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The present contribution reports direct numerical simulations of pulsatile flow through a 75% ec-
centric stenosis using the Lattice Boltzmann Method (LBM). The stenosis was previously studied
by Varghese, Frankel, and Fischer 1 in a benchmark computation, and the goal of this work is to
evaluate the LBM and the solver Musubi for transitional flows in anatomically realistic geometries.
A part of the study compares the LBM simulation results against the benchmark and evaluates the
efficacy of most basic LBM scheme for simulation of such flows. The novelty lies in the computation
of Kolmogorov micro-scales by performing simulations that consist of up to ∼ 700× 106 cells. Rec-
ommendations on the choice of spatial and temporal resolutions for simulation of transitional flows
in complex geometries naturally arise from the results.
The LBM results show an excellent agreement with the previously published results thereby

validating the method and the solver Musubi for the simulation of transitional flows. The study
suggests that with a prudent calibration of the parameters, the LB method, due to its simplicity
and compute efficiency has advantages for the simulation of such flows.

I. INTRODUCTION9

Direct numerical simulation (DNS) is a way of10

numerically simulating flow in arbitrary geometries11

by resolving all the temporal and spatial scales that12

might appear in a transitional or a turbulent flow.13

Consequently this technique requires very high spa-14

tial and temporal resolutions and more compute15

power. Spectral methods and classical computa-16

tional fluid dynamic (CFD) techniques like finite17

element method (FEM) and finite volume method18

(FVM) have been commonly employed for the sim-19

ulation of flows. Spectral methods indeed are the20

most well established technique for the simulation21

of transitional incompressible flows as they allow for22

an increase in effective resolution with ease. In com-23

plex anatomical geometries however, which are the24

main goal of this and related work2 are still difficult25

to be computed using spectral methods.26

a)Electronic mail: kartik.jain@uni-siegen.de

The Lattice Boltzmann Method (LBM) is an al-27

ternative technique for the simulation of low Mach28

number incompressible flows3–6. Although well es-29

tablished, due to its novelty the LBM results are30

sometimes met with skepticism, much of which is31

attributed to its indirect nature i.e. the method con-32

verges to the incompressible Navier-Stokes equations33

under the continuum limits of low Mach and Knud-34

sen numbers4,7 instead of a direct discretization of35

the Navier-Stokes equations. A question then ma-36

terializes if DNS from such an indirect method is37

indeed direct. A comparison of LBM with spectral38

methods by Succi, Benzi, and Higuera 3 suggested39

excellent agreement between the two methods al-40

though not much work has been done in this di-41

rection after that. A reliable computation of transi-42

tional flow with LBM requires an effective tuning of43

the so called lattice parameters, as the errors in LBM44

that scale with the order of squared Mach number45

(Ma2) can lead to unassuring results8. The excellent46

compute efficiency of the LBM algorithm however47

makes it a promising method for simulation of tran-48

sitional flows in complex geometries at large scale49
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with the advent of modern supercomputers.50

The LBM solver Musubi9–11 was specifically de-51

signed for high performance computing architectures52

to address large scale problems, and it scales on all53

the federal compute resources of Germany namely54

Juqueen, SuperMUC and the Hazel Hen. Musubi55

solver, even though is verified and validated thor-56

oughly9,10,12 for laminar and turbulent flows, a thor-57

ough validation has not been done for transitional58

and pulsating flows1. Swayed by the need for val-59

idation, and in support of its extensive use in on-60

going research efforts for the simulation of transi-61

tional physiological flows2,13, this work re-simulates62

the pulsatile flow through the eccentric stenosis that63

was previously studied in1,14.64

Since the emphasis is on the LBM, I will partic-65

ularly focus on the role of parameters like the re-66

laxation scheme of LBM, and space and time res-67

olutions in reproducing results of previous DNS re-68

ported in1. To assess the quality of DNS, I will com-69

pute and quantify the Kolmogorov length and time70

scales, and will discuss the conditions under which71

going down to these scales might benefit the engineer72

while simulating physiological flows. The results73

show an excellent agreement with Varghese, Frankel,74

and Fischer 1 thereby increasing the confidence on75

the LBM and the solver Musubi for such applica-76

tions. The Kolmogorov micro-scales and the recom-77

mendations that are provided in this work present a78

new state of the art as no computations, of the or-79

der of Kolmogorov micro-scales have been reported80

in literature to the author’s knowledge. The results81

thus have the potential for retrospect in future, and82

for use as means for comparison.83

II. METHODS84

The eccentric stenosis geometry used for this85

study was similar to the models employed in the ex-86

periments of stenotic flow by15,16. The stenosis axis87

was offset by 0.05D, D being the vessel diameter,88

1 Musubi, along with other softwares within the APES frame-
work is available as an open source tool for download under:
https://bitbucket.org/apesteam/musubi

