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The growing number of wildlife endocrinology studies have greatly enhanced our
understanding of comparative endocrinology, and have also generated extensive
longitudinal data for a vast number of species. However, the extensive graphical analysis
required for these longitudinal datasets can be time consuming because there is often a
need to create tens, if not hundreds, of graphs. Furthermore, routine methods for
summarising hormone profiles, such as the iterative baseline approach and area under the
curve (AUC), can be tedious and non-reproducible, especially for large number of
individuals. We developed an R package, hormLong, which provides the basic functions to
perform graphical and numerical analyses routinely used by wildlife endocrinologists. To
encourage its use, hormLong has been developed such that no familiarity with R is
necessary. Here, we provide a brief overview of the functions currently available and
demonstrate their utility with previously published Asian elephant data. We hope that this
package will promote reproducibility and encourage standardization of wildlife hormone
data analysis.
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ABSTRACT

The growing number of wildlife endocrinology studies have greatly enhanced our understanding of
comparative endocrinology, and have also generated extensive longitudinal data for a vast number of
species. However, the extensive graphical analysis required for these longitudinal datasets can be
time consuming because there is often a need to create tens, if not hundreds, of graphs. Furthermore,
routine methods for summarising hormone profiles, such as the iterative baseline approach and area
under the curve (AUC), can be tedious and non-reproducible, especially for large number of
individuals. We developed an R package, hormLong, which provides the basic functions to perform
graphical and numerical analyses routinely used by wildlife endocrinologists. To encourage its use,
hormLong has been developed such that no familiarity with R is necessary. Here, we provide a brief
overview of the functions currently available and demonstrate their utility with previously published
Asian elephant data. We hope that this package will promote reproducibility and encourage
standardization of wildlife hormone data analysis.
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INTRODUCTION

Longitudinal hormone monitoring is routinely used in wildlife endocrinology studies and
provides a unique insight into endocrine physiology that cannot be obtained from single
samples. The amount of longitudinal endocrine data is rapidly increasing due to the
development of new techniques and advances in technology (e.g., non-invasive hormone
monitoring, catheterization techniques, cheaper assays). Consequently, researchers routinely
handle large endocrine datasets with an extensive number of samples. One of the greatest
challenges with these large datasets is efficient and reproducible data analysis. Analysing
longitudinal hormone data generally includes (1) graphical visualization of the data, (2)
identification of peaks, and (3) quantifying the magnitude of the response.

Similar to other time series data (Cowpertwait & Metcalfe 2009; Montgomery et al.
2015), graphical analysis plays an important role in identifying patterns in hormone profiles.
Researchers often monitor dozens of individuals, but create profiles for each individual one-
at-a-time. Furthermore, temporal events (e.g. pregnancy, mating, stressors) are often added
to graphs by hand. This process of creating dozens of graphs, marking events, and updating
each graph separately becomes quite time-consuming. In addition, when multiple hormones
are being monitored, it is useful to overlay hormone profiles in order to explore temporal
correlations. However, this involves restructuring each individual dataset, which takes yet
more time and can introduce error when done by hand.

Another challenge with analysing longitudinal hormone data is being able to distinguish
the signal from the noise. There is a certain amount of inherent variability in any hormone
profile due to both biological (e.g., pulsatile release, variability in steroid metabolism) and
methodological factors (e.g., sampling design, pipetting error, assay variability). One
common approach for identifying meaningful increases (peaks) in longitudinal datasets is the
iterative baseline approach (Brown et al. 1996; Clifton & Steiner 1983). In this approach,
hormone values exceeding the mean + (n * SD) are excluded, where n is the criterion for the
number of standard deviations (SD) used in the calculation. The mean and SD are
recalculated, and this culling processes is repeated until no points exceed the cut-off.
Remaining values are considered “baseline” values and excluded points are considered
“peaks”. The appropriate value of n needs to be adjusted depending on the characteristics of
the dataset (number of samples and amount of variation). Although this approach is really

useful for identifying peaks, it can be tedious to run these iterative calculations for each study
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subject, and this becomes even more cumbersome when calculating and comparing different
values of n.

In addition to detecting presence/absence of peaks (above), it is often desirable to
quantify the magnitude of the response. One approach is to calculate the magnitude of the
peak using either absolute difference (peak minus baseline) or relative increase (ratio of peak
to baseline). A more complicated method is to calculate the area under the curve (AUC,;
(Cockrem & Silverin 2002; Sheriff et al. 2010). An advantage of this technique is that it
incorporates both the magnitude of the peak as well as the duration, which are both
biologically meaningful. Without specialized software, the AUC can be a tedious calculation
and hinders reproducibility.

