 0.10 0.00 0.10 548 (15)

nCRX3 Number of CRX3 0.10 0.00 0.10 548 (16)

nN=C-N< Number of amidine derivatives 0.05 0.00 0.05 547 (17)

nRSR Number of sulfides 0.05 0.00 0.05 547 (18)

nArX Number of X on aromatic ring 0.05 0.00 0.05 547 (19)

nR=Cs Number of aliphatic secondary C(sp2) 4.44 4.41 0.03 546 (20)

nR=Cp Number of terminal primary C(sp2) 0.12 0.10 0.03 546 (21)

nOxolanes Number of Oxolanes 0.05 0.02 0.03 546 (22)

nCq Number of total quaternary C(sp3) 0.02 0.00 0.02 546 (23)

nCrq Number of ring quaternary C(sp3) 0.02 0.00 0.02 546 (24)

nC=N-N< Number of hydrazones 0.02 0.00 0.02 546 (25)

nCXr= Number of X on ring C(sp2) 0.02 0.00 0.02 546 (26)

nCconjX Number of X on exo-conjugated C 0.02 0.00 0.02 546 (27)

nAzetidines Number of Azetidines 0.02 0.00 0.02 546 (28)

nBeta-Lactams Number of Beta-Lactams 0.02 0.00 0.02 546 (29)

nImidazoles Number of Imidazoles 0.02 0.00 0.02 546 (30)

nTriazoles Number of Triazoles 0.05 0.05 0.00 545 (31)
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Table 11 Continued . . .

Functional group Description
Percentage of Frequency (%)

Propensity score (Rank)

Active Inactive Active - Inactive

nN+ Number of positively charged N 0.02 0.02 0.00 545 (32)

nROH Number of hydroxyl groups 4.12 4.13 -0.02 544 (33)

nRCONH2 Number of primary amides (aliphatic) 0.00 0.02 -0.02 544 (34)

nArCONHR Number of secondary amides (aromatic) 0.00 0.02 -0.02 544 (35)

nRNO2 Number of nitro groups (aliphatic) 0.00 0.02 -0.02 544 (36)

nSO Number of sulfoxides 0.00 0.02 -0.02 544 (37)

nS(=O)2 Number of sulfones 0.00 0.02 -0.02 544 (38)

nROCON Number of (thio-) carbamates (aliphatic) 0.02 0.07 -0.05 543 (39)

nOHt Number of tertiary alcohols 0.00 0.07 -0.07 542 (40)

nFuranes Number of Furanes 0.00 0.07 -0.07 542 (41)

nArCNO Number of oximes (aromatic) 0.00 0.10 -0.10 542 (42)

nRCOOR Number of esters (aliphatic) 0.10 0.22 -0.12 541 (43)

nArNH2 Number of primary amines (aromatic) 0.00 0.15 -0.15 540 (44)

nPyridines Number of Pyridines 0.00 0.15 -0.15 540 (45)

nPyrrolidines Number of Pyrrolidines 0.20 0.37 -0.17 539 (46)

nCONN Number of urea (-thio) derivatives 0.02 0.22 -0.20 538 (47)

nSO2N Number of sulfonamides (thio-/dithio-) 0.00 0.22 -0.22 537 (48)

nArNHR Number of secondary amines (aromatic) 0.00 0.45 -0.45 530 (49)

nOHp Number of primary alcohols 0.17 0.70 -0.52 527 (50)

nRNR2 Number of tertiary amines (aliphatic) 0.50 1.17 -0.67 522 (51)

nOHs Number of secondary alcohols 0.25 1.00 -0.75 519 (52)

nArCOOH Number of carboxylic acids (aromatic) 0.00 0.87 -0.87 515 (53)

nArOR Number of ethers (aromatic) 0.10 1.02 -0.92 513 (54)

nArCO Number of ketones (aromatic) 0.00 1.32 -1.32 500 (55)

nArOH Number of aromatic hydroxyls 0.05 3.44 -3.39 429 (56)

nCbH Number of unsubstituted benzene C(sp2) 4.69 10.34 -5.64 352 (57)

nCb- Number of substituted benzene C(sp2) 1.30 10.44 -9.14 233 (58)

nCar Number of aromatic C(sp2) 6.16 22.12 -15.95 0 (59)

100 100 R = 1.00
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Table 12 Propensity score and percentage of functional group compositions in active and inactive neuraminidase inhibitors against influenza type A

Functional group Description
Percentage of Frequency (%)

Propensity score (Rank)

Active Inactive Active - Inactive

nCrs Number of ring secondary C(sp3) 18.14 11.04 7.11 1000 (1)

nCs Number of total secondary C(sp3) 24.25 17.98 6.27 952 (2)

nCconj Number of non-aromatic conjugated C(sp2) 10.83 6.35 4.48 848 (3)

nR=Ct Number of aliphatic tertiary C(sp2) 2.67 0.08 2.58 738 (4)

nRNR2 Number of tertiary amines (aliphatic) 1.55 0.13 1.42 670 (5)

nR=Cs Number of aliphatic secondary C(sp2) 4.64 3.64 1.01 646 (6)

nRCOOH Number of carboxylic acids (aliphatic) 3.87 2.93 0.94 642 (7)

nROH Number of hydroxyl groups 4.90 4.06 0.85 637 (8)

nCp Number of terminal primary C(sp3) 8.43 7.69 0.73 630 (9)

nRNH2 Number of primary amines (aliphatic) 3.87 3.14 0.73 630 (10)

nOHs Number of secondary alcohols 0.60 0.17 0.43 613 (11)

nCRX3 Number of CRX3 0.17 0.00 0.17 598 (12)

nAzetidines Number of Azetidines 0.17 0.00 0.17 598 (13)

