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The growing number of wildlife endocrinology studies have greatly enhanced our
understanding of comparative endocrinology, and have also generated extensive
longitudinal data for a vast number of species. However, the extensive graphical analysis
required for these longitudinal datasets can be time consuming because there is often a
need to create tens, if not hundreds, of graphs. Furthermore, routine methods for
summarising hormone profiles, such as the iterative baseline approach and area under the
curve (AUC), can be tedious and non-reproducible, especially for large number of
individuals. We developed an R package, hormLong, which provides the basic functions to
perform graphical and numerical analyses routinely used by wildlife endocrinologists. To
encourage its use, hormLong has been developed such that no familiarity with R is
necessary. Here, we provide a brief overview of the functions currently available and
demonstrate their utility with previously published Asian elephant data. We hope that this
package will promote reproducibility and encourage standardization of wildlife hormone
data analysis.
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ABSTRACT 17 

The growing number of wildlife endocrinology studies have greatly enhanced our understanding of 18 

comparative endocrinology, and have also generated extensive longitudinal data for a vast number of 19 

species.  However, the extensive graphical analysis required for these longitudinal datasets can be 20 

time consuming because there is often a need to create tens, if not hundreds, of graphs.  Furthermore, 21 

routine methods for summarising hormone profiles, such as the iterative baseline approach and area 22 

under the curve (AUC), can be tedious and non-reproducible, especially for large number of 23 

individuals.  We developed an R package, hormLong, which provides the basic functions to perform 24 

graphical and numerical analyses routinely used by wildlife endocrinologists.  To encourage its use, 25 

hormLong has been developed such that no familiarity with R is necessary.  Here, we provide a brief 26 

overview of the functions currently available and demonstrate their utility with previously published 27 

Asian elephant data.  We hope that this package will promote reproducibility and encourage 28 

standardization of wildlife hormone data analysis. 29 

 30 
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INTRODUCTION 35 

Longitudinal hormone monitoring is routinely used in wildlife endocrinology studies and 36 

provides a unique insight into endocrine physiology that cannot be obtained from single 37 

samples.  The amount of longitudinal endocrine data is rapidly increasing due to the 38 

development of new techniques and advances in technology (e.g., non-invasive hormone 39 

monitoring, catheterization techniques, cheaper assays).  Consequently, researchers routinely 40 

handle large endocrine datasets with an extensive number of samples.  One of the greatest 41 

challenges with these large datasets is efficient and reproducible data analysis.  Analysing 42 

longitudinal hormone data generally includes (1) graphical visualization of the data, (2) 43 

identification of peaks, and (3) quantifying the magnitude of the response.   44 

Similar to other time series data (Cowpertwait & Metcalfe 2009; Montgomery et al. 45 

2015), graphical analysis plays an important role in identifying patterns in hormone profiles.  46 

Researchers often monitor dozens of individuals, but create profiles for each individual one-47 

at-a-time.  Furthermore, temporal events (e.g. pregnancy, mating, stressors) are often added 48 

to graphs by hand.  This process of creating dozens of graphs, marking events, and updating 49 

each graph separately becomes quite time-consuming.  In addition, when multiple hormones 50 

are being monitored, it is useful to overlay hormone profiles in order to explore temporal 51 

correlations.  However, this involves restructuring each individual dataset, which takes yet 52 

more time and can introduce error when done by hand.   53 

Another challenge with analysing longitudinal hormone data is being able to distinguish 54 

the signal from the noise.  There is a certain amount of inherent variability in any hormone 55 

profile due to both biological (e.g., pulsatile release, variability in steroid metabolism) and 56 

methodological factors (e.g., sampling design, pipetting error, assay variability).  One 57 

common approach for identifying meaningful increases (peaks) in longitudinal datasets is the 58 

iterative baseline approach (Brown et al. 1996; Clifton & Steiner 1983).  In this approach, 59 

hormone values exceeding the mean + (n * SD) are excluded, where n is the criterion for the 60 

number of standard deviations (SD) used in the calculation.  The mean and SD are 61 

recalculated, and this culling processes is repeated until no points exceed the cut-off.  62 

Remaining values are considered “baseline” values and excluded points are considered 63 