To facilitate efficient and reproducible data analysis, we developed a user-friendly R
package that provides wildlife endocrinologists with a toolkit for analysing longitudinal
hormone data and requires no prior programming experience. The package includes
functions allowing for exploratory graphical analysis (including mass production of
longitudinal profiles, box plots, and overlaying multiple hormones), iterative baseline
calculation, and AUC calculation. To demonstrate the utility of this package, we analysed a
previously published hormone dataset (Fanson et al. 2014). This study looked at changes in
circulating cortisol across the estrous cycle (i.e., relative to progesterone) in Asian elephants.

We included these data as an example dataset called hormElephant in the package.

DESCRIPTION
(a) Philosophy

The goal of this package is to provide a toolkit that facilitates efficient and reproducible
analysis of longitudinal hormone data commonly used by wildlife endocrinologists. With
that in mind, we created functions that perform routine characterization methods (e.g.
iterative baseline and AUC calculations), as well as a suite of data visualization functions to
facilitate graphical analysis.

To encourage researchers who are less familiar with R to use these functions, we developed
an R-minimal workflow which allows users with no prior R experience to be able to run the
functions. To this end, we created a detailed manual that includes instructions on how to
install R, load the hormLong package, and prepare data, in addition to detailed explanations
and examples of each function. We also developed an R script template that can be easily

modified for analysis of a researcher’s own data, eliminating most R coding (manual is
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located at http://hormlong.weebly.com and the package is available on GitHub at
https://github.com/bfanson/hormLong). Output files are in csv and pdf format. csv files can
be used in any spreadsheet or statistical software (e.g. Excel, SPSS, JMP) and pdf files can
be opened in vector-graphics programs (e.g. lllustrator, Inkscape) and modified easily for

manuscripts.

(b) Typical workflow

Figure 1 illustrates a standard workflow for hormLong. In short, data are imported and
date/time formatted. Then the baseline analysis (hormBaseline) is run, which creates a
hormLong object. This object can then be used for other functions that create graphs or

calculate summary data. The list of current functions in hormLong is in Table 1.

(c) Data preparation and import
The data needs to be organized in Excel (or similar program) prior to importing to R. The
data should be in ‘long form’ (i.e. one hormone concentration per row) to take advantage of
grouping capabilities of hormLong. For example, the elephant dataset has five columns: (1)
elephant name (e.g. ‘Elel’, ‘Ele2’), (2) date sample collected (e.g. *29-Apr-07°, ’01-May-
07°), (3) hormone type (e.g. ‘Progesterone’, ‘Cortisol’), (4) hormone concentration (e.g. 0.34,
0.28), (5) name of an event (e.g. ‘mated’, ‘ovulated’). At a minimum, the dataset must have
animal identifier, date collected (or numeric days), and hormone concentration. Please see
manual for detailed examples. The data must be saved as a csv file.

Once data are suitably prepared, the csv file can be imported into R using the function
hormRead(). If dates and/or times are part of the dataset, the function hormDate() handles
formatting of these variables so they are compatible with all hormLong functions.

Example code for import and date formatting:

hormElephant = hormRead ()

hormElephant = hormDate (data = hormElephant,
date var = 'Date collected',
name = 'Date')

(d) Baseline Analysis
The iterative baseline calculation is a common method used for detecting peaks in
longitudinal datasets (Brown et al. 1996; Clifton & Steiner 1983). In this method, the mean

and standard deviation (SD) are calculated for the dataset. Any values that are greater than
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the cutoff value (determined as the mean + (n * SD)) are removed, and this process is
repeated until no values exceed the cutoff. Values remaining at the end of this process are
considered “baseline”, whereas those that have been excluded are classified as “peaks”.

The hormBaseline() function allows users to easily run these iterative calculations using
a single line of code. This function can run separate baseline calculations for multiple groups
(e.g., individuals, species, and/or hormones) at the same time because it allows the user to
define the grouping of the hormone data using the by var argument. For instance,
by var=’species, id’ would perform separate calculations for each individual for each
species. The function returns a hormLong object that is used as the basis of the other
functions described below. The ease of performing these calculations makes it much faster to
adjust criteria and identify an appropriate cutoff criteria for your dataset. If the criteria is too
conservative (i.e., high value of n), then it is less likely to identify any peaks. Conversely, if
the criteria is too low then it may result in the majority of the values being classified as
“peaks”.

For the elephant dataset, we ran hormBaseline() in order to identify peaks in the cortisol
and progesterone data. We wanted to calculate a separate baseline for each individual
elephant and each hormone, so we included by _var=‘Ele, Hormone’, where ‘Ele’ is the
column name containing the elephant’s identifier. We tested 3 different baseline cutoff
criteria in order to identify an appropriate criteria for our dataset: (1) mean + 1.5 SD, (2)
mean + 2 SD, and (3) mean + 3 SD (Figure 2). For this dataset, the first criteria is too liberal
and consequently nearly all the values are identified as peaks, which is not useful (Figure
2A). On the other hand, the third criteria is too strict and no points were identified as peaks
(Figure 2C). For this dataset, we decided to use a criteria of 2 SD (Figure 2B). The
hormBaseline() function produces an object (called “result” in the example code below) that
can then be graphed to visualize the calculated baseline cutoff for each elephant.

