Selecting the best growth model for elasmobranches

Age and growth information is essential for accurate stock assessment of fish, and growth model selection may influence the result of stock assessment. Previous descriptions of the age and growth of elasmobranches relied mainly on the von Bertalanffy growth model (VBGM). However, it has been noted that sharks, skates and rays exhibit significant variety in size, shape, and life-history traits. Given this variation, the VBGM may not necessarily provide the best fit for all elasmobranches. This study attempts to improve the accuracy of age estimates by testing four growth models—the VBGM, two-parameter VBGM, Robertson (Logistic) and Gompertz models—to fit observed and simulated length-at-age data for 37 species of elasmobranches. The best growth model was selected based on corrected Akaike's Information Criterion (AIC_c), the AIC_c difference, and the AIC_c weight. The VBGM and two-parameter VBGM provide the best fit for species with slow growth and extended longevity (L_{∞} > 100 cm TL, 0.05 < k < 0.15 yr⁻¹), such as pelagic sharks. For fast-growing small sharks (L_{∞} < 100 cm TL, k_r or k_a > 0.2 yr⁻¹) in deep waters and for small-sized demersal skates/rays, the Robertson and the Gompertz models provide the best fit. The best growth models for small sharks in shallow waters are the two-parameter VBGM and the Robertson model, while all the species best fit by the Gompertz model are skates and rays.

- 1 Selecting the best growth model for elasmobranches
- 2 Kwang-Ming Liu^{1,2,3*}, Chiao-Bin Wu¹, Shoou-Jeng Joung^{3,4}, and Wen-Pei Tsai⁵
- 3
- ⁴ ¹ Institute of Marine Affairs and Resource Management, National Taiwan Ocean
- 5 University, 2 Pei-Ning Road, Keelung 20224, Taiwan.
- ⁶ ² George Chen Shark Research Center, National Taiwan Ocean University, 2 Pei-
- 7 Ning Road, Keelung 20224, Taiwan.
- ³Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning
- 9 Road, Keelung 20224, Taiwan.
- ⁴Department of Environmental Biology and Fisheries Science, National Taiwan
- 11 Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan.
- ⁵Department of Fishery Production and Management, National Kaohsiung Marine
- 13 University, 2 Haitzuan Road, Kaohsiung 811, Taiwan
- 14 *: corresponding author
- 15 E-mail: <u>kmliu@mail.ntou.edu.tw</u>
- 16 Tel: +886-2-24622192 ext. 5018. Fax: +886-2-24620291
- 17
- 18

Peer Preprints

ABSTRACT

17	
20	Age and growth information is essential for accurate stock assessment of fish, and
21	growth model selection may influence the result of stock assessment. Previous
22	descriptions of the age and growth of elasmobranches relied mainly on the von
23	Bertalanffy growth model (VBGM). However, it has been noted that sharks, skates
24	and rays exhibit significant variety in size, shape, and life-history traits. Given this
25	variation, the VBGM may not necessarily provide the best fit for all elasmobranches.
26	This study attempts to improve the accuracy of age estimates by testing four growth
27	models-the VBGM, two-parameter VBGM, Robertson (Logistic) and Gompertz
28	models-to fit observed and simulated length-at-age data for 37 species of
29	elasmobranches. The best growth model was selected based on corrected Akaike's
30	Information Criterion (AIC _c), the AIC _c difference, and the AIC _c weight. The VBGM
31	and two-parameter VBGM provide the best fit for species with slow growth and
32	extended longevity (L_{∞} > 100 cm TL, 0.05 < k < 0.15 yr ⁻¹), such as pelagic sharks.
33	For fast-growing small sharks (L_{∞} < 100 cm TL, k_r or k_g > 0.2 yr ⁻¹) in deep waters
34	and for small-sized demersal skates/rays, the Robertson and the Gompertz models
35	provide the best fit. The best growth models for small sharks in shallow waters are
36	the two-parameter VBGM and the Robertson model, while all the species best fit by
37	the Gompertz model are skates and rays.
38	

39	INTRODUCTION
χų.	
57	

40	Most elasmobranches are characterized by a K-selection life history; slow growth,
41	late maturation, extended longevity, few offspring, and low mortality (Hoenig &
42	Gruber, 1990; King & McFarlane, 2003; Winemiller & Rose, 1992). Elasmobranches
43	also take a long time to recover when subjected to high fishing pressure. Three
44	reproductive strategies, oviparity, viviparity, and aplacental viviparity, have been
45	identified for elasmobranches, and a variety of external morphologies, sizes, and life
46	histories have been found. In short, the life history traits, particularly the reproductive
47	traits of elasmobranches, are more complex than those of teleosts, which are mostly
48	oviparous.
49	
50	Similar to many marine mammals, elasmobranches are among the ocean's top
51	predators, and their life history characteristics make them vulnerable to
52	overexploitation. A collapse of the elasmobranch population could result in
53	imbalances in marine ecosystems (Stevens et al., 2000). Age, growth, and
54	reproduction parameters are crucial for accurate stock assessment and evaluation of
55	their population dynamics (Cailliet et al., 1986, Cailliet & Goldman, 2004).
56	Information on age and growth can be used in natural mortality, longevity, and yield-
57	per-recruit estimates (Ismen, 2003). In the 1950s, Beverton & Holt (1957) first
58	applied the von Bertalanffy growth model (VBGM) to fish population dynamics.
59	However, VBGM may not necessarily provide the best fit for all elasmobranches
60	(Cailliet & Goldman, 2004). Therefore, selecting the most appropriate growth model
61	is important in stock assessment and fishery management of elasmobranches
62	(Gelsleichter et al., 1998).
63	

Peer Preprints

64	Four growth models are commonly used in description of age and growth of
65	elasmobranches: the VBGM, the two-parameter VBGM, the Robertson (Logistic)
66	model, and the Gompertz model (Cailliet et al., 2006). Numerous examples exist that
67	used VBGM to estimate the age and growth of elasmobranches. These include studies
68	on the bonnethead shark Sphyrna tiburo (Carlson & Parsons, 1997), smalltail shark
69	Carcharhinus porosus (Lessa & Santana, 1998), pelagic thresher Alopias pelagicus
70	(Liu et al., 1999), whiskery shark Furgaleus macki (Simpfendorfer et al., 2000),
71	undulate ray Raja undulate (Coelho & Erzini, 2002), Atlantic sharpnose shark
72	Rhizoprionodon terraenovae (Carlson & Baremore, 2003), winter skate Leucoraja
73	ocellata (Sulikowski et al., 2003), thorny skate Amblyraja radiate (Sulikowski et al.,
74	2005), yellownose skate Dipturus chilensis (Licandeo et al., 2006), common
75	guitarfish Rhinobatos rhinobatos (Ismen et al., 2007), and deepwater lantern shark
76	Etmopterus spinax (Coelho & Erzini, 2008).
76 77	Etmopterus spinax (Coelho & Erzini, 2008).
	<i>Etmopterus spinax</i> (Coelho & Erzini, 2008). Although the VBGM is the most commonly-used growth model, others have also
77	
77 78	Although the VBGM is the most commonly-used growth model, others have also
77 78 79	Although the VBGM is the most commonly-used growth model, others have also been employed. The two-parameter VBGM has been successfully applied in
77 78 79 80	Although the VBGM is the most commonly-used growth model, others have also been employed. The two-parameter VBGM has been successfully applied in describing growth of the bull shark <i>Carcharhinus leucas</i> (Neer et al., 2005) and the
77 78 79 80 81	Although the VBGM is the most commonly-used growth model, others have also been employed. The two-parameter VBGM has been successfully applied in describing growth of the bull shark <i>Carcharhinus leucas</i> (Neer et al., 2005) and the female shortfin mako shark <i>Isurus oxyrinchus</i> (Chang & Liu, 2009; Semba et al.,
 77 78 79 80 81 82 	Although the VBGM is the most commonly-used growth model, others have also been employed. The two-parameter VBGM has been successfully applied in describing growth of the bull shark <i>Carcharhinus leucas</i> (Neer et al., 2005) and the female shortfin mako shark <i>Isurus oxyrinchus</i> (Chang & Liu, 2009; Semba et al., 2009), for which size-at-birth data are available. An S-sharp model (Gompertz model)
 77 78 79 80 81 82 83 	Although the VBGM is the most commonly-used growth model, others have also been employed. The two-parameter VBGM has been successfully applied in describing growth of the bull shark <i>Carcharhinus leucas</i> (Neer et al., 2005) and the female shortfin mako shark <i>Isurus oxyrinchus</i> (Chang & Liu, 2009; Semba et al., 2009), for which size-at-birth data are available. An S-sharp model (Gompertz model) has been used to estimate the growth of the Pacific electric ray <i>Torpedo californica</i>
 77 78 79 80 81 82 83 84 	Although the VBGM is the most commonly-used growth model, others have also been employed. The two-parameter VBGM has been successfully applied in describing growth of the bull shark <i>Carcharhinus leucas</i> (Neer et al., 2005) and the female shortfin mako shark <i>Isurus oxyrinchus</i> (Chang & Liu, 2009; Semba et al., 2009), for which size-at-birth data are available. An S-sharp model (Gompertz model) has been used to estimate the growth of the Pacific electric ray <i>Torpedo californica</i> (Neer & Cailliet, 2001), pelagic stingray <i>Dasyatis violacea</i> (Mollet et al., 2002) and
 77 78 79 80 81 82 83 84 85 	Although the VBGM is the most commonly-used growth model, others have also been employed. The two-parameter VBGM has been successfully applied in describing growth of the bull shark <i>Carcharhinus leucas</i> (Neer et al., 2005) and the female shortfin mako shark <i>Isurus oxyrinchus</i> (Chang & Liu, 2009; Semba et al., 2009), for which size-at-birth data are available. An S-sharp model (Gompertz model) has been used to estimate the growth of the Pacific electric ray <i>Torpedo californica</i> (Neer & Cailliet, 2001), pelagic stingray <i>Dasyatis violacea</i> (Mollet et al., 2002) and Alaska skate <i>Bathyraja parmifera</i> (Matta & Gunderson, 2007), while the Robertson

88 *Carcharhinus obscures* (Natanson et al., 2014; Joung et al., 2015).