“peaks”.  The appropriate value of n needs to be adjusted depending on the characteristics of 64 

the dataset (number of samples and amount of variation).  Although this approach is really 65 

useful for identifying peaks, it can be tedious to run these iterative calculations for each study 66 
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subject, and this becomes even more cumbersome when calculating and comparing different 67 

values of n.   68 

In addition to detecting presence/absence of peaks (above), it is often desirable to 69 

quantify the magnitude of the response.  One approach is to calculate the magnitude of the 70 

peak using either absolute difference (peak minus baseline) or relative increase (ratio of peak 71 

to baseline).   A more complicated method is to calculate the area under the curve (AUC; 72 

(Cockrem & Silverin 2002; Sheriff et al. 2010).  An advantage of this technique is that it 73 

incorporates both the magnitude of the peak as well as the duration, which are both 74 

biologically meaningful.  Without specialized software, the AUC can be a tedious calculation 75 

and hinders reproducibility.   76 

To facilitate efficient and reproducible data analysis, we developed a user-friendly R 77 

package that provides wildlife endocrinologists with a toolkit for analysing longitudinal 78 

hormone data and requires no prior programming experience.  The package includes 79 

functions allowing for exploratory graphical analysis (including mass production of 80 

longitudinal profiles, box plots, and overlaying multiple hormones), iterative baseline 81 

calculation, and AUC calculation.  To demonstrate the utility of this package, we analysed a 82 

previously published hormone dataset (Fanson et al. 2014).  This study looked at changes in 83 

circulating cortisol across the estrous cycle (i.e., relative to progesterone) in Asian elephants.  84 

We included these data as an example dataset called hormElephant in the package. 85 

 86 

DESCRIPTION 87 

(a) Philosophy  88 

The goal of this package is to provide a toolkit that facilitates efficient and reproducible 89 

analysis of longitudinal hormone data commonly used by wildlife endocrinologists.  With 90 

that in mind, we created functions that perform routine characterization methods (e.g. 91 

iterative baseline and AUC calculations), as well as a suite of data visualization functions to 92 

facilitate graphical analysis. 93 

To encourage researchers who are less familiar with R to use these functions, we developed 94 

an R-minimal workflow which allows users with no prior R experience to be able to run the 95 

functions.  To this end, we created a detailed manual that includes instructions on how to 96 

install R, load the hormLong package, and prepare data, in addition to detailed explanations 97 

and examples of each function.  We also developed an R script template that can be easily 98 

modified for analysis of a researcher’s own data, eliminating most R coding (manual is 99 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1546v1 | CC-BY 4.0 Open Access | rec: 30 Nov 2015, publ: 30 Nov 2015



located at http://hormlong.weebly.com and the package is available on GitHub at 100 

https://github.com/bfanson/hormLong).  Output files are in csv and pdf format.  csv files can 101 

be used in any spreadsheet or statistical software (e.g. Excel, SPSS, JMP) and pdf  files can 102 

be opened in vector-graphics programs (e.g. Illustrator, Inkscape) and modified easily for 103 

manuscripts.  104 

 105 

(b) Typical workflow 106 

Figure 1 illustrates a standard workflow for hormLong.  In short, data are imported and 107 

date/time formatted.  Then the baseline analysis (hormBaseline) is run, which creates a 108 

hormLong object.  This object can then be used for other functions that create graphs or 109 

calculate summary data.  The list of current functions in hormLong is in Table 1. 110 

 111 

(c) Data preparation and import 112 

The data needs to be organized in Excel (or similar program) prior to importing to R.  The 113 

data should be in ‘long form’ (i.e. one hormone concentration per row) to take advantage of 114 

grouping capabilities of hormLong.  For example, the elephant dataset has five columns: (1) 115 

elephant name (e.g. ‘Ele1’, ‘Ele2’), (2) date sample collected (e.g. ’29-Apr-07’, ’01-May-116 

07’), (3) hormone type (e.g. ‘Progesterone’, ‘Cortisol’), (4) hormone concentration (e.g. 0.34, 117 

0.28), (5) name of an event (e.g. ‘mated’, ‘ovulated’).  At a minimum, the dataset must have 118 

animal identifier, date collected (or numeric days), and hormone concentration.  Please see 119 

manual for detailed examples.  The data must be saved as a csv file. 120 

Once data are suitably prepared, the csv file can be imported into R using the function 121 

hormRead().  If dates and/or times are part of the dataset, the function hormDate() handles 122 

formatting of these variables so they are compatible with all hormLong functions. 123 

