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The effect of the dispersal kernel on isolation-by-distance in a

continuous population

Tara N Furstenau, Reed A Cartwright

Under models of isolation-by-distance, population structure is determined by the

probability of identity-by-descent between pairs of genes according to the geographic

distance between them. Well established analytical results indicate that the relationship

between geographical and genetic distance depends mostly on the neighborhood size of

the population, \(N_b = 4\pi\sigma^2 D_e\), which represents a standardized measure of

gene flow. To test this prediction, we model local dispersal of haploid individuals on a two-

dimensional torus using seven dispersal kernels: Rayleigh, Exponential, Half-normal,

Triangular, Gamma, Lomax and Pareto. When neighborhood size is held constant, the

distributions produce similar patterns of isolation-by-distance, confirming predictions.

Considering this, we propose that the triangular distribution is the appropriate null

distribution for isolation-by-distance studies. Under the triangular distribution, dispersal is

uniform within an area of \(4\pi\sigma^2\) (i.e. the neighborhood area), which suggests

that the common description of neighborhood size as a measure of a local panmictic

population is valid for popular families of dispersal distributions. We further show how to

draw from the triangular distribution efficiently and argue that it should be utilized in other

studies in which computational efficiency is important.
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ABSTRACT

Under models of isolation-by-distance, population structure is determined by the probability of identity-by-

descent between pairs of genes according to the geographic distance between them. Well established

analytical results indicate that the relationship between geographical and genetic distance depends mostly

on the neighborhood size of the population, Nb = 4πσ2De, which represents a standardized measure of

gene flow. To test this prediction, we model local dispersal of haploid individuals on a two-dimensional

landscape using seven dispersal kernels: Rayleigh, exponential, half-normal, triangular, gamma, Lomax

and Pareto. When neighborhood size is held constant, the distributions produce similar patterns of

isolation-by-distance, confirming predictions. Considering this, we propose that the triangular distribution

is the appropriate null distribution for isolation-by-distance studies. Under the triangular distribution,

dispersal is uniform within an area of 4πσ2 (i.e. the neighborhood area), which suggests that the common

description of neighborhood size as a measure of a local panmictic population is valid for popular families

of dispersal distributions. We further show how to draw from the triangular distribution efficiently and

argue that it should be utilized in other studies in which computational efficiency is important.

Keywords: neighborhood size, identity-by-descent, kinship coefficients, triangular distribution, correl-

ograms, simulation, fine scale, individual based

INTRODUCTION1

For many populations, individuals do not exist in discrete patches or demes; instead they are spread2

across a continuous landscape. Although there are no barriers separating individuals, dispersal distances3

are often limited, and individuals that are near one another in space will be more similar genetically4

than individuals further apart. This phenomenon is known as isolation-by-distance and introduces a5

spatial component that should be considered when studying population genetic processes (Jongejans6

et al., 2008). Unfortunately, incorporating multiple dimensions of space at fine scales into analytical7

models is often analytically intractable (Epperson et al., 2010). Therefore, many researchers have turned8

to spatially-explicit, individual-based computer simulations which offer a more flexible way to incorporate9

spatial complexity into biological models (e.g. Barton et al., 2013; Cartwright, 2009; Epperson, 2003;10

Novembre and Stephens, 2008; Rousset, 2004; Slatkin, 1993).11

A dispersal kernel describes the distribution of Euclidean distances between birth site and reproduction12

site. Ideally, when modeling dispersal, the dispersal distribution would be selected based on how well it13

fits the dispersal kernel estimated from natural populations. Classically, dispersal has been modeled as a14

diffusion process with Gaussian displacement; however, the observed dispersal kernels in many species15

tend to be more leptokurtic with a higher probability of short and long distance dispersal (Bateman, 1950).16

In plants, the shape of the dispersal kernel near the origin depends on the mechanism of dispersal; for17

example, there may be a high peak near the origin for gravity or animal dispersal whereas there may be18

a minimum near the origin for wind dispersal (Barluenga et al., 2011; Clark et al., 2005). Wide-tailed19

dispersal kernels, with a higher probability of long-distance dispersal, are a good fit to many empirical20

data sets (Klein et al., 2006; Bullock and Clarke, 2000; Clark et al., 2005; Gonzàlez-Martı̀nez et al., 2006;21