Peer Preprints

09	
90	In some cases, particularly in recent years, a variety of models have been used in age
91	and growth studies of sharks. These include studies on the tiger shark Galeocerdo
92	cuvier (Kneebon et al., 2008; Wintner & Dudley, 2000), bull shark C. leucas (Wintner
93	et al., 2002), blue shark Prionace glauca (Lessa et al., 2004), sandbar shark C.
94	plumbeus (Romine et al., 2006), shortfin mako (Natanson et al., 2006), whitespotted
95	bamboo shark Chiloscyllium plagiosum (Chen et al., 2007), smooth skate Malacoraja
96	senta (Natanson et al., 2007), scalloped hammerhead S. lewini (Piercy et al., 2007),
97	sharpspine skate Okameiei acutispina (Joung et al., 2011), dusky shark
98	(Simpfendorfer et al., 2002; Natanson et al., 2014; Joung et al., 2015), and spinner
99	shark (Geraghty et al., 2014). The use of different models in fitting length-at-age data
100	is considered preferable. Araya & Cubillos (2006) stated that a two-phase growth
101	model provides a better estimate of elasmobranch growth than the VBGM. This
102	finding was later supported by Braccini et al. (2007) in their study of the piked
103	spurdog Squalus megalops.
104	
105	Chen (pers. comm., 2004) applied several growth models to a variety of teleost
106	species and concluded that the Richards and Robertson models best fit fish with
107	slender and long lateral profiles, while the VBGM and Gompertz model best fit other
108	species. Romney & Campana (2009) examined four skate species and concluded that
109	the VBGM best fit the winter and thorny skate Amblyraja radiata, while the
110	Robertson model best fit the little skate, Raja erinaceian, and the Gompertz model
111	best fit the smooth skate. Ebert et al. (2007) concluded that the VBGM provided the
112	best fit for the Aleutian skate <i>Bathyraja aleutica</i> but that the Bering skate <i>B</i> .
113	interrupta was more accurately described by the Robertson model. Katsanevakis

114 (2006) also concluded that different growth models best described the growth of

115 different chondrichthyan fish.

117	Given the influence of growth model selection on the results of stock assessment, in
118	particular, age-structured models, the objectives of this study were twofold: first, to fit
119	the length-at-age data using different growth models, selecting the best model for
120	each species; and second, to group species on the basis of the best-fit model, examine
121	the life history traits for each of these groups, and discuss the possible factors
122	involved. We hope that our findings can provide an important future reference for the
123	selection of the most appropriate growth model for elasmobranches.
124	
125	MATERIALS AND METHODS
126	Source of data
127	This study collected and analyzed the length-at-age data of 37 species, including the
128	observations of vertebral band counts of 7 species in Taiwanese waters and the age-
129	length key data of 30 species from the literature (Table 1). These species fell into 6
130	orders and 12 families (Table 2). Two species were from Hemiscylliidae and
131	Rhincodontidae (Orectolobiformes), 2 were from Odontaspididae, and Alopiidae
132	(Lamniformes), 19 were from Triakidae, Carcharhinidae, and Sphyrnidae
133	(Carcharhiniformes), 2 were from Etmopteridae (Squaliformes), 11 were from
134	Rhinobatidae and Rajiformes (Rajidae), and 1 was from Dasyatidae
135	(Myliobatiformes). Life history parameters and ecological information, including
136	habitat information, reproductive strategy, fecundity, reproductive cycle (R_c), and size
137	at maturity (L_{mat}), were collected through literature searches in FishBase
138	(http://www.fishbase.net/) as well as from published scientific articles and gray

140

139

141 Data process

literature.

Peer Preprints

142 In addition to observed length-at-age data, age-length key data adopted from the 143 literature comprised the following data sets: (1) detailed age-specific length 144 distribution data that can be directly fitted by the growth models, (2) age-specific 145 mean length with standard deviation, and (3) age-specific length interval. For data 146 sets 2 and 3, a simulation process was used to generate (mimic) individual 147 observations. For data set 2, a normal random number generator was used to generate 148 100 sets of observations based on the sample size, mean length, and standard 149 deviation for each age. The simulated data set was adopted when its mean length and 150 standard deviation were equal to the observed values. For data set 3, the length 151 distribution of each age was assumed to be a uniform distribution, and a total of 100 152 sets of observations were generated from a uniform random number generator based 153 on the sample size and the maximum and minimum length of each age. The simulated 154 data set was adopted when its mean length (the average of the maximum and the 155 minimum length) was equal to the observed value.

156

157 The literature reveals an inconsistency in the way that body length is measured. Total 158 length (TL) of 26 species, fork length (FL) of 3 species, precaudal length (PCL) of 7 159 species, and disc width (DW) of 1 species have all been used. Size-at-birth data were 160 available for 21 of the 37 species (Table 1). Our analysis converted all length data to 161 TL using linear relationships between TL and other measurements.

163 Data analysis

164 Growth models

- 165 Three commonly used growth models, the VBGM (von Bertalanffy, 1938), the
- 166 Robertson (Logistic) (Robertson, 1923) and the Gompertz (Gompertz, 1825), were
- 167 fitted to the length-at-age data for all species. For those species where size-at-birth
- 168 data were available, an additional model, the two-parameter VBGM (Fabens, 1965),
- 169 was also used. The NLIN procedure of the statistical package SAS ver. 9.0 (SAS
- 170 Institute, 2008, Cary, NC, USA) was used to estimate the parameters of each model.
- 171 The four growth models are described as follows:
- 172 (1) VBGM (von Bertalanffy, 1938)

173
$$L_t = L_{\infty}(1 - \exp(-k(t - t_0)))$$

174 (2) Two-parameter VBGM (Fabens, 1965)

175
$$L_t = L_{\infty}(1 - ((L_{\infty} - L_0)\exp(-kt))/L_{\infty})$$

176 (3) Robertson (Logistic) model (Robertson, 1923)

177 $L_t = L_{\infty} (1 + \exp(c_r - k_r t))^{-1}$

178 (4) Gompertz model (Gompertz, 1825)

179
$$L_t = L_{\infty} \exp(-c_g \times \exp(-k_g t))$$

- 180 where L_t is the length at age t, L_{∞} is the asymptotic length, k is the growth coefficient,
- 181 *t* is the age (year from birth), t_0 is the age at length 0, c_r and k_r are the parameters of
- 182 the Robertson model, and c_g and k_g are the parameters of the Gompertz model.
- 183

184 Model selection

- 185 The goodness of fit of the four growth models was compared based on the corrected
- 186 Akaike's Information Criterion (AIC_c), the AIC_c difference (Δ AIC_c), and the AIC_c
- 187 weight (w_i) (Burnham & Anderson 2002). AIC_c was expressed as:

188
$$AIC_c = AIC + \frac{2K(K+1)}{n-K-1}$$
,

189 $AIC = n \times \ln(MSE) + 2K$ (Akaike 1973),

- 190 where *n* is the total sample size, *MSE* is the mean square of residuals, and *K* is the
- 191 number of parameters estimated in the growth model. The AIC_c difference (Δ AIC_c) of
- 192 each model was calculated as the difference between AIC_{c,i} and the lowest observed
- 193 AIC_c value (AIC_{cmin}). Models with Δ AIC_c less than 2 have good support, while those
- 194 with greater than 10 have no support. The corrected Akaike weight (W_i) is expressed
- 195 as a percentage, which is useful when there are only minor differences in AIC_c values
- among the growth models (Burnham & Anderson 2002). AIC_c weights with higher
- 197 values (indicating a better fit) can be expressed as follows:

198
$$W_i = \frac{\exp(-0.5\Delta_i)}{\sum_{m=1}^{4} \exp(-0.5\Delta_m)},$$

- 199 where *m* is the number of growth models being analyzed.
- 200

201 **RESULTS**

202 VBGM as the best growth model

203 The VBGM provided the best fit for 4 shark species: the pelagic thresher, blue shark,

204 night shark Carcharhinus signatus, and tiger shark; and 2 skates: roundel skate, and

- 205 blue skate *R. batis* (Table 3). All are large-size sharks or skates except the roundel
- skate and blue skate. The tiger shark had the highest L_{∞} (L_{∞} = 364.3 cm TL), while the
- 207 blue skate had the lowest (L_{∞} = 47.6 cm TL). The blue skate had the slowest growth

208 rate (k = 0.024 yr⁻¹), while the roundel skate had the fastest (k = 0.194 yr⁻¹).

209

210 **Two-parameter VBGM as the best growth model**

- Peer Preprints The two-parameter VBGM provided the best fit for 16 species, of which 13 were 211 212 sharks and 3 were skates/rays, comprising 52% and 25% of the 25 species of sharks

 - 213 and 12 species of skates/rays, respectively (Fig. 1).
 - 214
 - 215 Only the smooth lantern shark, the Atlantic sharpnose shark, and the cuckoo ray R.
 - 216 *naevus* had an $L_{\infty} < 100$ cm TL. The remaining species had an $L_{\infty} > 100$ cm TL. The
 - silky shark had the highest L_{∞} (L_{∞} = 315.2 cm TL), while the smooth lantern shark 217
 - 218 had the lowest (L_{∞} = 53.1 cm TL). The Atlantic sharpnose shark had the fastest
 - growth rate (k = 0.582 yr^{-1}), while the gummy shark had the slowest (k = 0.072 yr^{-1}). 219
 - 220 The exceptionally large-sized whale shark also fell into this group, with $L_{\infty} = 1580$ cm
 - TL and $k = 0.020 \text{ yr}^{-1}$ (Table 4). 221
 - 222

223 Robertson model as the best growth model

- 224 The Roberson model provided the best fit for 12 species (Table 5), including 8 sharks
- 225 and 4 skates/rays, comprising 32% and 33% (Fig. 1) of the sharks and skates/rays in

226 this study, respectively. Five species (42%) were large sharks, 3 species (25%) were

small sharks, and 4 species (33%) were skates/rays (Fig. 2). 227

228

229 The thorny skate, blacknose shark *Carcharhinus acronotus*, spinner shark, daggernose 230 shark *Isogomphodon oxyrhynchus*, school shark *Galeorhinus galeus*, and dusky shark 231 fell into the large-size category ($L_{\infty} > 100$ cm). The remainder fell into the small-size category ($L_{\infty} < 100$ cm). The dusky shark had the largest L_{∞} ($L_{\infty} = 362.9$ cm), while 232 the deepwater lantern shark had the smallest ($L_{\infty} = 42.3$ cm). The little skate had the 233 fastest growth rate ($k_r = 0.665 \text{ yr}^{-1}$), while the dusky shark had the slowest ($k_r = 0.131$ 234 yr^{-1}). 235

236

237 Gompertz model as the best growth model

238 The Gompertz model (Table 6) provided the best fit for three species, including

239 yellownose skate, winter skate, and Kwangtung skate Dipturus kwangtungensis (Fig.