in the eccentric model. The eccentric stenosis ge-89

ometry used for simulations is shown in figure 1(a).90

The offset of 0.05D from the axisymmetric counter-91

part (not studied here) is represented in figure 1(b),92

where the dashed line shows the eccentric case and93

black shows the axisymmetric. The presence of ec-94

centricity here acts as a trigger to transitional flow.95

The pre and post-stenotic regions of the vessel were9697

respectively extended by 3 and 18 vessel diameters98

as measured from the throat of stenosis.99

TheWomersley solution for laminar, pulsatile flow100

through rigid tubes was used as inlet boundary con-101

dition, which is specified as:102

ux

uc
= [1− r2] +A

[
1− J0(i

3/2α2r/D)

J0(i3/2α)

]
sin(ωt),

uy

uc
= 0,

uy

uc
= 0


(1)

where uc is the cycle-averaged centerline inlet veloc-103

ity, A is the amplitude of pulsation, J0 is the Bessel104

function of type 0, ω is the angular frequency of105

pulsation, and α is the non-dimensional Womersley106

parameter (= 1
2D

√
ω/ν, where ν is the kinematic107

viscosity). The Womersley parameter defines the ex-108

tent to which the laminar profile departs from quasi-109

steadiness, an effect that becomes significant when110

α = 3.111

The parameters and normalizations mentioned112

above are chosen to replicate the flow conditions113

of experiments of Ahmed and Giddens 16 and sim-114

ulations of Varghese, Frankel, and Fischer 1 . The115

Reynolds number based on the main vessel diame-116

ter, D, and the mean inlet centerline velocity, uc was117

600 with minima and maxima of 200 and 1000. The118

value of A and α in equation 1 were 0.667 and 7.5119

respectively. The velocity waveform at the inlet was120

sinusoidal and recordings were made in intervals of121

T/6 where T is the period of pulsation (depicted in122

figure 2).123124
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(a)stenosis geometry

(b)offset from the symmetric stenosis that introduces eccentricity

FIG. 1: The eccentric geometry of stenosis used in the study. Lower part of the figure shows front and side views of the stenosis where
solid line denotes the axisymmetric model and dashed line denotes the eccentric case. x is the streamwise direction and y and z are

cross-stream directions.

FIG. 2: Axial centerline velocity at the vessel inlet. The
measurements were made at 6 time points in the sinusoidal cycle

that are indicated in the plot.

Direct Numerical Simulations125

The simulation tool chain is contained in the end-126

to-end parallel framework APES (adaptable poly en-127

gineering simulator)11,17. Meshes were created using128

δx δt #Cells diameter #Cells throat #Cells

LR 64 30× 10−6 156 40 ∼ 83× 106

HR 32 7.5× 10−6 312 80 ∼ 680× 106

TABLE I: The spatial and temporal discretization of eccentric
stenosis. The space and time have been non-dimensionalized,
and of relevance here is the number of cells along the diameter

and stenotic throat.

the mesh generator Seeder18. I have used the single129

relaxation scheme Bhatnagar-Gross-Krook (BGK)130

out of the various LBM relaxation schemes imple-131

mented in Musubi as BGK is the simplest (and132

most efficient) relaxation scheme of the LBM algo-133

rithm. I performed two sets of simulations – one134

with moderate/low resolutions (LR) and one with135

extremely high resolutions (HR), down to the Kol-136

mogorov microscales. The resulting parameters are137138

listed in table I. The space and time have been non-139

dimensionalized for the simulation, and of interest140

here are the number of lattice cells along the diam-141

eter of the main channel and that along the throat142
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of the stenosis. The time step is coupled with the143