Example code for import and date formatting:  124 

 hormElephant = hormRead()   125 

 hormElephant = hormDate(data     = hormElephant,  126 

                               date_var = 'Date_collected',  127 

                               name     = 'Date')  128 

 129 

(d) Baseline Analysis 130 

The iterative baseline calculation is a common method used for detecting peaks in 131 

longitudinal datasets (Brown et al. 1996; Clifton & Steiner 1983).  In this method, the mean 132 

and standard deviation (SD) are calculated for the dataset.  Any values that are greater than 133 
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the cutoff value (determined as the mean + (n * SD)) are removed, and this process is 134 

repeated until no values exceed the cutoff.  Values remaining at the end of this process are 135 

considered “baseline”, whereas those that have been excluded are classified as “peaks”. 136 

The hormBaseline() function allows users to easily run these iterative calculations using 137 

a single line of code.  This function can run separate baseline calculations for multiple groups 138 

(e.g., individuals, species, and/or hormones) at the same time because it allows the user to 139 

define the grouping of the hormone data using the by_var argument.  For instance, 140 

by_var=’species, id’ would perform separate calculations for each individual for each 141 

species.  The function returns a hormLong object that is used as the basis of the other 142 

functions described below. The ease of performing these calculations makes it much faster to 143 

adjust criteria and identify an appropriate cutoff criteria for your dataset.  If the criteria is too 144 

conservative (i.e., high value of n), then it is less likely to identify any peaks.  Conversely, if 145 

the criteria is too low then it may result in the majority of the values being classified as 146 

“peaks”. 147 

For the elephant dataset, we ran hormBaseline() in order to identify peaks in the cortisol 148 

and progesterone data.  We wanted to calculate a separate baseline for each individual 149 

elephant and each hormone, so we included by_var=‘Ele, Hormone’, where ‘Ele’ is the 150 

column name containing the elephant’s identifier.  We tested 3 different baseline cutoff 151 

criteria in order to identify an appropriate criteria for our dataset: (1) mean + 1.5 SD, (2) 152 

mean + 2 SD, and (3) mean + 3 SD (Figure 2).  For this dataset, the first criteria is too liberal 153 

and consequently nearly all the values are identified as peaks, which is not useful (Figure 154 

2A).  On the other hand, the third criteria is too strict and no points were identified as peaks 155 

(Figure 2C).  For this dataset, we decided to use a criteria of 2 SD (Figure 2B).  The 156 

hormBaseline() function produces an object (called “result” in the example code below) that 157 

can then be graphed to visualize the calculated baseline cutoff for each elephant.   158 

Example code for mean + 1.5 SD:  159 

 result =  hormBaseline(data      = hormElephant,   160 

      by_var     = ‘Ele, Hormone’,  161 

                              conc_var   = ‘Cong_ng_ml’,   162 

      time_var   = ‘Date’, 163 

                              event_var  = ‘Event’,   164 

                              criteria   = 1.5) 165 

 166 

(e) Data Visualization 167 
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Data visualization is an essential component of identifying patterns in longitudinal hormone 168 

profiles.  To facilitate this process, we have developed several plotting functions.  The 169 

hormPlot() function is the basic plotting function that creates longitudinal profiles, broken up 170 

according to the by_var statement and plotted with the baseline cutoff.  Specific events (e.g. 171 

mating, parturition, stressor) can be plotted onto profile graphs by adding an event column 172 

into the user’s dataset prior to import.  If large temporal gaps exist in the data, 173 

hormPlotBreaks() can be used remove those gaps.  When considering multiple hormones, 174 

hormPlotOverlap() overlays multiple hormone profiles, and hormPlotRatio() plots the ratio 175 

of two specified hormones.  In order to visualize differences in the distribution of multiple 176 

groups, hormBoxPlot() creates vertical boxplots for all groups specified.  All plots are 177 

exported as pdf files and have several formatting options (e.g. plot size, number of plots per 178 

page, date format, setting all x-axes/y-axes to the same range).  179 

For the elephant dataset, we ran hormPlot() to visualize the longitudinal plots with three 180 