Example code for mean + 1.5 SD:

result = hormBaseline (data = hormElephant,
by var = ‘Ele, Hormone’,
conc_var = ‘Cong ng ml’,
time var = ‘Date’,
event var = ‘Event’,
criteria = 1.5)

(e) Data Visualization
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168  Data visualization is an essential component of identifying patterns in longitudinal hormone
169  profiles. To facilitate this process, we have developed several plotting functions. The

170 hormPlot() function is the basic plotting function that creates longitudinal profiles, broken up
171 according to the by_var statement and plotted with the baseline cutoff. Specific events (e.g.
172 mating, parturition, stressor) can be plotted onto profile graphs by adding an event column
173  into the user’s dataset prior to import. If large temporal gaps exist in the data,

174 hormPlotBreaks() can be used remove those gaps. When considering multiple hormones,
175  hormPlotOverlap() overlays multiple hormone profiles, and hormPlotRatio() plots the ratio
176 of two specified hormones. In order to visualize differences in the distribution of multiple
177 groups, hormBoxPlot() creates vertical boxplots for all groups specified. All plots are

178  exported as pdf files and have several formatting options (e.g. plot size, number of plots per
179  page, date format, setting all x-axes/y-axes to the same range).

180 For the elephant dataset, we ran hormPlot() to visualize the longitudinal plots with three
181  different baseline cutoff criteria (see above; Figure 2). This produced longitudinal plots for
182  each elephant with a reference line showing the baseline cutoff and arrows indicating all

183  events. Next, we wanted to overlay cortisol and progesterone plots (Figure 3A). This allowed
184  us to identify when cortisol peaks occurred relative to progesterone peaks. Using this

185  function, it was clear that peaks in cortisol predominantly occurred during the follicular

186  phase, just before progesterone began to increase.

187 Example code for longitudinal plots with baseline cutoff:

188 hormPlot (result)

189

190 Example code for overlaying cortisol and progesterone plots:
191 hormPlotOverlap (result,

192 hormone var='Hormone’,
193 colors='green, purple’ )
194

195  (f) Summary Statistics

196  After identifying peaks using baseline criteria, it is often necessary to extract summary

197  statistics from longitudinal profiles for subsequent analyses (e.g. ANOVA in the user’s

198  preferred statistical software). The function hormSumTable() exports summary statistics into
199  acsv file for this purpose. For the elephant data, the exported summary statistics are shown
200 in Table 2.
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201 Alternatively, the user may want run a statistical analysis (e.g. linear mixed model) on
202  the original dataset, but need each sample identified as ‘baseline’ or ‘peak’, as determined
203  from the iterative baseline method. This can be achieved by including save_date=TRUE in
204  hormBaseline() and a csv file will be created.

205 Example code for obtaining summary statistics:
206 hormSumTable (result)
207

208  (g) Area Under the Curve Analysis

209  Area under the curve (AUC) is often used to calculate the magnitude of a response. The
210  hormArea() function performs this calculation using the following algorithm: 1) for

211  subsequent time points, determine whether the line crosses the lower bound cutoff threshold
212 (see below for options); 2) if it does cross, calculate the time at which the line crosses the
213 cutoff threshold; 3) using these new end time points, calculate the AUC (see below for

214  calculation methods). As with baseline calculations, AUC can be calculated for multiple
215  groups in a single step using the by _var statement.

216 Three different lower bounds can be used for AUC calculations: 1) area from the x-axis
217 (‘origin’); 2) area from the baseline mean (‘baseline’); or 3) area from peak cutoff value

218  determined from hormBaseline() (‘peak’). For each scenario, hormArea() calculates the area
219  above the reference line and counts the number of discrete peaks. Therefore, in the origin

220  scenario, the entire profile constitutes a single peak. Users can also choose between two
221 commonly used calculation methods: 1) trapezoid method [Z% * (t; — tip1) * [(ci + Ciy1) —

222 cutoff1]]; or 2) spline [integrating over spline(method="natural) from stats package in R]
223 (Adams et al. 2011; Cockrem & Silverin 2002; Littin & Cockrem 2001). After calculating
224  AUC for each peak, the function produces a summary table that includes each peak identity
225  with its corresponding AUC value. Longitudinal plots of the peak AUCs are also produced
226  (Figure 3B), allowing the user to match up peak identity in table with specific points on the
227  plot and, especially for the spline method, to assess the appropriateness of the fit.