grid spacing in LBM as δt ∼ δx2, which reflects the144

diffusive time scaling necessary to recover the in-145

compressible Navier-Stokes equation from the Lat-146

tice Boltzmann Equation4. The BGK relaxation pa-147

rameter was set to Ω = 1.94 in the present study148

that keeps the lattice Mach number within the sta-149

bility limits of the LBM7,8. The vessel walls were as-150

sumed to be rigid and a no-slip boundary condition,151

described by a bounce-back rule in LBM was pre-152

scribed. The implementation of this boundary con-153

dition ensures stability and provides reasonable ac-154

curacy. While other accurate implementations of no-155

slip wall approximation could have been employed19,156

this particular boundary condition was chosen to157

maintain the principle intention of this study i.e.158

employment of off the shelf schemes of the LBM to159

assess its suitability in such simulations. The D3Q19160

stencil of the LBM algorithm was employed which161

means 19 discrete velocity directions per fluid cell,162

or 19 degrees of freedom. Stencils with larger num-163

ber of degrees of freedom can be employed but it has164

previously been suggested that the gain in accuracy165

for low Re flows is not appreciable compared to the166

cost of memory and computation20. At the outlets,167

zero pressure was prescribed which is described by168

a high-order extrapolation scheme within the LBM169

algorithm21.170

LR and HR computations were executed using171

1000 and 9600 cores respectively of the Hazel Hen172

supercomputer installed at the High Performance173

Computing center in Stuttgart, Germany. The174

Hazel Hen contains a total of 185 088 cores of In-175

tel(R) Xeon(R) CPU E5-2680 v3 (30M Cache, 2.50176

GHz). Hazel Hen is one of the main federal com-177

pute resources in Germany and is ranked at number178

8 in the current listing of top supercomputers2. A179

detailed account of the performance and scalability180

of Musubi can be found elsewhere9,11. Computation181

of each cycle required ∼ 36 minutes for LR simu-182

lations and ∼ 32 minutes for the HR simulations.183

The compute time mentioned here seems remark-184

ably efficient, but is not comparable with Varghese,185

Frankel, and Fischer 1 as those computations were186

2 http://top500.org

done in 2007 using a completely different architec-187

ture and CPUs, and a comparison of computational188

efficiency is not the intention of this study.189

Flow analysis190

The analysis of a turbulent or transitional flow
follows the statistical principles as statistics, due to
the chaotic behavior of the flow are the only repro-
ducible quantities22,23. A total of n = 22 (where
initial 2 cycles are discarded from analysis) cycles
were computed from both LR and HR simulations
and were ensemble averaged for analysis. The en-
semble average over n cycles is defined as:

u(x, t) =
1

n

n−1∑
k=0

u(x, t+ kT ) (2)

where u(x, t) is the instantaneous point wise veloc-
ity field, x denotes the spatial coordinates, t is the
time and T is the period of cycle. The instantaneous
three-dimensional velocity field was decomposed into
a mean and a fluctuating part using Reynolds’ de-
composition i.e.

ui(x, t) = ūi(x) + u′
i(x, t) (3)

The Turbulent Kinetic Energy (TKE) is derived
from the fluctuating components of the velocity in 3
directions as:

k =
1

2

(
u′2
x + u′2

y + u′2
z

)
(4)

A power spectral density of the TKE, computed us-191

ing Fourier transforms provides information about192

the frequency components present in the flow, and193

can be related to the Kolmogorov energy decay.194

The Q-criterion195

The Q-criterion was preferred in the present study
for the visualization of coherent flow structures as it
shares properties with both the vorticity and pres-
sure criterion24. The Q-criterion is the second invari-
ant of the velocity gradient tensor ∇u, and reads:

Q =
1

2
(ΩijΩij − SijSij) (5)
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where

Ωij =
1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
(6)

and

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(7)

are respectively the anti-symmetric and symmetric196

components of ∇u.197

The Q-criterion can be physically viewed as the
balance between the rotation rate Ω2 = ΩijΩij and
the strain rate S2 = SijSij . Positive Q isosurfaces
confine the areas where the strength of rotation over-
comes the strain - making those surfaces eligible
as vortex envelopes. Several interpretations of Q-
criterion have been proposed, see for example Robin-
son 25 which recasts Q in a form which relates to the
vorticity modulus ω:

Q =
1

4
(ω2 − 2SijSij). (8)

This implies that the Q is expected to remain pos-198

itive in the core of the vortex as vorticity increases199

as the center of the vortex is approached.200

DNS quality assessment with Kolmogorov microscales201

The smallest structures that can exist in a turbu-
lent flow are based on Kolmogorov’s theory22. Vis-
cosity dominates and the TKE is dissipated into
heat at the Kolmogorov scale22. The Kolmogorov
microscales are generally described in terms of the
rate of dissipation due to the turbulent kinetic en-
ergy, which results in equations containing 4th or-
der terms22,23. The Kolmogorov scales, for simplic-
ity, can also be computed in terms of local friction
velocity u∗ =

√
ν||s|| where sij is the fluctuating

component of strain rate defined as:

sij =
1

2

(
∂u′

i

∂xj
+

∂u′
j

∂xi

)
(9)

and ν is the kinematic viscosity. As the physi-
cal quantities have been non-dimensionalized for the

present study, the viscosity ν used for the computa-
tion of Kolmogorov micro-scales is the lattice viscos-
ity that is formulated on the basis of BGK relaxation
parameter Ω as:

ν =
1

3

(
1

Ω
− 1

2

)
(10)

The Kolmogorov length, time and velocity scales
are then respectively estimated as:

η ≡ ν/u∗ (11)

τη ≡ ν/u2
∗ (12)

uη ≡ u∗ (13)

Based on these scales, the quality of the spatial
and temporal resolution of a simulation is estimated
by computing the ratio of δx and δt against corre-
sponding Kolmogorov scales i.e.

l+ =
u∗δx

ν
. (14)

t+ =
u2
∗δt

ν
. (15)

Ideally these ratios should be ∼ 1 but in practice it202

has been observed that a l+ of the order of O(10)203

is usually enough for the simulation of moderate204

Reynolds’ numbers transitional flows26.205

III. RESULTS206

Figure 3(a) and 3(b) depict the axial centerline207

velocities over the last n = 6 cycles obtained from208

LR and HR simulations respectively. Ensemble av-209

eraged counterparts for n = 20 cycles are shown in210

figure 4(a) and 4(b). Whereas the main flow cap-211

tured by LR and HR simulations is similar, high212

resolutions seem to capture larger fluctuations par-213

ticularly in post-stenotic regions (x=3-5D), and the214

differences between LR and HR are mostly visible in215

time periods when the flow starts to decelerate (time216
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(a)LR

(b)HR

FIG. 3: Temporal evolution of the normalized centerline axial velocity, u/uc over the last 6 cycles out of total 20 that were simulated,
as a function of axial distance through stenosis, shown for LR and HR simulations.
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(a)LR (b)HR

FIG. 4: Normalized centerline axial velocity ensemble averaged for n = 20 cycles shown for LR and HR simulations.

(a)P3 (b)P7 (c)P8

FIG. 5: Ensemble averages at axial centerline locations x = 3, 7&8D to magnify the fluctuations during deceleration and the
re-laminarization of flow during acceleration.
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(b)P1

(d)P2

(f)P3

(h)P4

(j)P5

(l)P6

FIG. 6: Sequence of ensemble-averaged axial velocity profiles,
⟨u⟩ /uc at observation points P1-P6 (top down) in the x-z plane.
The top row of each point depicts computations from Musubi

followed by the corresponding image from the benchmark
computations from NEK5000.

instants P2 to P4). This observation would charac-217

terize LR setup as converged, though as would be218

seen in the turbulent characteristics, some intricate219

features might be suppressed by low resolutions.220

The ensemble averaged quantities look largely221

similar for LR and HR simulations as the minute222

dynamics that were captured by HR are smeared223

out upon averaging. Subtle differences remain in the224

post-stenotic regions due to higher gradients in these225

regions. The remainder of the text would thus em-226

ploy LR simulation results when ensemble averaged227

quantities are discussed and HR will be talked about228

only when instantaneous quantities are of interest.229

(b)P1

(d)P2

(f)P3

(h)P4

(j)P5

(l)P6

FIG. 7: Sequence of ensemble-averaged axial velocity profiles,
⟨u⟩ /uc at observation points P1-P6 (top down) in the x-y

plane. The top row of each point depicts computations from
Musubi followed by the corresponding image from the

benchmark computations from NEK5000.