- 1).. One species was a small skate (33%), and 2 species (67%) were large skates (Fig.
- 241

2).

242

243 The Kwangtung skate fell into the small-size category ($L_{\infty} < 100$ cm). While the

244 yellownose skate and winter skate fell into the large-szie category ($L_{\infty} > 100$ cm). as

245 The yellownose skate had the fastest growth rate ($k_g = 0.192 \text{ yr}^{-1}$), while the

246 Kwangtung skate had the slowest ($k_g = 0.114 \text{ yr}^{-1}$).

247

248 In summary, sharks were best fitted by the two-parameter VBGM (52%), while

skates/rays were best fitted by the Robertson model (33%). Large sharks were best

250 fitted by the two-parameter VBGM (44%), small sharks were best fitted by the

251 Robertson model (60%), and skates/rays were best fitted by the Robertson model

(33%) (Fig. 3). The species best fitted by the Gompertz model were all skates and

253 rays (100%).

254

255 **DISCUSSION**

256 Cailliet & Goldman (2004) intensively reviewed 115 publications on the age and

growth of 91 species of chondrichthyans, and Cailliet et al. (2006) presented updated

258 information on 28 new studies. However, most of these studies did not provide either

length-at-age or age-length key data. Thus, only 37 species with either observed

260 length-at-age or age-length key data were used in this study.

261

Peer Preprints

262 Uncertainties

263 As mentioned above, observed length-at-age data were available for only 7 of 37 264 species. For the remaining 30 species, figures were generated (simulated) from age-265 length key data. Because such simulations may not be representative of real 266 observations, there may be inaccuracies in the growth parameter estimates. Some 267 species were represented by a small sample size - the common stingray, sand tiger 268 shark, cuckoo skate, etc. Because of this, and due to a lack of small or large specimens, 269 the size-at-age data may not cover the whole life history of the fish. As a result, 270 estimated parameters might not accurately describe the growth over the entire life 271 history. Cailliet & Goldman (2004) stated that growth parameter estimates are greatly 272 influenced by a lack of very young or old individuals. The existence of length-at-birth 273 information may therefore have a significant effect on the choice of growth model. In 274 this study, the simulated observation data set was adopted only when its mean length 275 and standard deviation were equal to observed values. Several simulations were made 276 for each species and although minor variations in growth parameter estimates were 277 noted, this had no effect on the selection of best-fit growth model.

278

279 The basic theory of growth equation

280 Derived from the allometric relationship between metabolic rate and body weight, the

281 VBGM has been widely used to describe the growth of fish (Haddon, 2001). The

ideas underpinning this model are that energy transformation during growth can be

- 283 expressed as the difference between anabolism and catabolism and that the growth
- rate decreases exponentially with age (Pütter, 1920). Beverton & Holt (1957) were the
- 285 first to apply the VBGM to the study of fisheries. The Gompertz model was originally

286 developed to estimate human mortality rates (Gompertz, 1825), while the Robertson 287 model was based on the logistic model used to describe population dynamics and 288 individual growth over time. Both models are S-shaped curves with inflection points 289 occurring at an intermediate age when the growth rate starts to decrease (Wang & 290 Zuidhof, 2004). The inflection point of the Robertson model occurs at 50% of L_{∞} , but 291 it occurs at approximately 37% of L_{∞} for the Gompertz model (Winsor, 1932). Under 292 these two models, growth rates increase with age to a maximum at the inflection 293 points and then decrease thereafter (Ricker, 1975, 1979). Discrepancies in life history 294 among elasmobranch species are likely to affect the result of selecting the best-fit 295 growth model.

296

Peer Preprints

Energy allocation in animals can be expressed as C=R+G+S+W, where C is energy consumption, R is the catabolic rate, G is growth, S is spawning, and W is waste (Winberg, 1960). Catabolism includes both standard and active forms (e.g., energy consumption when feeding). When more energy is allocated to reproduction and growth, less can be allocated to catabolism and waste, and vice versa. Energy allocation for elasmobranches varies with habitat and reproductive strategies; this may result in differences in growth.

304

305 In this study, growth of the bull shark was best described by the two-parameter

306 VBGM. According to Schmid & Murru (1994), the juvenile bull shark allocates most

307 of its energy to catabolism and waste and little to growth. Conversely, the chain

308 dogfish Scyliorhinus rotifer, the growth of which was best described by the Robertson

309 model in this study, allocates most of its energy to growth and reproduction (Duffy,

310 1999). This suggests that small-size species allocate the most energy to growth and

Peer PreprintsNOTPER311reproduction, while the converse is true for large-size species. The fact that the312VBGM or two-parameter VBGM best fit large sharks, while the Robertson and313Gompertz models best fit small sharks may therefore be related to their energy

allocation.

315

316 Cailliet & Goldman (2004) suggested that the Gompertz model better describes

317 changes in body weight over time than changes in length. However, this hypothesis

318 cannot be tested because age-at-weight data are not available in the literature. Most

319 sharks are torpedo-shaped and large, while most skates and rays are flat and small.

320 The best growth model might be related to the ratio of size-at-maturity and maximum

321 observed size. Species for which the VBGM and two-parameter VBGM provide the

best fit are mostly sharks that tend to be late-maturing (Table 7), e.g., the pelagic

323 thresher shark, bull shark and blacktip shark. Species best fitted by the Robertson and

324 Gompertz models tend, in contrast, to be early-maturing, such as the common stingray,

325 sharpspine skate, and blue skate (Table 7).

326

327 Other growth models

328 The four-parameter Richards growth model is a general form of the VBGM,

329 Robertson, and Gompertz models and is considered superior to the three-parameter

330 growth models (Quinn & Deriso, 1999). However, in this study, the lack of large

331 specimens and the relatively small sample size for certain species may cause the

332 inconvergence of iterations in parameter estimation by non-linear procedures. Araya

333 & Cubillos (2006) used a two-phase growth model (TPGM) to fit for the porbeagle

334 shark Lamna nasus and leopard shark Triakis semisfaciata. The TPGM is a five-

335 parameter growth model; the additional parameter is the age at which transition

P	eer	Preprints NOT PEER-RE
	336	between two phases occurs. Because more detailed age-length data are required for
	337	this model, it was not applied in this study.
	338	
	339	Estimation of parameters
	340	In this study, $L_{\!\infty}$ estimates derived by the VBGM and two-parameter VBGM models
	341	were larger than those derived by the Robertson and Gompertz models (Fig. 4). A
	342	similar finding has been documented by Katsanevakis & Maravelias (2008). Therefore,
	343	it seems that $L_{\!\infty}$ is closely related to growth model selection.
	344	
	345	In this study, the VBGM provided the best fit for 6 species, with estimated k values of
	346	0.024 - 0.194 year ⁻¹ . All of these are moderate or slow-growing species (k < 0.2 year ⁻¹).
	347	The two-parameter VBGM model was the best fit for 16 species, with estimated k
	348	values of 0.020 - 0.582 year ⁻¹ . Most of these are also moderate- or slow-growing
	349	species (k < 0.2 year ⁻¹), the exceptions being the Atlantic sharpnose shark
	350	Rhizoprionodon terraenovae, finetooth shark Carcharhinus isodon, blacktip shark C.
	351	<i>limbatus</i> , and common guitarfish <i>Rhinobatos</i> ($k > 0.2$ year ⁻¹). The Robertson model
	352	provided the best fit for 12 species, with estimated k_r values of 0.131-0.667 year ⁻¹ .
	353	Most of these are fast-growing species ($k_r > 0.2$ year ⁻¹), the exception being the dusky
	354	shark ($k_r < 0.2$ year ⁻¹). The Gompertz model was the best fit for 3 species, with
	355	estimated k_g values of 0.1138-0.1915 year ⁻¹ . These included moderate-growing
	356	species, the yellownose skate, winter skate, and Kwangtung skate ($0.1 < k_g < 0.2$ year
	357	¹). The VBGM and two-parameter VBGM provided the best fit for slow-to moderate-
	358	growing species, while the Gompertz model was the best fit for moderate-growing
	359	species, and the Robertson model was the best fit for fast-growing species.

361 **Contingency of fitting models**

362 For the 6 species best fitted by the VBGM, the second-best choice was the Gompertz 363 (100%) (Fig. 5). For the two-parameter VBGM (16 species), the second-best choice 364 was VBGM (81%), while for the Robertson (12 species), the second-best choice was 365 the Gompertz (100%). For the Gompertz model (3 species), the second-best choice 366 was the Robertson (67%). In short, the two-parameter VBGM best fits sharks, while 367 the Gompertz model best fits skates and rays. In their study of elasmobranches, 368 Katsanevakis & Maravelias (2008) proposed four growth models in order of fit, as 369 follows: Logistic-Gompertz-VBGM-Power (where Gompertz is the best choice, and 370 Logistic and VBGM are the second-best choices). They concluded that the VBGM 371 provided the best description of growth among elasmobranches and bony fish. Our 372 study arrived at a similar order of growth models, namely Robertson-Gompertz-373 VBGM-two-parameter VBGM, although it should be noted that the previous study 374 separated species into sharks, skates, and rays. Mollet et al. (2002) found that the best 375 fit for the growth of the pelagic stingray was the Gompertz model. In this study, the 376 growth of skates/rays is best described by the S-shaped Gompertz or Robertson 377 models.