Martı̀nez and Gonzàlez-Taboada, 2009). Such long-distance dispersal events have a large impact when22

modeling a number of population processes including rate of expansion (Kot et al., 1996; Clark et al.,23
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2001), response to environmental changes (Nathan et al., 2011), local adaptation (Kuparinen et al., 2010),24

speciation (Hoelzer et al., 2008), and the spatial distribution of genetic diversity (Ibrahim et al., 1996;25

Bialozyt et al., 2006).26

While the shape of the dispersal kernel impacts many population processes at different scales, it27

remains unclear how it effects patters of isolation-by-distance within a continuous population. It has been28

argued that the number of long-distance dispersal events will not have a noticeable effect because new29

long-distance alleles are more likely to be lost due to drift than become established at the new location30

(Ibrahim et al., 1996; Epperson, 2007). On the other hand, the shape of the dispersal kernel near the origin31

may have a significant impact on the overall rate of migration. In a plants, this could result in a higher32

probability of self-fertilization and/or a reduction in the number of successful offspring when there is33

density dependent regulation (Barluenga et al., 2011; Moyle, 2006; Howe et al., 1985).34

Isolation-by-distance theory predicts that the actual shape of the dispersal distribution does not have a35

significant effect on the evolution of isolation-by-distance. Instead, levels of isolation-by-distance are36

determined by the mean squared distance of dispersal (i.e. non-central second moment of Euclidean37

distance), denoted by 2σ2 (Barton et al., 2013; Malécot, 1969; Rousset, 1997, 2004; Wright, 1946). There-38

fore, it should be possible to select any dispersal distribution as long as 2σ2 stays constant. Unfortunately,39

Rousset (1997, 2000) points out that the relationship is more complicated and does depends on the shape40

of the dispersal distribution for short distances, but for many classes of distributions, 2σ2 is likely the41

only parameter that matters.42

The shape of the dispersal kernel is often not considered when modeling isolation-by-distance in43

continuous population. Here we develop a spatially-explicit, individual-based model to simulate local44

dispersal in a continuous population to determine if patterns of isolation-by-distance vary based on the45

shape of several different dispersal distributions: Rayleigh, half-normal, exponential, triangular, gamma,46

Lomax and Pareto. Each dispersal distribution has a different shape but they can be parameterized such47

that their non-central second moment is 2σ2. If the simulations reveal a similar pattern of isolation-by-48

distance across all dispersal distributions, we can conclude that, for a wide range of dispersal distributions,49

2σ2 is the main determining factor of genetic differentiation with distance in a continuous population.50

Consequently, when designing isolation-by-distance simulations, researchers may choose a dispersal51

distribution based on computational needs instead of biological fit.52

Wright (1946) uses the term “neighborhood” to describe a local population from which parents53

are randomly drawn. He measures the effective size of the neighborhood, Nb, as the inverse of the54

probability that two gametes at the same location came from the same parent. Assuming dispersal is55

normally distributed along each axis, he calculated that Nb = 4πσ2De, where De is the effective density56

of individuals, and 2σ2 is the mean squared distance of dispersal. — In his model this captures 86.5% of57

parents of central individuals. — Although Wright assumed Gaussian dispersal, his formula can be used58

to calculate Nb for many different dispersal models. Nb is important because it helps define the rate of59

decay of genetic similarity over spatial distance, i.e. the amount of isolation-by-distance in a population60

(Rousset, 1997, 2000; Barton et al., 2013).61

If a neighborhood is supposed to represent a local panmictic unit, then in the ideal model parents62

should be chosen uniformly from a circle of radius 2σ centered on an offspring, and the Euclidean63

distance between parents and offspring should follow a triangular distribution: f (r;σ) = r/(2σ2), where64

2σ2 is again the non-central second moment. This type of neighborhood is similar to the neighborhood65

defined in the spatially continuous Λ-Fleming-Voit disc model in which a number of parents, v, are chosen66

uniformly at random from a disc with radius r to replace a fraction u of the population (Barton et al.,67