228 For the elephant dataset, we ran hormArea() to quantify the area of each cortisol peak in
229  each longitudinal profile (Figure 3B). This allows for comparisons of the magnitude of

230  cortisol peaks across cycles or among individuals.

231 Example code for obtaining summary statistics:
232 hormArea(result, lower bound = 'peak')
233

Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1546v1 | CC-BY 4.0 Open Access | rec: 30 Nov 2015, publ: 30 Nov 2015




234

235
236
237
238
239
240
241
242
243
244
245
246

247

248
249
250
251

252

CONCLUSIONS

hormLong is an R package tailored to the analysis of longitudinal hormone data in wildlife
endocrinology studies. This package provides an efficient and easy method for implementing
the iterative baseline approach and calculating AUC for a large number of individuals.
Furthermore, the graphical capabilities of this package greatly reduce the time-consuming
process of graph creation, producing searchable pdf files with separate profiles for each
individual in seconds. We have simplified the R code so that minimal R experience is
required by the user, with all results exported from the R environment to allow the user to use
other software when preferred. We hope that wide-spread adoption of hormLong will result
in more reproducible hormone analysis and comparable results. The manual can be
downloaded from http://hormlong.weebly.com and the package is available on GitHub at
https://github.com/bfanson/hormLong.
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Table 1: List of functions in hormLong.

Type Name Description
Import and hormRead() Provides a pop-up window to import file
data handling hormDate() Converts character date (e.g. “2014-01-017,’01-

January-2014’) to numeric date field. If a time column

(‘18:10:01") is also supplied, then a date-time field is

created.

Analysis hormBaseline() Main function that calculates peak cutoff value using
iterative algorithm. Produces a hormLong object that
is used for most other functions

hormSumTable() Calculates basic statistics for hormone data, such as
mean, min, max, baseline mean, %CV
hormArea() Calculates area under the curve (AUC) for all peaks
Visualization | hormPlot() Produces longitudinal plots of hormone profiles for

each group specified in by_var. Includes baseline

cutoff and individual specific events

hormPlotBreaks()

Similar to hormPlot(), except that temporal gaps in

endocrine profiles are removed.

hormPlotOverlap()

Produces longitudinal plots in which multiple hormone

are overlaid.

hormArea()

Produces longitudinal plots in which AUC for peaks
are delineated and numbered. This plot complements
hormAUC analysis table so that numbered peaks can

be assessed visually.

hormBoxplot()

Produces simple boxplots comparing hormone

concentrations using grouping function by_var.
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280
281

282  Table 2: Example output for hormSumTable(). Base_mean is the mean of baseline values from iterative process. Peak mean is mean of all

283  peak values. Cutoff is the cutoff threshold (mean + (n * SD) determined from hormBaseline(). Other statistics are based on all hormone values.

Ele Hormone mean median sd percent cv min max cutoff base mean peak mean peak base
Elel Cortisol  0.83 0.7 051 61.62 0 249 1.09 0.61 1.62 2.67
Elel Progesterone 0.41 0.36 0.37 89.72 0 131 094 0.34 1.13 3.36
Ele2 Cortisol  0.62 046 0.52 84.72 0.19 284 0.66 0.42 1.42 341
Ele2 Progesterone 0.85 0.82 0.52 61.85 0.05 277 1.66 0.78 2.15 2.75

mean average (of all points for that set of grouping variables)

median median (of all points for that set of grouping variables)

sd standard deviation (of all points for that set of grouping variables)

percent_cv percent coefficient of variation (SD/mean*100)
min, max minimum and maximum values (of all points for that set of grouping variables)
cutoff threshold value for peaks, calculated as mean+(n*SD) for final iteration of baseline calculation (i.e.,
when no more points are removed). Points below this are baseline and above are peaks.
base_mean average of all points classified as baseline
peak _mean average of all points classified as peaks
peak_base ratio of peak-to-baseline (calculated as peak_mean/base_mean)
284
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287  Figure 1: Flowchart of a typical hormLong analysis. Diamonds show R objects and boxes are
288  functions.

289
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292  Figure 2: Example of hormPlot() with varying criteria for a single individual. The dashed line
293  represents the cutoff criteria: A) mean + 1.5, B) mean + 2, and C) mean + 3.0.  Arrows and text show
294  the occurrence of an event.
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Figure 3: Example of (A) hormPlotOverlap()and (B) hormArea() plot. For (A), the

different colours represent cortisol (green) and progesterone (purple). For (B), numbers

indicate discrete peak number (matches up with outputted table) and shaded area shows the

AUC calculated in the output data table. Dashed lines is the baseline cutoff value (note —

other cutoff criteria can be used for hormArea(), see manual).
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