378

379 Comparison with literature results

380 Of the 37 species analyzed in this study, 12 have been previously fitted with more

than one growth model in the literature. Of these, our study found the same best

- 382 growth model for 10 species. The remaining 25 species have previously been
- described using VBGM alone, but our study found that 19 of these species are better
- 384 fit by an alternative model. Thorson & Simpfendorfer (2009) have suggested using
- 385 AIC, AIC weight, and multi-model inference to obtain the most appropriate model to

NOT PEER-REVIEWED

describe fish growth. In this study, the best growth model for each stock was selected 386 387 based on similar criteria, AIC_c, \triangle AIC_c, and the AIC_c weight, suggesting that the 388 derived results are reasonable. 389 390 The relationship between life history traits and best growth model 391 Based on their life history traits, three groups of sharks have been identified using 392 cluster analysis (Liu et al., 2015) as follows. Group 1: large size, extended life span, 393 slow growth, e.g., the silky shark, sandbar shark, scalloped hammerhead shark, and 394 oceanic whitetip shark. These are similar to the species best described in this study by 395 the two-parameter VBGM. Group 2: small size, short life span, rapid growth, e.g., the 396 smooth dogfish and blacknose shark. These are similar to the species best described in 397 this study by the Robertson model. Group 3: late-maturing, moderate life span, e.g., 398 the pelagic thresher shark, tiger shark, blue shark and night shark. These are similar to 399 the species best described in this study by the VBGM. This study found that the 400 Robertson and Gompertz models provided the best fit for skates and rays. Those best 401 described by the Robertson model are characterized by small size and rapid growth, 402 e.g., the thorny skate, common stingray and little skate. Those best described by 403 Gompertz have the characters of small or large size and moderate growth, e.g., the 404 winter skate, yellownose skate, and Kwangtung skate. 405

As mentioned above, the Orectolobiformes, Lamniformes and large-sized species of
Carcharihidae are best fitted by the VBGM or two-parameter VBGM. Rajiformes

- 408 and Myliobatiformes are best fitted by the Robertson or Gompertz model, while the
- 409 Robertson model best describes the growth of small-size species of Carcharihidae.
- 410

Peer Preprints 411 Most species for which the VBGM or two-parameter VBGM provided the best fit are

412 viviparous, while most species best described by the Robertson or Gompertz models 413 are oviparous (Fig. 6). Species best described by the VBGM or two-parameter VBGM 414 models have lower annual fecundity and mature later (higher L_{mat}/L_{∞}) than those best 415 described by the Robertson or Gompertz models (Table 7).

416

Although VBGM has been widely used in fitting age and length data, where 417

418 alternative models have not been tried and evaluated, the derived age structure may be

419 biased and inaccurate (Roff, 1980). This will cause further errors in the estimates of

420 mortality, yield per recruit, and stock assessment. If the Robertson or Gompertz

421 models better describe the growth of certain species, variations in different life stages

422 can be considered, and stock assessment will be improved (Carlson & Baremore,

423 2005).

424

425 **CONCLUSION**

426 The best growth model for elasmobranches depends on their size and life history 427 characteristics (Fig. 7). VBGM provides the best fit for large pelagic sharks that are 428 late-maturing and of moderate longevity. These include the pelagic thresher and blue 429 sharks. The two-parameter VBGM best fits large pelagic sharks that are slow-growing 430 and have extended longevity, such as the silky and sandbar sharks. The Robertson 431 model is the best fit for fast-growing small sharks that inhabit deep water. For small 432 sharks in shallow waters, the two-parameter VBGM and the Robertson model provide 433 the best description. The Robertson model is also the best fit for medium and small-434 size demersal skates and rays, which are fast-growing and of short longevity, such as 435 the smooth dogfish and thorny skate. The Gompertz model best fits large or small,

PeerJ Preprints NOT PEER-REVIEWED 436 median-growing skates and rays, such as the yellow and Kwangtung skates. For the

- 437 whale shark, with its huge size, slow growth, extended longevity, late maturity, and
- 438 prolonged reproductive cycle, the two-parameter VBGM provides the best fit.

eer	Preprints NOT PEER-REVIEWEI
440	REFERENCES
441	Akaike, H., 1973. Information theory as an extension of the maximum likelihood
442	principle. pp. 267-281. In: Petrov, B.N. and Csaki, F. (eds.) Second international
443	symposium on information theory, Akademiai Kiado, Budapest, Hungary.
444	
445	Araya, M., Cubillos, L.A., 2006. Evidence of two-phase growth in elasmobranches.
446	Environ. Biol. Fishes 77, 293-300.
447	
448	Beverton, R.J.H., Holt, S.J., 1957. On the dynamics of exploited fish populations.
449	Fisheries Investment Series 2, Vol. 19, 533 pp. UK Ministry of Agriculture and
450	Fisheries, London.
451	
452	Braccini J.M., Gillanders, B.M., Walker, T.I., Tovar-Avila, J., 2007. Comparison of
453	deterministic growth models fitted to length-at-age data of the piked spurdog (Squalus
454	megalops) in south-eastern Australia. Mar. Freshw. Res. 58, 24-33.
455	
456	Branstetter, S. Musick, J.A., 1994. Age and growth estimates for the sand tiger in the
457	northwestern Atlantic ocean. Trans. Am. Fish. Soc. 123, 242-254.
458	
459	Burnham, K.P., Anderson D.R., 2002. Model Selection and multimodel inference: A
460	practical-theoretic approach. Springer, New York, 488 pp.
461	
462	Cailliet, G.M., Goldman, K.J., 2004. Age determination and validation in
463	chondrichthyan fishes. pp. 399-447. In: Carrier, J., Musick, J.A., Heithaus, M.R. (eds.)
464	Biology of sharks and their relatives, CRC Press LLC, Boca Raton, Fla.
465	
466	Cailliet, G.M., Radtke, M.S., Welden, B.A., 1986. Elasmobranch age determination
467	and verification: a review. pp. 345-359. In: Uyeno, T., Arai, R., Matsuura, T. (eds.)
468	Indo-Pacific Fishes Biology: Proceedings of the Second International Conference on
469	Indo-Pacific Fishes, Ichthyological Society of Japan, Tokyo.
470	
471	Cailliet, G.M., Smith, W.D., Mollet, H.F., Goldman, K.J., 2006. Age and growth
472	studies and growth of chondrichthyan fishes: the need for consistency in terminology,
473	verification, validation, growth function. Environ. Biol. Fishes 77, 211-228.

Preprints NOT PEER-F	REVIE
Carlson, J.K., Baremore, I.E., 2003. Changes in biological parameters of Atlantic	
sharpnose shark Rhizoprionodon terraenovae in the Gulf of Mexico: evidence for	
density-dependent growth and maturity. Mar. Freshwat. Res. 54:227-234.	
Carlson, J.K., Baremore, I.E., 2005. Growth dynamics of the spinner shark	
(Carcharhinus brevipinna) off the United States southeast and Gulf of Mexico coasts	:
a comparison of methods. Fish. Bull. 103, 280-291.	
Carlson, J.K., Cortés, E., Bethea, D.M., 2003. Life history and population dynamics	
of the finetooth shark (Carcharhinus isodon) in the northeastern Gulf of Mexico. Fish	1.
Bull. 101, 281-292.	
Carlson, J.K., Cortés, E. Johnson, A.G., 1999. Age and growth of the blacknose shark	- -,
Carcharhinus acronotus, in the eastern Gulf of Mexico. Copeia 1999, 684-691.	
Carlson, J.K., Parsons, G.R., 1997. Age and growth of the bonnethead shark, Sphyrna	ı
tiburo, from northwest Florida, with comments on clinal variation. Environ. Biol.	
Fishes 50, 331-341.	
Chang, J.H., Liu, K.M., 2009. Stock assessment of the shortfin mako shark, Isurus	
oxyrinchus, in the Northwest Pacific Ocean using per-recruit and virtual population	
analyses. Fish. Res. 98, 92-101.	
Chen, P., 2004. Comparison of fitting growth equations on fishes with different body	
shapes. M. Sc. Thesis, National Taiwan Ocean University.	
Chen, W.K., Chen, P.C., Liu, K.M., Wang, S.B., 2007. Age and growth estimates of	
the whitespotted bamboo shark, Chiloscyllium plagiosum, in the northern waters of	
Taiwan. Zool. Stud. 46(1), 92-102.	
Coelho, R., Erzini, K., 2002. Age and growth of the undulate ray, Raja undulata, in	

WED

- the Algarve (southern Portugal). J. Mar. Biol. Assoc. UK 82, 987-990. 506
- 507