Figure 5 shows the ensemble average at axial cen-230

terline locations x = 3, 7 & 8D from fig. 4(a) to high-231

light the loss of coherence patterns in the flow dur-232

ing deceleration phases, and the re-laminarization233

of the flow during acceleration. The stabilization of234

the flow in late-acceleration phases is location de-235

pendent, as the fluctuations seem to reduce beyond236

x > 7D. The regions between x = 4D and x = 6D237

represent highly chaotic behavior and larger cycle-238

to-cycle variations whereas the flow starts to become239

laminar in regions far-off from the stenosis throat.240

Figure 6 and 7 respectively show the upstream ve-241

locity field in xz and xy axial bisecting planes. The242

velocity is ensemble averaged for n=20 cycles after243
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2 initial cycles that have been discarded from anal-244

ysis. Corresponding plots from Varghese, Frankel,245

and Fischer 1 are also shown below each plot com-246

puted from Musubi for a direct visual comparison.247

An overall agreement is portrayed by this figure and248

the noticeable differences are highlighted under or-249

ange circles, and details are discussed in section IV.250

Turbulent Characteristics of the Flow251

Figure 8 shows the frequency spectra of the tur-252

bulent kinetic energy computed from centerline ax-253

ial velocity at varying distance from the stenosis254

throat from LR simulations whereas figure 9 shows255

the same from HR simulations. The fluctuations256257258

are higher at locations x=3-6D and the flow starts259

to re-laminarize beyond x=9D – an observation that260

is consistent with the instantaneous and ensemble261

averaged velocity fields. The spectra at these loca-262

tions indicate a large number of frequencies in the263

inertial subrange. The viscosity starts to dominate264

at frequencies of ∼ 104 Hz up to x=7D. At locations265

x > 10D, flow can be considered largely laminar as266

the PSD is mostly below 10−10 for frequencies more267

than 103 Hz.268

Comparison of the power spectrum plots from269

LR and HR simulations reveals a generic pattern270

whereby higher frequencies are detected by HR sim-271

ulations due to small δt. The qualitative patterns are272

similar for both resolutions and as discussed later,273

the choice of resolutions is generally case dependent.274

Vortex structures275

Figure 10 and 11 show the ensemble averaged vor-276

ticity magnitude across the xz and xy planes respec-277

tively from LR simulations. The main patterns look278

similar to Varghese, Frankel, and Fischer 1 , though279

LBM has detected some miniature vortices due to280

higher spatial and temporal magnitudes. It may be281

explicitly mentioned that the ensemble average for282

n = 3 cycles only is taken to educe the vortices,283

which would otherwise be smeared out if ensem-284

ble average over larger number of cycles are taken.285

When ensemble average for larger number of cycles286

is taken, the vortices are expected to die away and287

mimic Varghese, Frankel, and Fischer 1 more closely,288

as due to cycle-to-cycle variations, the location of289

vortices rapidly changes from one cycle to another.290

The eduction of instantaneous miniature vortices is291

in fact an important feature of DNS and is represen-292

tative of the excellent control of numerical viscosity293

in LBM algorithm3,13.294295

Figure 12 shows the vortex structures at 4 obser-296

vation points during the 22nd cycle for LR simula-297

tions. The vortices are educed by the Q-criterion298

discussed in subsection II. The vortices begin to die299

during P5 and P6 due to re-laminarization of flow300

and are thus not shown in this figure. It is par-301

ticularly interesting to observe that the majority of302

vortices lie along x > 4D where the flow transits to303

main-stream turbulence, and was also reminiscent in304

the PSD plots. Some detached vortices are attached305

along the stenosis throat which is a consequence of306

higher strain along this region.307

A mentionable aspect of this study is the cycle-to-308

cycle variations in the flow. As a result of transition309

to turbulence, the characteristics of flow vary from310

one cycle to another, and one cycle is not super-311

imposable to another as would be expected, for ex-312

ample in a laminar flow. This aspect is highlighed313

in figure 13 which shows the centerline velocity at314

x = 3D over 10 cycles as thin lines in the back-315

ground. The black-line depicts the ensemble average316

over the 10 cycles and the dotted black lines rep-317

resent standard deviation (±σ). It is immediately318

observed that all the lines overlap with each other319

during acceleration of the flow as a result of accel-320

eration induced re-laminarization whereas there are321

large deviations when the flow transitions during de-322