nOHp Number of primary alcohols 0.43 0.33 0.10 593 (14)

nPyrrolidines Number of Pyrrolidines 0.26 0.17 0.09 593 (15)

nCq Number of total quaternary C(sp3) 0.09 0.00 0.09 593 (16)

nCrq Number of ring quaternary C(sp3) 0.09 0.00 0.09 593 (17)

nCXr= Number of X on ring C(sp2) 0.09 0.00 0.09 593 (18)

nCconjX Number of X on exo-conjugated C 0.09 0.00 0.09 593 (19)

nOxolanes Number of Oxolanes 0.09 0.00 0.09 593 (20)

nROR Number of ethers (aliphatic) 1.98 1.92 0.05 591 (21)

nRCOOR Number of esters (aliphatic) 0.17 0.13 0.05 590 (22)

nR=Cp Number of terminal primary C(sp2) 0.09 0.04 0.04 590 (23)

nRCONH2 Number of primary amides (aliphatic) 0.00 0.04 -0.04 585 (24)

nCONN Number of urea (-thio) derivatives 0.00 0.04 -0.04 585 (25)

nN+ Number of positively charged N 0.00 0.04 -0.04 585 (26)

nArOH Number of aromatic hydroxyls 0.00 0.04 -0.04 585 (27)

nRSR Number of sulfides 0.00 0.04 -0.04 585 (28)

nSO2N Number of sulfonamides (thio-/dithio-) 0.00 0.04 -0.04 585 (29)

nRCONHR Number of secondary amides (aliphatic) 3.96 4.01 -0.06 584 (30)

nArNH2 Number of primary amines (aromatic) 0.00 0.08 -0.08 583 (31)
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Table 12 Continued . . .

Functional group Description
Percentage of Frequency (%)

Propensity score (Rank)

Active Inactive Active - Inactive

nC=N-N< Number of hydrazones 0.00 0.08 -0.08 583 (32)

nArX Number of X on aromatic ring 0.00 0.08 -0.08 583 (33)

nROCON Number of (thio-) carbamates (aliphatic) 0.00 0.13 -0.13 580 (34)

nTriazoles Number of Triazoles 0.00 0.17 -0.17 578 (35)

nArOR Number of ethers (aromatic) 0.00 0.21 -0.21 576 (36)

nArNHR Number of secondary amines (aromatic) 0.00 0.25 -0.25 573 (37)

nRNHR Number of secondary amines (aliphatic) 0.69 1.13 -0.44 562 (38)

nArCOOH Number of carboxylic acids (aromatic) 0.00 0.59 -0.59 554 (39)

nC(=N)N2 Number of guanidine derivatives 0.60 1.34 -0.74 545 (40)

nRCONR2 Number of tertiary amides (aliphatic) 0.69 2.01 -1.32 511 (41)

nCrt Number of ring tertiary C(sp3) 0.60 2.38 -1.78 484 (42)

nCt Number of total tertiary C(sp3) 0.86 2.76 -1.90 478 (43)

nCb- Number of substituted benzene C(sp2) 0.43 3.39 -2.96 416 (44)

nCbH Number of unsubstituted benzene C(sp2) 2.15 8.65 -6.50 210 (45)

nCar Number of aromatic C(sp2) 2.58 12.71 -10.13 0 (46)

100 100 R = 1.00
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CONCLUSION629

The emergence of novel influenza strains that possess resistance mutations emphasize the importance of630

finding novel therapeutic agents for treatment and prophylaxis. The increase in the emergence of influenza631

viruses, particularly mutant variants, calls for the development of novel promising NAIs, in addition to632

the three currently approved NAIs, for preparedness against influenza. Nevertheless, there are several633

compounds that were tested to evaluate their inhibitory activity against influenza neuraminidase. Expand-634

ing the chemical space available in public databases of NAIs provides an opportunity to investigate the635

molecular factors relevant to the bioactivity of NAIs. In addition, a combination of various computational636

approaches revealed the structure-activity relationships of NAIs, which are essential for rational drug637

design to develop new promising therapeutic agents against influenza neuraminidase. Therefore, this work638

reports a large-scale study of the chemical space of NAIs against influenza type A and B and performs639

statistical and QSAR investigations of both molecular and quantum chemical properties that contribute640

inhibitory activity against influenza neuraminidase. Moreover, maximum common molecular substruc-641

tures and their functional groups were analyzed from a ligand-based perspective. In addition, the binding642

modes of active NAIs were investigated to observe important amino acid residues and their site-moiety643

preferences that facilitate protein-ligand interaction. Moreover, informative descriptors leading to good644

performance of the QSAR model were achieved in combination with a statistical analysis that revealed645

the molecular properties that distinguish between active and inactive classes of NAIs. The molecular646

properties of the active group include a higher number of rotatable bonds, number of hydrogen-bond647

donors and acceptor atoms, total energy of molecules and kinetic stability. In addition, the active group648

also appeared to possess fewer cyclic rings and lower lipophilicity and charge according to the univariate649

analysis results. The maximum common substructures observed in NAIs are primarily cyclohexene-based,650

dihydropyran-based and cyclopentane-based scaffolds in the molecular framework. These fragments651

were suggested to be the privileged structures that contribute to neuraminidase inhibition. Functional652

group analysis revealed the important functional groups and their characteristic patterns among active653

and inactive compounds. The results of decision tree models suggested that the bioactivity of NAIs654

can be classified according to their functional groups, which highlights the importance of functional655

groups incorporated inside molecules. Furthermore, the results of the binding mode analysis revealed656

key interactions that facilitated protein-ligand binding and their moiety preferences. Thus, these finding657

may provide insights regarding important molecular properties and essential molecular structures for the658

development of novel neuraminidase inhibitors.659
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