Peer J Pr

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

Peer	Preprints NOT PEER-REVIEWED
508	Coelho, R., Erzini, K., 2007. Population parameters of the smooth lantern shark,
509	Etmopterus pusillus, in southern Portugal (NE Atlantic). Fish. Res. 86, 42-57.
510	
511	Coelho, R., Erzini, K., 2008. Life history of a wide-ranging deepwater lantern shark
512	in the north-east Atlantic, Etmopterus spinax (Chondrichthyes: Etmopteridae), with
513	implications for conservation. J. Fish Biol. 73, 1419-1443.
514	
515	Du Buit, M.H., 1977. Age et croissance de Raja batis et de Raja naevus en Mer
516	Celtique. Journal du Conseil International pour L'exploration de la Mer 37(3), 261-
517	265.
518	
519	Duffy, K.A., 1999. Feeding, growth and bioenergetics of the chain dogfish,
520	Scyliorhinus retifer. Ph. D. Thesis, University of Rhode Island, Kingston, RI.
521	
522	Ebert, D.A., Smith, W.D., Haas, D.L., Ainsley, S.M., Cailliet, G.M., 2007. Life history
523	and population dynamics of Alaskan skates: providing essential biological
524	information for effective management of bycatch and target species. North Pacific
525	Research Board Project Final Report 130pp.
526	
527	Fabens, A.J., 1965. Properties and fitting of the von Bertalanffy growth curve. Growth
528	29, 265-289.
529	
530	Gelsleichter, J., Piercy, A., Musick, J.A., 1998. Evaluation of copper, iron and lead
531	substitution techniques in elasmobranch age determination. J. Fish Biol. 53, 465-470.
532	
533	Geraghty, P.T., Mecbeth, W.G., Harry, A.V., Bell, J.E., Yerman, M.N., Williamson,
534	J.E., 2014. Age and growth parameters for three heavily exploited shark species off
535	temperate eastern Australia. ICES J. Mar. Sci. 71(3), 559-573.
536	
537	Gompertz, B., 1825. On the nature of the function expressive of the law of human
538	mortality and on a new mode of determining life contingencies. Philos. Trans. R. Soc.
539	London 115, 513-585.
540	
541	Haddon, M., 2001. Modelling and quantitative methods in fisheries. Chapman &

Haddon, M., 2001. Modelling and quantitative methods in fisheries. Chapman &

Peer	Preprints NOT PEER-REVIEWED
542	Hall/CRC, 406 pp.
543	
544	Hoenig, J.M., Gruber, S.H., 1990. Life history patterns in the elasmobranches:
545	implications for fisheries management. pp. 1-15. In: (Pratt, H.L., Gruber, S.H.,
546	Taniuchi, T. (eds.) Elasmobranchs as Living Resources: Advances in the Biology,
547	Ecology, Systematics, and the Status of the Fisheries. NOAA Technical Report NMFS
548	90.
549	
550	Hsu, H.H., 2009. Age, growth, and migration of the whale shark, Rhincodon typus, in
551	the Northwest Pacific. Ph. D. Thesis, National Taiwan Ocean University.
552	
553	Huang, J.C., 2006. Age and growth of blue shark, Prionace glauca in the
554	northwestern Pacific. M. Sc. Thesis, National Taiwan Ocean University.
555	
556	Ismen, A., 2003. Age, growth, reproduction and food of common stingray (Dasyatis
557	pastinaca L., 1758) in İskenderun Bay, the eastern Mediterranean. Fish. Res. 60, 169-
558	176.
559	
560	Ismen, A., Yıgın, C., Ismen, P., 2007. Age, growth, reproductive biology and feed of
561	the common guitarfish (Rhinobatos rhinobatos Linnaeus, 1758) in İskenderun Bay,
562	the eastern Mediterranean Sea. Fish. Res. 84, 263-269.
563	
564	Joung, S.J., Lee, P.H., Liu, K.M., Liao, Y.Y., 2011. Estimates of life history
565	parameters of the sharpspine skate, Okamejei acutispina, in the northeastern waters of
566	Taiwan. Fish. Res. 108, 258-267.
567	
568	Joung, S.J., Chen, J.H., Chin, C.P., Liu, K.M., 2015. Age and growth estimates of the
569	dusky shark, Carcharhinus obscurus, in the western North Pacific Ocean. Terr.,
570	Atmos. Oceanic Sci. 26(2): 153-160. doi: 10.3319/TAO.2014.10.15.01(Oc).
571	
572	Joung, S.J., Chen, C.C., Liu, K.M., Hsieh, T.C., 2015. Age and growth estimate of the
573	Kwangtung skate, Dipturus kwangtungensis in the northern waters off Taiwan. J. Mar.
574	Biol. Assoc. U. K. doi: 10.1017/S0025315415001307.
575	

Peer	Preprints NOT PEER-REVIEWEI
576	Katsanevakis, S., 2006. Modelling fish growth: Model selection, multi-model
577	inference and model selection uncertainty. Fish. Res. 81, 229-235.
578	
579	Katsanevakis, S., Maravelias, C.D., 2008. Modelling fish growth: multi-model
580	inference as a better alternative to a priori using von Bertalanffy equation. Fish Fish. 9,
581	178-187.
582	
583	King, J.R,. McFarlane, G.A., 2003. Marine fish life history strategies: applications to
584	fishery management. Fish. Manage. Ecol. 10, 249-264.
585	
586	Kneebon, J., Nantanson, L.J., Andrews, A.H., Howell, W.H., 2008. Using bomb
587	radiocarbon analyses to validate age and growth estimates for the tiger shark,
588	Galeocerdo cuvier, in the western North Atlantic. Mar. Biol. 154, 423-434.
589	
590	Lessa, R., Santana, F.M., 1998. Age determination and growth of the smalltail shark,
591	Carcharhinus porosus, from northern Brazil. Mar. Freshw. Res. 49, 705-711.
592	
593	Lessa, R., Santana, F.M., Batists, V., Almeida, Z., 2000. Age and growth of the
594	daggernose shark, Isogomphodon oxyrhynchus, from northern Brazil. Mar. Freshw.
595	Res. 51, 339-47.
596	
597	Lessa, R., Santana, F.M., Hazin, F.H., 2004. Age and growth of the blue shark
598	Prionace glauca (Linnaeus, 1758) off northeastern Brazil. Fish. Res. 66, 19-30.
599	
600	Lessa, R., Santana, F.M., Pagleran, i R., 1999. Age, growth and stock structure of the
601	oceanic whitetip shark, Carcharhinus longimanus, from the southwestern equatorial
602	Atl. Fish. Res. 42, 21-30.
603	
604	Licandeo, R.R., Lamilla, J.G., Rubilar, P.G., Vega, R.M., 2006. Age, growth, and
605	sexual maturity of the yellownose skate Dipturus chilensis in the south-eastern Pacific.
606	J. Fish Biol. 68, 488-506.
607	
608	Liu, K.M., Chen, C.T., Liao, T.H., Joung, S.J., 1999. Age, growth and reproduction of
609	the pelagic thresher shark, Alopias pelagicus in the northwestern Pacific. Copeia 1,

Peer	Preprints NOT PEER-REVIEWED
610	68-74.
611	
612	Liu, K.M., Chin, C.P., Chen, C.H., and Chang, J.H., 2015. Estimating finite rate of
613	population increase for sharks based on vital parameters. PloS One doi:
614	10.1371/journal.pone.0143008.
615	
616	Loefer, J.K., Sedberry, G.R., 2003. Life history of the Atlantic sharpnose shark
617	(Rhizoprionodon terraenovae) (Richardson, 1836) off the southeastern United States.
618	Fish. Bull. 101, 75-88.
619	
620	Matta, M.E., Gunderson, D.R., 2007. Age, growth, maturity, and mortality of the
621	Alaska skate, Bathyraja parmifera, in the eastern Bering Sea. Environ. Biol. Fishes 80,
622	309-323.
623	
624	Mollet, H.F., Ezcurra, J.M., O'Sullivan, J.B., 2002. Captive biology of the pelagic
625	stingray, Dasyatis violacea (Bonaparte, 1832). Mar. Freshw. Res. 53, 531-541.
626	
627	Moulton, P.L., Walker, T.I., Saddlier, S.R., 1992. Age and growth studies of gummy
628	shark, Mustelus antarcticus Günther, and school shark, Galeorhinus galeus
629	(Linnaeus), from southern Australian waters. Aust. J. Mar. Freshw. Res. 43, 1241-
630	1267.
631	
632	Natanson, L.J., Gervelis, B.J., Winton, M.V., Hamady, L.L., Gulak, S.J.B., Carlson,
633	J.K., 2014. Validated age and growth estimates for Carcharhinus obscurus in the
634	northwestern Atlantic Ocean, with pre- and post- management growth comparisons.
635	Environ. Biol. Fishes 97, 881-896. doi: 10.1007/s10641-013-0189-4.
636	
637	Natanson, L.J., Kohler, N.C., Ardizzone, D., Cailliet, G.M., Wintner, S.P., Mollet,
638	H.F., 2006. Validated age and growth estimates for the shortfin mako, <i>Isurus</i>
639	oxyrinchus, in the North Atlantic Ocean. Environ. Biol. Fishes 77, 367-383.
640	
641	Natanson, L.J., Sulikowski, J.A., Kneebone, J.R., Tsang, P.C., 2007. Age and growth
642	estimates for the smooth skate, Malacoraja senta, in the Gulf of Maine. Environ. Biol.
643	Fishes 80, 293-308.