different baseline cutoff criteria (see above; Figure 2).  This produced longitudinal plots for 181 

each elephant with a reference line showing the baseline cutoff and arrows indicating all 182 

events.  Next, we wanted to overlay cortisol and progesterone plots (Figure 3A). This allowed 183 

us to identify when cortisol peaks occurred relative to progesterone peaks.  Using this 184 

function, it was clear that peaks in cortisol predominantly occurred during the follicular 185 

phase, just before progesterone began to increase. 186 

Example code for longitudinal plots with baseline cutoff: 187 

 hormPlot(result)  188 

 189 

Example code for overlaying cortisol and progesterone plots: 190 

 hormPlotOverlap(result,  191 

       hormone_var=’Hormone’,  192 

                colors=’green, purple’ )  193 

 194 

(f) Summary Statistics 195 

After identifying peaks using baseline criteria, it is often necessary to extract summary 196 

statistics from longitudinal profiles for subsequent analyses (e.g. ANOVA in the user’s 197 

preferred statistical software).  The function hormSumTable() exports summary statistics into 198 

a csv file for this purpose.  For the elephant data, the exported summary statistics are shown 199 

in Table 2. 200 
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Alternatively, the user may want run a statistical analysis (e.g. linear mixed model) on 201 

the original dataset, but need each sample identified as ‘baseline’ or ‘peak’, as determined 202 

from the iterative baseline method. This can be achieved by including save_date=TRUE in 203 

hormBaseline() and a csv file will be created. 204 

Example code for obtaining summary statistics: 205 

 hormSumTable(result) 206 

 207 

(g) Area Under the Curve Analysis 208 

Area under the curve (AUC) is often used to calculate the magnitude of a response.  The 209 

hormArea() function performs this calculation using the following algorithm: 1) for 210 

subsequent time points, determine whether the line crosses the lower bound cutoff threshold 211 

(see below for options); 2) if it does cross, calculate the time at which the line crosses the 212 

cutoff threshold; 3) using these new end time points, calculate the AUC (see below for 213 

calculation methods).  As with baseline calculations, AUC can be calculated for multiple 214 

groups in a single step using the by_var statement.   215 

Three different lower bounds can be used for AUC calculations: 1) area from the x-axis 216 

(‘origin’); 2) area from the baseline mean (‘baseline’); or 3) area from peak cutoff value 217 

determined from hormBaseline() (‘peak’).  For each scenario, hormArea() calculates the area 218 

above the reference line and counts the number of discrete peaks.  Therefore, in the origin 219 

scenario, the entire profile constitutes a single peak.  Users can also choose between two 220 

commonly used calculation methods: 1) trapezoid method [∑
1

2
∗ (𝑡𝑖 − 𝑡𝑖+1) ∗ [(𝑐𝑖 + 𝑐𝑖+1) −221 

𝑐𝑢𝑡𝑜𝑓𝑓]]; or 2) spline [integrating over spline(method=’natural) from stats package in R] 222 

(Adams et al. 2011; Cockrem & Silverin 2002; Littin & Cockrem 2001).  After calculating 223 

AUC for each peak, the function produces a summary table that includes each peak identity 224 

with its corresponding AUC value.  Longitudinal plots of the peak AUCs are also produced 225 

(Figure 3B), allowing the user to match up peak identity in table with specific points on the 226 

plot and, especially for the spline method, to assess the appropriateness of the fit.  227 

For the elephant dataset, we ran hormArea() to quantify the area of each cortisol peak in 228 

each longitudinal profile (Figure 3B).  This allows for comparisons of the magnitude of 229 

cortisol peaks across cycles or among individuals. 230 

Example code for obtaining summary statistics: 231 

 hormArea(result, lower_bound = 'peak') 232 

 233 
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CONCLUSIONS 234 

hormLong is an R package tailored to the analysis of longitudinal hormone data in wildlife 235 

endocrinology studies.  This package provides an efficient and easy method for implementing 236 

the iterative baseline approach and calculating AUC for a large number of individuals.  237 