2013). In this model, neighborhood size is defined by the ratio v/u and the individuals occupying the68

disc constitute a panmictic population. If 100% of the population is replaced (u = 1), the definition of69

neighborhood size reduces to the number of individuals competing for the central location.70

Below, we demonstrate that patterns of isolation-by-distance are equivalent for different dispersal71

kernels with the same second moment, and discuss the use of the triangular distribution to model dispersal72

in a continuous population.73

METHODS74

Simulation75

In our individual-based simulation, a population exists on a 100×100 rectangular lattice. Individuals are76

uniformly spaced with a single individual per cell. Each individual contains one haploid locus. The initial77
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population of 10,000 individuals each carry a unique allele. Generations are discrete, and individuals78

reproduce by generating 15 clonal offspring that experience mutations according to the infinite alleles79

model at rate µ . All starting and mutant alleles were selectively neutral.80

The offspring disperse from the parent cell following a given dispersal distribution. The boundaries of81

the landscape are absorbing so when offspring disperse off of the lattice they are lost. When offspring82

land on a valid destination cell, they are immediately accepted or rejected using a reservoir sampling83

method to avoid storing them all in memory (Vitter, 1985). Using this method we were able to record84

some information about the probability of identity-by-descent of offspring competing for the same cell by85

keeping track of two randomly chosen offspring.86

When dispersal is complete, there will be a maximum of one uniformly sampled offspring per cell87

and that offspring will become a parent in the next generation. We determined that when each parent88

generated 15 offspring, the number of empty cells per generation was negligible so we could assume a89

constant homogeneous population density.90

Modeling Dispersal91

The simulation is spatially-explicit with space represented on a rectangular lattice. Due to the discrete92

nature of the lattice, the dispersal kernels will be discretized approximations of continuous distributions93

(Chesson and Lee, 2005; Chipperfield et al., 2011). The dispersal kernel function, f (r,θ ;σ), takes a94

parameter σ and returns continuous polar coordinates. The σ parameter is the square root of one-half95

the second moment of dispersal distance. The polar coordinates include the angle, θ ∈ [0,2π], which is96

uniformly distributed to ensure isotropic dispersal and distance, r > 0, which is drawn from a continuous97

distribution.98

Once the angle and distance are drawn, the final position is determined by converting the polar99

coordinates into rectangular coordinates and adding them to the parent’s position. The new coordinates100

are then rounded to determine the integer coordinates of the destination cell. This dispersal scheme is101

similar to the centroid-to-area approximation of continuous dispersal kernels described by Chipperfield102

et al. (2011), which showed minimal deviation from expectations especially when cell length is less than103

the expected distance.104

We looked at seven different dispersal distance kernels (Table 1): Rayleigh, exponential, half-normal,105

triangular, gamma, Pareto, and Lomax. We chose these distributions because they provide a range of106

shapes for short, intermediate, and long distance dispersal.107

The Rayleigh is a distribution of Euclidean distances that result from bivariate normal displacement108

along the x and y axis. The Rayleigh distribution follows the assumptions of Wright (1946)’s two-109

dimensional isolation-by-distance model.110

The exponential distribution is more leptokurtic with higher probability of dispersal at short and long111

distances and less at intermediate distances. The exponential tail is the boundary that separates truly112

heavy-tailed distributions with potentially infinite higher moments from distributions with all moments113

finite. The distinction is important because leptokurtic, heavy-tailed dispersal kernels are typically a better114

fit to observed dispersal in nature (Clark, 1998).115

The half-normal distribution is equivalent to a normal distribution that has been folded over the y-axis.116

In this case, Euclidean distance is simply the absolute value of normally distributed random variables. The117

half-normal is a monotonically decreasing distribution with a convex shoulder near zero. This distribution118

has a higher probability of dispersal at intermediate distances compared to the exponential.119

The triangular distribution is typically defined using three points: a lower limit, a, an upper limit, b,120

and a mode, c. Here we use a special case of the triangular distribution where a = 0 and b = c = 2σ .121

The triangular distribution is the only one of our distributions that has a finite range, r ∈ [0,2σ ]. In122

two-dimensions, the triangular dispersal kernel returns positions that are uniformly sampled from a circle123

with area 4πσ2.124

Unlike the previous single parameter distributions, the final three distributions have an additional125