Peer	Preprints NOT PEER-REVIEWED
644	
645	Natanson, L.J., Gervelis B.J., Winton, M.V., Hamady L L., Gulak, S.J.B., Carlson,
646	J.K., 2014. Validated age and growth estimates for Carcharhinus obscurus in the
647	northwestern Atlantic Ocean, with pre- and post management growth comparisons.
648	Environ. Biol. Fishes 97(8), 881-896.
649	
650	Neer, J.A., Cailliet, G.M., 2001. Aspects of the life history of the Pacific electric ray,
651	Torpedo californica (Ayres). Copeia 2001, 842-847.
652	
653	Neer, J.A., Thompson, B.A., Carlson, J.K., 2005. Age and growth of Carcharhinus
654	leucas in the northern Gulf of Mexico: incorporating variability in size at birth. J. Fish
655	Biol. 67, 370-383.
656	
657	Oshitani, S., Nakano, H., Tanaka, S., 2003. Age and growth of the silky shark
658	Carcharhinus falciformis from the Pacific Ocean. Fish. Sci. 69, 456-464.
659	
660	Piercy, A.N., Carlson, J.K., Sulikowski, J.A., Burgess, G.H., 2007. Age and growth of
661	the scalloped hammerhead shark, Sphyrna lewini, in the north-west Atlantic Ocean
662	and Gulf of Mexico. Mar. Freshw. Res. 58, 34-40.
663	
664	Pütter, A., 1920. Studien über physiologische Ähnlichkeit VI.
665	Wachstumsähnlichkeiten. Pflugers Arch. Gesamte Physiol. Menschen Tiere 180, 298-
666	340.
667	
668	Quinn II, T.J., Deriso, R.B., 1999. Quantitative Fish Dynamics. 542 pp. New York:
669	Oxford University Press.
670	
671	Ricker, W.E., 1975. Computation and interpretation of biological statistics of fish
672	populations. J. Fish. Res. Board Can. 191, 1-382.
673	
674	Ricker, W.E., 1979. Growth rate and models. Fish Physiology VIII series, 677-743.
675	San Diego, CA: Academic Press.
676	Determined TD 1002 The demonstral $(1, 1)$ TD $(1, 1)$ TD $(1, 1)$
677	Robertson, T.B., 1923. The chemical basis of growth and senescence. J.B. Lippincott,

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1550v1 | CC-BY 4.0 Open Access | rec: 30 Nov 2015, publ: 30 Nov 2015

Peer	Preprints NOT PEER-REVIEWED
678	Philadelphia & London, 389 pp.
679	
680	Roff, D.A., 1980. A motion for the retirement of the von Bertalanffy function. Can. J.
681	Fish. Aquat. Sci. 37, 127-129.
682	
683	Romine, J.G., Grubbs, R.D., Musick, J.A., 2006. Age and growth of the sandbar shark,
684	Carcharhinus plumbeus, in Hawaiian waters through vertebral analysis. Environ. Biol.
685	Fishes 77, 229-239.
686	
687	Romney, P.M., Campana, S.E., 2009. Bomb dating and age determination of skates
688	(family Rajidae) off the eastern coast of Canada. J. Mar. Sci. 66, 546-560.
689	
690	Santana, F.M., Lessa, R., 2004. Age determination and growth of the night shark
691	(Carcharhinus signatus) off the northeastern Brazilian coast. Fish. Bull. 102, 156-167.
692	
693	Schmid, T.H., Murru, F.L., 1994. Bioenergetics of the bull shark, Carcharhinus leucas,
694	maintained in captivity. Zool. Biol. 13, 177-185.
695	
696	Semba, Y., Nakano, H., and Aoki, I., 2009. Age and growth analysis of the shortfin
697	mako, Isurus oxyrinchus, in the western and central North Pacific Ocean. Environ.
698	Biol. Fishes 84, 377–391. doi: 10.1007/s10641-009-9447-x.
699	
700	Simpfendorfer, C.A., Cdlow, J., McAuley, R., Unsworth, P., 2000. Age and growth of
701	the whiskery shark, Furgaleus macki, from southwestern Australia. Environ. Biol.
702	Fishes 58, 335-343.
703	
704	Simpfendorfer, C.A., McAuley, R.B., Chidlow J., Unsworth P., 2002. Validated age
705	and growth of the dusky shark, Carcharhinus obscurus, from Western Australian
706	waters. Mar. Freshw. Res. 53, 567-573.
707	
708	Soriano, M., Moreau, J., Hoenig, J.M. & Pauly, D., 1992. New functions for the
709	analysis of two-phase growth of juvenile and adult fishes, with application to Nile
710	perch. Trans. Am. Fish. Soc. 121, 486-493.
711	

Peer	Preprints NOT PEER-REVIEWER
712	Stevens, J.D., Bonfil, R., Dulvy, N.K. & Walker, P.A., 2000. The effects of fishing on
713	sharks, rays, and chimaeras (chondrichthyans), and the implications for marine
714	ecosystems. ICES J. Mar. Sci. 57, 476-494.
715	
716	Sulikowski, J.A., Irvine, S.B., DeValerio, K.C., Carlson, J.K., 2007. Age, growth and
717	maturity of the roundel skate, Raja texana, from the Gulf of Mexico, USA. Mar.
718	Freshw. Res. 58, 41-53.
719	
720	Sulikowski, J.A., Kneebone, J., Elzey, S., 2005. Age and growth estimates of the
721	thorny skate (Amblyraja radiata) in the western Gulf of Maine. Fish. Bull. 103, 161-
722	168.
723	
724	Sulikowski, J.A., Morin, M.D., Suk, S.H., Howell, W.H., 2003. Age and growth
725	estimates of the winter skate (Leucoraja ocellata) in the western Gulf of Maine. Fish.
726	Bull. 101, 405-413.
727	
728	Thorson, J.T., Simpfendorfer, C.A., 2009. Gear selectivity and sample size effects on
729	growth curve selection in shark age and growth studies. Fish. Res. 98, 75-84.
730	
731	von Bertalanffy, L., 1938. A quantitative theory of organic growth (Inquires on growth
732	laws II). Hu. Biol. 10, 181-213.
733	
734	Wang, T.M., Chen, C.T., 1982. Age and growth of smooth dogfish, <i>Mustelus griseus</i> ,
735	in northwestern Taiwan waters. J. Fish. Soc. Taiwan 9, 1-12.
736	
737	Wang, Z., Zuidhof, M.J., 2004. Estimation of growth parameters using a nonlinear
738	mixed Gompertz model. Poul. Sci. 83, 847-852.
739	Waring C.T. 1094 Ass growth and martality of the little shate off the northeast
740	Waring, G.T., 1984. Age, growth, and mortality of the little skate off the northeast
741 742	coast of the United States. Trans. Am. Fish. Soc. 113, 314-321.
742 743	Winhard C. C. (1060) Pate of metabolism and food requirements of fishes. Eich Des
743 744	Winberg, G. G. (1960). Rate of metabolism and food requirements of fishes. Fish. Res. Board Can. 194, 1-202.
744 745	Dualu Call. 174, 1-202.
143	

Peer	Preprints NOT PEER-REVIEWED
746	Winemiller, K.O., Rose, K.A., 1992. Patterns of life-history diversification in north
747	American fishes: implication for population regulation. Can. J. Fish. Aquat. Sci. 49,
748	2196-2218.
749	
750	Winsor, C.P., 1932. The Gompertz curve as a growth curve. Natl. Acad. Sci. 18(1), 1-
751	8.
752	
753	Wintner, S.P., Cliff, G., 1996. Age and growth determination of the blacktip shark,
754	Carcharhinus limbatus, from the east coast of South Africa. Fish. Bull. 94, 135-144.
755	
756	Wintner, S.P., Dudley, S.F.J., 2000. Age and growth estimates for the tiger shark,
757	Galeocerdo cuvier, from the east coast of South Africa. Mar. Freshw. Res. 51, 43-53.
758	
759	Wintner, S.P., Dudley, S.F.J., Kistnasamy, N., Everett, B., 2002. Age and growth
760	estimates for the Zambezi shark, Carcharhinus leucas, from the east coast of South
761	Africa. Mar. Freshw. Res. 53, 557-566.

763Table 1

Age-length data, reproduction strategy and the information of age determination used

- in the present study
- 766

Sample	G	Sample	Data		D	D	¥7. • 0•		D
No.	Scientific name	Size	source	Length	_R	Precision	Verification	Ageing	References
1	Amblyraja radiate	224	a	TL	0	CV	MIR	Ver	Sulikowski et al., 2005*
2	Carcharhinus acronotus	67	a	FL	v	IAPE	MIR	Ver	Carlson et al., 1999*
3	C. brevipinna	258	a	FL	v	IAPE	MIR	Ver	Carlson & Baremore, 2005
4	C. falciformis	289	a	PCL	v	-	MIR	Ver	Oshitani et al., 2003
5	C. isodon	240	a	TL	v	-	MIR	Ver	Carlson et al., 2003
6	C. leucas	117	a	PCL	v	IAPE	MIR	Ver	Wintner et al., 2002
7	C. longimanus	107	a	TL	v	IAPE	MIR	Ver	Lessa et al., 1999
8	C. plumbeus	186	a	PCL	v	IAPE	MIR	Ver	Romine et al., 2006
9	C. porosus	504	a	TL	v	IAPE	MIR	Ver	Lessa & Santana, 1998
10	Dasyatis pastinaca	49	a	TL	ov	IAPE	MIR	Ver	Ismen, 2003
11	Dipturus chilensis	400	a	TL	0	IAPE	MIR	Ver	Licandeo et al., 2006*
12	Etmopterus pusillus	523	a	TL	ov	IAPE, CV	MIR	Sp	Coelho & Erzini, 2007
13	Etmopterus spinax	733	a	TL	ov	IAPE, CV	MIR	Sp	Coelho & Erzini, 2008
14	Galeocerdo cuvier	90	a	PCL	v	IAPE	MIR	Ver	Wintner & Dudley, 2000*
15	Isogomphodon oxyrhynchus	105	a	TL	ov	IAPE	MIR	Ver	Lessa et al., 2000*
16	Leucoraja ocellata	209	a	TL	0	IAPE	MIR	Ver	Sulikowski et al., 2003
17	Odontaspis taurus	52	a	TL	v	-	MIR	Ver	Branstetter & Mustck, 1994
18	Raja texana	231	a	TL	0	IAPE	MIR	Ver	Sulikowski et al., 2007*
19	Rhizoprionodon terraenovae	804	a	PCL	v	IAPE	MIR	Ver	Loefer & Sedberry, 2003
20	Sphyrna lewini	307	a	FL	v	IAPE	MIR	Ver	Piercy et al., 2007
21	Mustelus griseus	207	a	TL	v	IAPE	MIR	Ver	Wang & Chen, 1982*
22	Carcharhinus limbatus	92	a	PCL	v	IAPE	MIR	Ver	Wintner & Cliff, 1996
23	Rhinobatos rhinobatos	80	a	TL	0	IAPE	MIR	Ver	Ismen et al., 2007
24	Galeorhinus galeus	395	b	TL	ov	IAPE	MIR	Ver	Moulton et al.,1992*
25	M. antarcticus	516	b	TL	ov	IAPE	MIR	Ver	Moulton et al.,1992*
26	Raja batis	81	b	TL	0	IAPE	MIR	Ver	Du Buit, 1977*
27	R. naevus	48	b	TL	0	IAPE	MIR	Ver	Du Buit, 1977
28	R. erinaceian	777	b	TL	0	IAPE	MIR	Ver	Waring, 1984*
29	R. undulata	182	b	TL	0	-	MIR	Ver	Coelho & Erzini, 2002
30	Carcharhinus signatus	317	b	TL	v	IAPE	MIR	Ver	Santana & Lessa, 2004*
31	Alopias pelagicus	269	c	PCL	v	-	MIR	Ver	Liu et al., 1999*
32	D. kwangtungensis	394	с	TL	0	-	MIR	Ver	Joung et al., 2015*
33	P. glauca	431	с	TL	v	IAPE	MIR	Ver	Huang, 2006*
34	Okamejei acutispina	329	с	DW	0	-	MIR	Ver	Joung et al., 2011
35	Chiloscyllium plagiosum	429	с	TL	0	IAPE, PA	MIR	Ver	Chen et al., 2007
36	C. obscurus	387	с	TL	v	-	MIR	Ver	Joung et al., 2015*
37	Rhincodon typus	84	с	TL	ov	-	MIR	Ver	Hsu,2009