Furthermore, the graphical capabilities of this package greatly reduce the time-consuming 238 

process of graph creation, producing searchable pdf files with separate profiles for each 239 

individual in seconds.  We have simplified the R code so that minimal R experience is 240 

required by the user, with all results exported from the R environment to allow the user to use 241 

other software when preferred.  We hope that wide-spread adoption of hormLong will result 242 

in more reproducible hormone analysis and comparable results.  The manual can be 243 

downloaded from http://hormlong.weebly.com and the package is available on GitHub at 244 

https://github.com/bfanson/hormLong. 245 
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Table 1:  List of functions in hormLong.   278 

Type Name Description 

Import and 

data handling 

hormRead() Provides a pop-up window to import file  

hormDate() Converts character date (e.g. “2014-01-01”,’01-

January-2014’) to numeric date field.  If a time column 

(‘18:10:01’) is also supplied, then a date-time field is 

created. 

Analysis hormBaseline() Main function that calculates peak cutoff value using 

iterative algorithm.  Produces a hormLong object that 

is used for most other functions 

 

hormSumTable() Calculates basic statistics for hormone data, such as 

mean, min, max, baseline mean, %CV 

 

hormArea() 

 

Calculates area under the curve (AUC) for all peaks 

Visualization hormPlot() Produces longitudinal plots of hormone profiles for 

each group specified in by_var.  Includes baseline 

cutoff and individual specific events  

 

hormPlotBreaks() Similar to hormPlot(), except that temporal gaps in 

endocrine profiles are removed. 

 

hormPlotOverlap() Produces longitudinal plots in which multiple hormone 

are overlaid.  

 

hormArea() Produces longitudinal plots in which AUC for peaks 

are delineated and numbered.  This plot complements 

hormAUC analysis table so that numbered peaks can 

be assessed visually. 

 

hormBoxplot() Produces simple boxplots comparing hormone 

concentrations using grouping function by_var.   

 

279 
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 280 

 281 

Table 2:  Example output for hormSumTable().  Base_mean is the mean of baseline values from iterative process.  Peak_mean is mean of all 282 

peak values.  Cutoff is the cutoff threshold (mean + (n * SD) determined from hormBaseline().  Other statistics are based on all hormone values.   283 

Ele Hormone mean median sd percent_cv min max cutoff base_mean peak_mean peak_base 

Ele1 Cortisol 0.83 0.7 0.51 61.62 0 2.49 1.09 0.61 1.62 2.67 

Ele1 Progesterone 0.41 0.36 0.37 89.72 0 1.31 0.94 0.34 1.13 3.36 

Ele2 Cortisol 0.62 0.46 0.52 84.72 0.19 2.84 0.66 0.42 1.42 3.41 

Ele2 Progesterone 0.85 0.82 0.52 61.85 0.05 2.77 1.66 0.78 2.15 2.75 

mean average (of all points for that set of grouping variables) 

median median (of all points for that set of grouping variables) 

sd standard deviation (of all points for that set of grouping variables) 

percent_cv percent coefficient of variation (SD/mean*100) 

min, max minimum and maximum values (of all points for that set of grouping variables) 

cutoff threshold value for peaks, calculated as mean+(n*SD) for final iteration of baseline calculation (i.e., 

when no more points are removed).  Points below this are baseline and above are peaks. 

base_mean average of all points classified as baseline 

peak_mean average of all points classified as peaks 

peak_base ratio of peak-to-baseline (calculated as peak_mean/base_mean) 

 284 
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 285 

 286 

Figure 1: Flowchart of a typical hormLong analysis.  Diamonds show R objects and boxes are 287 

functions.    288 

  289 
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 290 

 291 

Figure 2:  Example of hormPlot() with varying criteria for a single individual.  The dashed line 292 

represents the cutoff criteria: A) mean + 1.5, B) mean + 2, and C) mean + 3.0.    Arrows and text show 293 

the occurrence of an event. 294 

  295 
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 296 

 297 

 298 

Figure 3:  Example of (A) hormPlotOverlap()and (B) hormArea() plot.  For (A), the 299 

different colours represent cortisol (green) and progesterone (purple).  For (B), numbers 300 

indicate discrete peak number (matches up with outputted table) and shaded area shows the 301 

AUC calculated in the output data table.  Dashed lines is the baseline cutoff value (note – 302 

other cutoff criteria can be used for hormArea(), see manual). 303 
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