α shape parameter. The gamma distribution is equivalent to the exponential distribution when α = 1,126

and as α increases the distribution becomes more symmetrical with a higher probability for intermediate127

distances and a lower probability for short distances.128

The Lomax and Pareto distributions are both heavy-tailed power-law distributions. The n-th moments129

are finite only when α > n. The support for the Pareto distribution, r ∈ [xmin,+∞), begins at a parameter130

xmin > 0. The Lomax distribution is a special case of the Pareto distribution that has been shifted so that131
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the support begins at zero. We chose values of α between 2 and 3 so that the second moment of the132

distribution would be finite but higher moments are infinite.133

The dispersal function is executed over 100-billion times per simulation, and thus it was important to134

make the implementation as efficient as possible. With this aim in mind, we used an xorshift algorithm135

for uniform pseudo-random number generation and the ziggurat rejection sampling algorithm to draw136

values from exponential and normal distributions when applicable (Marsaglia and Tsang, 2000; Marsaglia,137

2003). The bounded range of the triangular distribution allowed us to simulate dispersal using an efficient138

discrete sampling method. See the appendix for a description of the algorithm.139

Analysis140

Simulations were run for each of the seven dispersal distributions under 4 levels of dispersal (σ = 1, 1.5,141

2 and 4) with a mutation rate of µ = 10−4. The simulations were run for 2 million generations after a142

burn-in period of 10,000 generations to allow the populations to reach a mutation-drift equilibrium. After143

the burn-in, data was collected every 1,000 generations to decrease correlations between samples. A144

straight transect of 50 individuals was sampled from the center of the landscape to avoid measuring edge145

effects.146

For each sampled transect, all possible pairs of individuals were placed into distance classes based147

on the distance between them. The number of pairs that shared an identical allele was determined and148

recorded as a proportion of the total number of pairs in the distance class. The probabilities for each149

distance class were then averaged over all sampled generations. Under this sampling scheme, it should be150

pointed out that the number of pairs per distance class decreases as distance increases so in distance class151

50 there is only one pair sampled per generation.152

The parameters for each dispersal distribution were calculated so that E[X2] = 2σ2; the calculations153

are reflected in the probability distribution functions in Table 1. Due to the discrete nature of the lattice,154

some parameters values were adjusted slightly until the simulations produced an average squared distance155

between parent and offspring, s2, that was within 5% of the expected value, σ2. Three of the distributions156

require a second α parameter. For the gamma distribution we used α = 1,2,4,8. For the Lomax and157

Pareto distributions we used α = 2.4,2.6,2.8,3.0 all of which are infinite in the 3rd and higher moments.158

Under isolation-by-distance, individuals geographically near one another will tend to be genetically159

similar, and this similarity will decrease as the distance between pairs of individuals increases. Therefore,160

isolation-by-distance is described by constructing correlograms of genetic similarity between individuals161

versus the distance between them. Genetic similarity can be measured using identity-by-descent, identity-162

by-state, relatedness, conditional kinship, or F-coefficients and can be based on coalescent times, an163

ancestral population, or the current population (Hardy and Vekemans, 1999; Hardy, 2003; Malécot, 1969;164

Rousset, 1997, 2002; Wang, 2014). For two-dimensional populations, genetic similarity is often plotted165

against the log-distance separating pairs because theory predicts that this relationship is approximately166

linear (Barton et al., 2013; Hardy and Vekemans, 1999; Rousset, 2000).167

We recorded the probability of identity-by-descent for pairs of individuals in each distance class.168

Under the infinite alleles model, pairs of individuals were considered identical-by-descent if they shared169

the same allele. The probability of identity-by-descent in each distance class depends on the mutation170

rate; the probability will be greater when there are fewer alleles. For more consistent results that are171

nearly independent of mutation rate, the probability of identity is often calculated as a ratio that measures172

genetic similarity (or differentiation) relative to a particular reference group. We calculated the kinship173

coefficient which measures the correlation of genetic similarity between pairs of individuals a certain174

distance apart relative to the genetic similarity in the whole sample.175

Fr =
pi j − p̄

1− p̄
≈ E[T ]−Ei j[T ]