767

768 "a" : sample simulation, "b" : age-length-key, "c" : original data, "Ver" : vertebrae,

769 "Sp": spines, * : no L₀, "R": reproduction strategy, "o": oviparity, "v": viviparity,

NOT PEER-REVIEWED

- 770 "ov" : aplacental viviparity, "CV" : coefficient of variation, "PA" : percent agreement,
- 771 "IAPE": index of average percentage error, "MIR": marginal increment ratio
- analysis.

Table 2

A list of elasmobranches used in the present study

776

Order	Family	Scientific name	Common name		
Orectolobiformes	Hemiscylliidae	Chiloscyllium plagiosum	Whitespotted Bamboo Shark		
	Rhincodontidae	Rhincodon typus	Whale shark		
Lamniformes	Odontaspididae	Odontaspis taurus	Sand tiger shark		
	Alopiidae	Alopias pelagicus	Pelagic thresher shark		
Carcharhiniformes	Triakidae	Galeorhinus galeus	School shark		
		Mustelus antarcticus	Gummy shark		
		M. griseus	Smooth dogfish		
	Carcharhinidae	Carcharhinus acronotus	Blacknose shark		
		C. brevipinna	Spinner shark		
		C. falciformis	Silky shark		
		C. isodon	Finetooth shark		
		C. leucas	Bull Shark		
		C. limbatus	Blacktip shark		
		C. longimanus	Oceanic whitetip shark		
		C. obscurus	Dusky shark		
		C. plumbeus	Sandbar shark		
		C. porosus	Smalltail shark		
		C. signatus	Night shark		
		Galeocerdo cuvier	Tiger shark		
		Isogomphodon			
		oxyrhynchus	Daggernose shark		
		Prionace glauca	Blue shark		
		Rhizoprionodon			
		terraenovae	Atlantic sharpnose shark		
	Sphyrnidae	Sphyrna lewini	Scalloped hammerhead sharl		
Equaliformes Etmopteridae Rajiformes Rhinobatidae	Etmopterus pusillus	Smooth lantern shark			
		E. spinax	Deepwater lantern shark		
Rajiformes	Rhinobatidae	Rhinobatos rhinobatos	Common guitarfish		
	Rajidae	Amblyraja radiata	Thorny skate		
		Leucoraja ocellata	Winter skate		
		Raja batis	Blue skate		
		R. erinaceian	Little skate		
		D. kwangtungensis	Kwangtung skate		
		R. naevus	Cuckoo ray		
		R. texana	Roundel skate		
		R. undulata	Undulate ray		
		Okamejei acutispina	Sharpspine skate		
Myliobatiformes	Dasyatidae	Dasyatis pastinaca	Common stingray		

⁷⁷⁷

778

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1539/v1 | CC-BY 4.0 Open Access | rec: 30 Nov 2015, publ: 30 Nov 2015

Peer Preprints

779 Table 3

780 Growth parameters of the species best fitted by VBGM. Parenthese indiccate

standard errors.

Scientific name	Common name	\mathbf{L}_{∞}	(cm)	k	(yr ⁻¹)	t ₀	
Galeocerdo cuvier	Tiger shark	364.3	(48.62)	0.1181	(0.0360)	-2.300	(0.6808)
Raja texana	Roundel skate	66.8	(4.84)	0.1944	(0.0449)	-1.071	(0.5341)
Raja batis	Blue skate	47.6	(8.31)	0.0240	(0.0055)	-2.502	(0.3027)
Carcharhinus signatus	Night shark	303.9	(23.12)	0.0746	(0.0132)	-4.947	(0.6565)
Alopias pelagicus	Pelagic thresher shark	189.5	(7.25)	0.1001	(0.0152)	-6.469	(0.9374)
Prionace glauca	Blue shark	355.8	(7.84)	0.1328	(0.0081)	-1.522	(0.1819)

782 L_{∞} : asymptotic length, k: growth coefficient, t₀: theoretical age at zero length.

Table 4

785 Growth parameters of the species best fitted by the two-parameter VBGM.

786 Parenthese indiccate standard errors.

Scientific name Common name		\mathbf{L}_{∞}	(cm)	k	(yr ⁻¹)	L_0
Carcharhinus falciformis	Silky shark	315.2	(10.16)	0.0732	(0.0035)	56.1
Carcharhinus isodon	Finetooth shark	144.46	(31.25)	0.3015	(0.0221)	64.2
Carcharhinus leucas	Bull shark	255.9	(4.61)	0.1407	(0.0099)	47.0
Carcharhinus longimanus	Oceanic whitetip shark	271.2	(13.80)	0.1114	(0.0124)	82.0
Carcharhinus plumbeus	Sandbar shark	160.2	(4.41)	0.0815	(0.0057)	52.1
Etmopterus pusillus	pusillus Smooth lantern shark		(0.69)	0.1365	(0.0043)	16.3
Odontaspis Taurus	Sand tiger shark	299.5	(9.79)	0.1782	(0.0161)	100.0
Rhizoprionodon terraenovae	Atlantic sharpnose shark	74.9	(4.41)	0.5815	(0.0210)	32.1
Sphyrna lewini	Scalloped hammerhead shark	219.9	(4.11)	0.1198	(0.0063)	41.1
Carcharhinus limbatus	Blacktip shark	193.6	(7.01)	0.2084	(0.0206)	41.0
Rhinobatos rhinobatos	Common guitarfish	153.6	(29.39)	0.2058	(0.0636)	31.0
Mustelus antarcticus	Gummy shark	206.2	(11.22)	0.0715	(0.0070)	63.7
Raja naevus	Cuckoo ray	95.1	(6.02)	0.0996	(0.0112)	14.5
Raja undulata	Undulate ray	110.1	(4.25)	0.1049	(0.0074)	21.6
Chiloscyllium plagiosum	Whitespotted bamboo shark	106.3	(4.57)	0.1721	(0.0131)	15.0
Rhincodon typus	Whale shark	158.0	(30.49)	0.0197	(0.0048)	57.9

787 L_{∞} : asymptotic length, k: growth coefficient, L_0 : size at birth.

789 Table **5**

Growth parameters of the species best fitted by the Robertson model. Parenthese

791	indiccate standard errors.	

Scientific name	Common name	\mathbf{L}_{∞}	(cm)	k _r	(yr ⁻¹)	c _r	
Amblyraja radiate	Thorny skate	110.2	(1.96)	0.2664	(0.0113)	1.521	(0.0418)
Carcharhinus acronotus	Blacknose shark	104.8	(4.13)	0.6302	(0.0917)	0.764	(0.0926)
Carcharhinus brevipinna	Spinner shark	188.4	(4.70)	0.2415	(0.0122)	0.735	(0.0607)
Carcharhinus porosus	Smalltail shark	98.9	(1.54)	0.3113	(0.0105)	0.706	(0.0317)
Dasyatis pastinaca	Common stingray	93.4	(3.50)	0.3158	(0.0171)	1.272	(0.0880)
Etmopterus spinax	Deepwater lantern shark	42.3	(0.58)	0.3730	(0.0097)	0.885	(0.0314)
Isogomphodon oxyrhynchus	Daggernose shark	151.2	(5.22)	0.2803	(0.0242)	0.664	(0.0638)
Mustelus griseus	Smooth dogfish	90.4	(2.13)	0.3518	(0.0248)	0.699	(0.0406)
Galeorhinus galeus	School shark	159.8	(3.26)	0.2567	(0.0201)	0.579	(0.0389)
Raja erinaceian	Little skate	49.5	(0.35)	0.6665	(0.0215)	0.930	(0.0211)
Okamejei acutispina	Sharpspine skate	31.7	(1.00)	0.3343	(0.0301)	1.290	(0.0615)
Carcharhinus obscurus	dusky shark	362.9	(8.56)	0.1306	(0.0079)	0.911	(0.0462)

792 L_{∞} : asymptotic length, k_r: growth coefficient of Robertson model, c_r: Roberson

793 parameter.

795 Table **6**

796 Growth parameters of the species best fitted by the Gompertz model. Parenthese

797 indiccate standard errors.

Scientific name	Common name	\mathbf{L}_{∞}	(cm)	\mathbf{k}_{g}	(yr ⁻¹)	Cg	
Dipturus chilensis	Yellownose skate	113.9	(2.12)	0.1915	(0.0136)	0.581	(0.0336)
Leucoraja ocellata	Winter skate	102.1	(1.61)	0.1531	(0.0048)	0.592	(0.0162)
Dipturus kwangtungensis	Kwangtung skate	96.7	(16.18)	0.1138	(0.0195)	0.621	(0.1729)

798 L_{∞} : asymptotic length, kg: growth coefficient of Gompertz model, cg: Gompertz

799 parameter.