celeration phase, and it continues up to the complete323

deceleration before re-laminarizing by acceleration.324

Kolmogorov microscales325

Table II lists the l+ and t+ for LR and HR simu-326

lations. The ration are computed at the observation327

point P2 along x=4D during the 20th cycle as the328

fluctuation in strain rate was maximal at this loca-329

tion during P2, which implies maximum dissipation330

during the whole simulation. The employed resolu-331
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FIG. 8: Energy spectra of the turbulent kinetic energy computed at the centerline from LR simulations. The locations represent
distance in diameters from the stenosis.

δx δt l+ t+

LR 64 30× 10−6 2.67 0.84

HR 32 7.5× 10−6 1.10 0.53

TABLE II: The ratio of spatio-temporal scales (l+, t+) in the
simulation and the Kolmogorov microscales for different

resolutions.

tions are ample to resolve the rapidly varying struc-332

tures expected in a turbulent flow26. Whereas the δx333

of LR is ∼ 3 times of the Kolmogorov length scale,334

in a minor transitional flow in relatively less com-335

plex geometry like the presented stenosis, it should336

be enough for simulations as is also evident from the337

results.338

IV. DISCUSSION339

Analysis of the flow340

Main things to observe (and to compare341

against Varghese, Frankel, and Fischer 1) from the342

flow patterns of figure 6 and 7 were flow direction,343

peaks and nadirs as well as zones of flow reversal or344

recirculation. The flow field in the x-z plane exhib-345

ited satisfactory agreement with Varghese, Frankel,346

and Fischer 1 . The velocity was elevated at the347

throat of the stenosis, remained high in post-stenotic348

regions before becoming nearly constant near the349

end regions of the channel (x > 11D).350

Similar agreement was seen for the x-y plane –351

though there were a few locations of disparity. For352

example, the post stenotic field at P2 (x=4) looked353

very different from Varghese, Frankel, and Fischer 1354

(highlighted in orange circles). At P4, even the di-355

rection of flow disagreed at x=3 and x=4, which is356
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FIG. 9: Energy spectra of the turbulent kinetic energy computed at the centerline from HR simulations. The locations represent
distance in diameters from the stenosis.

very surprising especially after an excellent agree-357

ment that was seen for x-z plane. The exact reason358

for this mismatch cannot be stated but it can be at-359

tributed to the different solution algorithms where360

minor differences are obvious. It should also be361

kept in mind that this comparison is one of statis-362

tics and involves round-off errors. Moreover, the363

perturbation that might be introduced as a result364

of wall roughness may stay in the flow up to an ar-365

bitrary number of cycles before being washed out366

completely. The boundary layer resolved by LBM367

and Spectral methods can be immensely different368

due to the distinct algorithms, and accuracy of one369

over the other can not be distinctly stated. The370

regions that are up-stream of stenosis, and in its371

vicinity have very high velocity gradients due to the372

onset of transition, and the wall boundary condi-373

tions are expected to influence the results dramat-374

ically. Whats most contenting is that in spite of375

different flow directions in these two locations, the376

flow field re-attained similarity beyond x=5 at all377

the time points, as did the flow field right at the378

stenosis throat.379

Also, the flow fields from Musubi looked exactly380

the same as those from NEK5000 at P6 in the x-381

y plane, which portrays that the discrepancies seen382

during P4 and P5 might have been a result of the loss383

of coherence patterns caused by large decelerative384

forces, which were then overcame by the stabiliza-385

tion resulted by acceleration of flow. It is expected386

that if ensemble averaging over a larger number of387

cycles is done, these effects would wash away and388

the disparities would eventually vanish. That as-389

pect however is not considered important due to the390

convincing agreement in other locations and time391

points, and would perhaps be useful when the sim-392

ulation is actually re-conducted with NEK5000 as393

well.394

Particularly interesting was the similarity in the395

flow patterns during P2 where the velocity of in-396

flow is maximum, and P6 where the flow is in mid-397

acceleration phase after the deceleration. The pres-398
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(a)P1

(b)P2

(c)P3

(d)P4

(e)P5

(f)P6

FIG. 10: Ensemble averaged vorticity magnitude, normalized by
uc/D at the x-z plane. Ensemble averaging is performed for

ONLY n = 3 cycles to observe the intricate vortices which smear
out when larger number of cycles are taken into account.

(a)P1

(b)P2

(c)P3

(d)P4

(e)P5

(f)P6

FIG. 11: Ensemble averaged vorticity magnitude, normalized by
uc/D at the x-y plane. Ensemble averaging is performed for

ONLY n = 3 cycles to observe the intricate vortices which smear
out when larger number of cycles are taken into account.

(a)P1

(b)P2

(c)P3

(d)P4

FIG. 12: Velocity colored Q-isosurfaces (Q=0.4) at the
observation points P1-P4 during the 20th cycle for LR

resolution. The velocity is normalized by uc.

FIG. 13: The axial centerline velocity at x = 3D for 10 different
cycles overlapped over each other as thin lines. The black line

represents the ensemble average over these 10 cycles whereas the
standard deviation (±σ) is depicted by dotted lines.
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ence of higher vortices during P3 than P2 as educed399

by the Q-Criterion (figure 12) appeared surprising400

at a first glance. From figure 2 one would expect401

highest vortices during P2 since it is the point with402

peak velocity. This is a consequence of the large de-403

celerative forces that results in chaotic flow between404

P2 and P3 and creates distinct and larger vortex405

envelopes during P3. This was also observed in vor-406

ticity plots of figure 10 and figure 11.407

The vorticity plots in figure 10 and 11 show some408

minute vortices in post stenotic areas even after en-409

semble averaging (though for only n = 3 cycles).410

The overall vorticity patterns are exactly similar411

to Varghese, Frankel, and Fischer 1 . It can easily412

be seen that if the sharpness of vortices is reduced413

upon ensemble averaging for more cycles, the pat-414

terns will look exactly similar as those in1. This415

prognosis is reminiscent of cycle-to-cycle variations416

that were clearly visible in instantaneous fields of417

figure 3. The initial conditions to any arbitrary cy-418

cle n are fed from the last state of previous cycle419

n − 1, which, in addition to the transitional nature420

of the flow itself makes flow field of each cycle look421

different. This is the reason why ensemble averaging422

is required for the analysis of transitional flows, and423

as discussed in27, the computation of flow quantities424

poses additional challenges in such a flow.425

Role of employed resolutions426

As was seen from figures 3(a) and 3(b), the em-427

ployment of high resolutions, that was directly at428

the order of Kolmogorov length and time scales429

(table II), did not provide much improvement to430

the simulated flow field except for the capture of431

some rapid spatial and temporal scales while educing432

larger cycle-to-cycle variations. The consumption of433

memory and compute time on the other hand be-434

came ∼ 8 times with a higher resolution, though435

the computation was still remarkably fast. An un-436

equivocal remark whether LR indeed is enough for437

simulating transitional flows in general, and transi-438

tional physiological flows in particular can not be439

made because physiological geometries are generally440

extremely complex. It has been shown in our stud-441

ies of transitional aneurysmal flows that the solution442

indeed does change upon refinements when the ge-443

ometry is not a regular conduit but a complex geom-444

etry2,13. Choice of resolutions in fact has been a sub-445

ject of discussion with other numerical techniques as446

well, see for example research on this aspect about447

blood flow in aneurysms28–30 as well as simulation448

of cerebrospinal fluid in the spinal canals31.449

In addition to that, the stenosis geometry stud-450

ied here has one outflow which is perpendicular to451

the incoming flow. Presence of more outlets as well452

as the angle at which the downstream flow attacks453

these outlets is likely to upsurge the resolution re-454

quirements. Moreover, the stenosis may be viewed455

as a controlled distortion in a straight cylindrical456

pipe which is located at only one location in the457

pipe. In anatomically realistic geometries, arbitrary458

distortions can be present at multiple locations. The459

irregularity of such distortions can educe phenom-460

ena like flow separation and hydraulic jumps which461

would require employment of higher resolutions.462

This study did not intend to establish the suitabil-463

ity of one numerical method over other as such a pur-464

suit would require execution of different numerical465

codes on the same machine, and would require that466

the computer science methodologies like optimiza-467

tion techniques, compilation options etc. followed468

in implementation of the said codes are in agree-469

ment. One thing that enforces superiority of spectral470