Peer Preprints

801 Table **7**

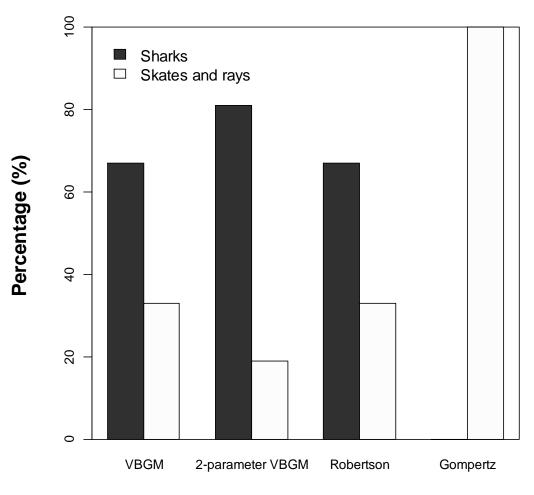
```
802 The parameters of maturity and reproduction of elasmobranches in each best model
```

803

Scientific name	Model	\mathbf{L}_{mat}	L_{mat}/L_{∞}	f	R _c	f/R _c	References
Alopias pelagicus	V	287.00	0.78	2.00	1.00	2.00	Liu et al., 1999
C. brevipinna	R	222.50	0.83	8.50	2.00	4.25	Carlson & Baremore, 2005
C. limbatus	V_2	212.37	0.81	8.00	2.00	4.00	Wintner & Cliff, 1996
Dasyatis pastinaca	R	46.00	0.49	5.50	1.00*	5.50	Ismen, 2003
Okamejei acutispina	R	26.23	0.56	9.00	1.00*	9.00	Joung et al., 2011
Raja batis	V	130.75	0.50	40.00	1.00*	40.00	Du Buit, 1977
R. naevus	\mathbf{V}_2	47.00	0.62	102.00	1.00	102.00	Du Buit, 1977

804

805 V: VBGM, V₂: two-parameter VBGM, R: Robertson model, G: Gompertz


806 model, L_{mat} : size at maturity, L_{mat}/L_{∞} : ratio of size at maturity and

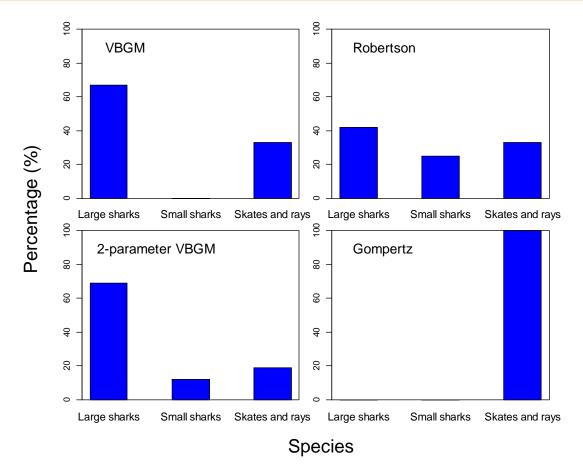
807 asymptotic length, f: fecundity, R_c: reproductive cycle, f/R_c: annual

808 fecundity.*: Reproductive cycle is assumed to be 1 year

810 Figure legend

- 811 Fig 1
- 812 The percentage of four growth models being selected as the best model, categorized
- 813 by sharks, skates and rays.
- 814 Fig 2
- 815 The percentage of large sharks, small sharks and skates and rays in each best fit
- 816 growth model.
- 817 Fig 3
- 818 The percentage of best growth model for each group.
- 819 Fig 4
- 820 The relationship between asymptotic length estimated from each growth model and
- 821 averaged asymptotic length.
- 822 Fig 5
- 823 The second-best choice for each best growth model.
- 824 Fig 6
- 825 The percentage of reproduction types for each best growth model.
- 826 Fig 7
- 827 The flow chart of selecting the best growth model for elasmobranches.
- 828

Growth models

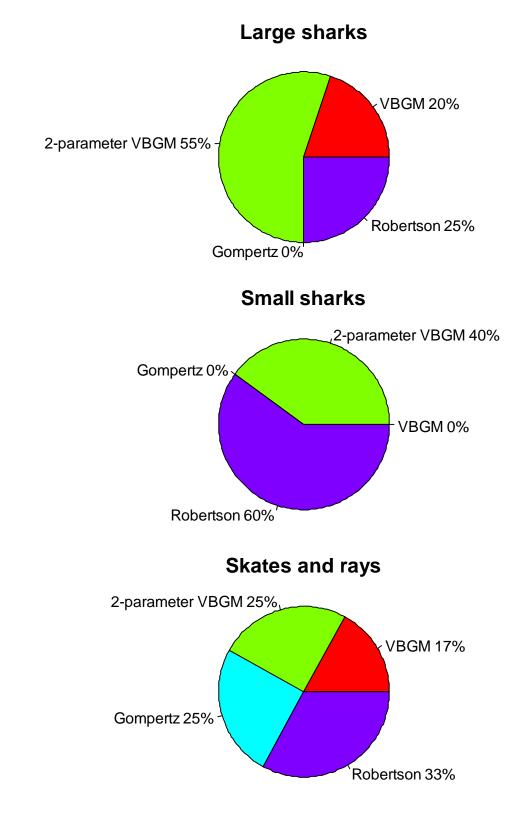

Figure 1 The percentage of four growth models being selected as the best model,

831 categorized by sharks, skates and rays.

832

829

NOT PEER-REVIEWED



834

Figure 2 The percentage of large sharks, small sharks and skates and rays in each best

fit growth model.

838

839 Figure 3 The percentage of best growth model for each group.

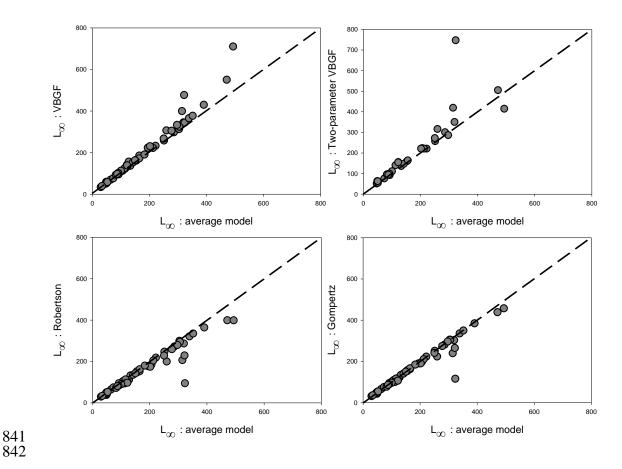
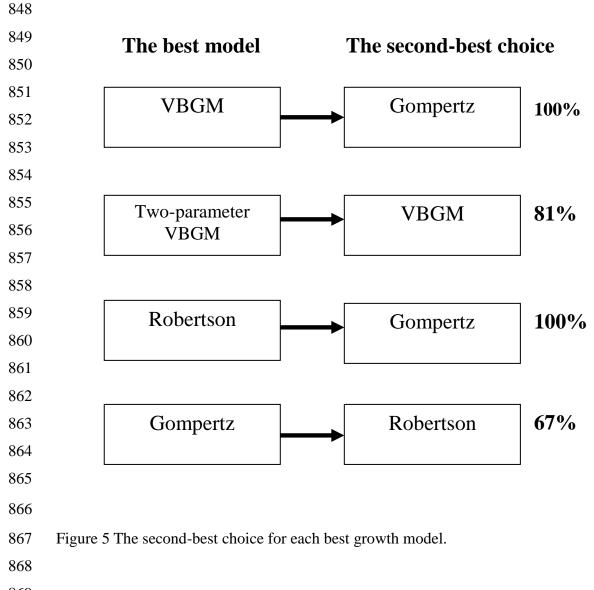
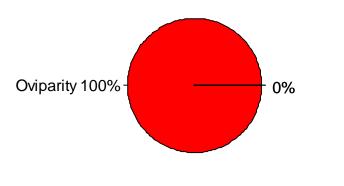
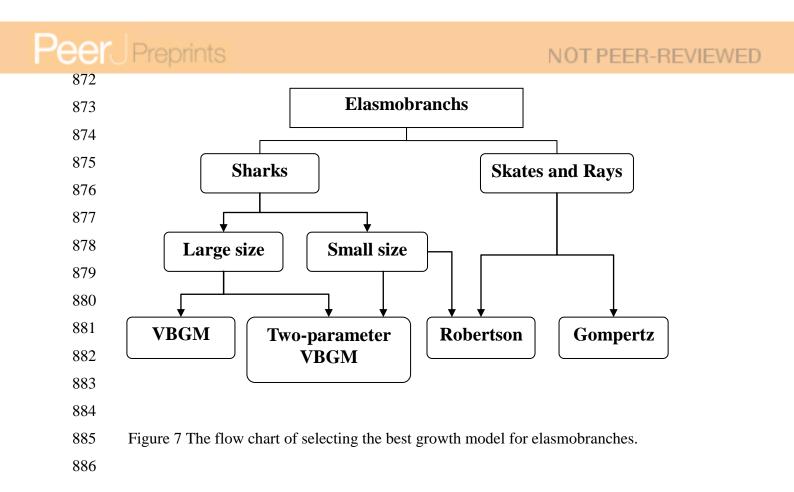



Figure 4 The relationship between asymptotic length estimated from each growthmodel and averaged asymptotic length.


845


Peer Preprints

Peer Preprints NOT PEER-REVIEWED VBGM Oviparity 33% Aplacental viviaprity 0% Viviparity 67% 2-parameter VBGM Oviparity 25% Viviparity 56% Aplacental viviaprity 19% Robertson Oviparity 25% Viviparity 42% Aplacental viviaprity 33%

Gompertz

- 870
- Figure 6 The percentage of reproduction types for each best growth model.