methods is its ability to increase effective resolution3471

by increasing the polynomial order. Also Varghese,472

Frankel, and Fischer 1 employed higher mesh den-473

sity near the walls and the stenosis throat unlike474

the even mesh employed by me in this study. Lo-475

cal grid refinement9,10 is implemented and validated476

in Musubi framework and an accurate gauge on res-477

olution/memory requirements can be accomplished478

only by exploring those techniques. What seems ob-479

vious at this point is that very low resolutions would480

suffice for an accurate simulation of hydrodynamics481

in the post stenotic regions beyond x > 10D, where482

the flow relaminarized and did not exhibit much spa-483

tial and temporal variations.484

A mentionable aspect of this study in particu-485

lar, and LBM simulated flows in general is the ini-486

tial transients. I had to discard the initial 2 cy-487

cles from the analysis as they contain some spurious488

oscillations before converging to a physically mean-489
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ingful outcome. Also, my specific focus on the re-490

laminarization of flow during acceleration and the491

errors in LBM that scale of the order of Ma2 would492

advocate the role of a proper tuning of the LBM pa-493

rameters, which can lead to specious density fluctua-494

tions in the flow if not well-tuned7,8, and are termed495

as compressibility errors. For these limitations of496

LBM, it has generally been considered unsuitable497

for steady problems and its inherently transient na-498

ture makes it a suited method for time dependent499

flows7,32. I shall not delve into details of the initial500

transients analysis of LBM and other methods, and501

a brief account for that can be found in7,32.502

It may be very well appreciated that the simplest503

off the shelf scheme of LBM reproduced an extremely504

complex flow with appreciable ease and efficiency.505

LB equations using multiple relaxation times (MRT)506

are intended to be more stable than the BGK as507

the additional relaxation times may be adjusted to508

suppress non-hydrodynamic modes that do not ap-509

pear directly in the continuum equations, but may510

contribute to instabilities on the grid scale33. Such511

schemes would ostensibly be useful in more complex512

geometries as discussed above.513

Outlook514

The present work re-validates LBM and the515

Musubi solver particularly for transitional flows.516

The previous benchmark is extended for the LBM,517

Kolmogorov scales are quantified and recommenda-518

tions on the choice of spatial and temporal resolu-519

tions in simulations have emerged from the study,520

which have implications particularly for the simula-521

tion of physiological flows of transitional nature in522

complex anatomical geometries.523

The aspect of the onset of transition in this steno-524

sis in particular has been an aspect of many recent525

studies34,35. The eccentricity in the present steno-526

sis was introduced to trigger turbulent like flow as527

in a symmetric geometry and mesh, a perturbation528

is needed to cause the onset of turbulence14. The529

insights from this study can be used to explore the530

critical Reynolds number for transition in an axisym-531

metric stenosis and the influence of breaking of sym-532

metry on critical Re can be identified with LBM, as533

was done by Samuelsson, Tammisola, and Juniper 34534

using NEK5000.535

Insight into fundamental physiological questions536

would be possible by incorporation of more phys-537

iologically realistic models like for example Non-538

Newtonian blood flow models and moving arterial539

walls. Whereas the Kolmogorov micro-scales are the540

smallest scales for turbulence in a flow – this hypoth-541

esis might not hold for blood36 as the interaction of542

red blood cells (RBC) would obviate formation of543

eddies down to the Kolmogorov micro-scales. LBM544

models that are capable of modeling RBC interac-545

tions37 should be evaluated in Musubi for better in-546

sight into such phenomena.547

A final remark that can be made is that a LBM548

simulation on the same geometry with ∼ 8×106 cells549

was conducted using Musubi on my personal lap-550

top, which completed one cycle in ∼ 26 hours. The551

fluctuations captured were less intense than the pre-552

sented DNS, albeit the qualitatively agreement was553

very good. This suggests that with improving com-554

puter architectures, one might be able to simulate555

such problems on local computers with appreciable556

ease in future.557
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