E[T ]
(1)

Here pi j is the probability of identity-by-descent between haploid individuals i and j at distance r and176

p̄ is the probability of identity-by-descent between random haploid individuals in the current sample177

(Hardy and Vekemans, 1999). The kinship coefficient is related to differences in the expected coalescent178

times, T , between a specific pair of individuals and a random pair in the population (Barton et al., 2013).179

Kinship coefficients were calculated for each transect and then averaged across transects for each distance180

class. Since this statistic is highly dependent on the sampling scheme, we sampled the same transect in all181

simulations.182
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We also calculated the ar parameter of Rousset (2000):

ar =
p0 − pi j

1− p0
(2)

which measures genetic differentiation over distance relative to the probability of identity-by-descent183

within a location. The ar parameter is independent of sampling scheme, but it does depend on the level184

of local identity-by-descent, p0, in the population such that ar approaches infinity as p0 approaches185

one (Vekemans and Hardy, 2004). Typically, p0 is estimated from the amount of autozygosity in the186

population; however, we estimated p0 as the probability that an individual shared an allele with one of187

the offspring that it competed with for the cell, which is suitable for haploid organisms and better fits its188

definition (Vekemans and Hardy, 2004).189

For each simulation, we calculated the average number of unique alleles in a 50-individual transect190

(k̄) and the average squared distance between parents and offspring (2s2). Using k̄, we estimated the191

population-level diversity, θ̂k (Ewens, 2004, eq. 9.32) and estimated effective haploid population size as192

N̂e = θ̂k/2µ and effective density as D̂e = N̂e/A, where A = 10,000.193

Finally, we estimated haploid neighborhood size using two different methods. First we used our194

estimated demographic parameters to calculate neighborhood size as the product N̂b = 4πs2D̂e. We195

then estimated neighborhood size using the regressions of both Fr and ar on the log of distance. The196

slope of the ar regression is an estimate of 1/2πσ2De and the slope of Fr regression is an estimate of197

−(1−F0)/2πσ2De (Barton et al., 2013; Hardy and Vekemans, 1999; Rousset, 2000).198

RESULTS199

Behavior of Dispersal Distributions200

Figure 1 shows the empirical cumulative distributions generated from 10,000 simulated dispersal events201

from each distribution. The probability of not dispersing from the original cell is indicated by the height202

of the left-most horizontal line for each distribution. The more leptokurtic distributions (exponential,203

gamma-1 and Lomax) with a high probability peak near zero have a much higher probability of not204

dispersing from the original cell, especially when σ is low. The Pareto distribution, which has a fat tail205

but has been shifted so it does not have a peak at zero, has a very low probability of not dispersing. Under206

the gamma distribution as the α parameter increases, the probability of remaining at the origin decreases;207

when α = 8 the probability is nearly zero for all values of σ .208

The average squared parent-offspring dispersal distance, s2, observed for each distribution was very209

similar with a relative error of less than 5% from the expected σ2 value (Table 2); however, the distribution210

of these values over sampled generations varied (Fig. 2A). Expectedly, the thin tailed or no-tail (triangular)211

dispersal distributions have the smallest variance because their properties are easier to represent with212

a small number of samples. The Lomax distribution has the highest variance with the median falling213

slightly below the expected value.214

Figure 2B shows the distribution of the average cubed parent-offspring dispersal distances, s3, for215

each transect. The theoretical third moment of the Lomax and Pareto distributions is infinite, while it is216

not possible to simulate this on a finite landscape, we do observe values of s3 that are several orders of217

magnitude larger than distributions with finite third moments. The distribution of s2 and s3 for the Lomax218

and Pareto distributions both have a large positive skew.219

Allelic Diversity220

The distribution of the number of unique alleles is similar for most of the dispersal kernels with the median221

falling near the expected value under the infinite alleles model (Fig. 3). The expected number of alleles222

under the infinite alleles model (gray horizontal line) is equal to ∑
n−1
i=0 θ/(θ + i) = 7.03 where n = 50 is223

the number of individuals in the sampled transect. The Lomax distributions have a higher median number224

of alleles at lower values of σ but this gets closer to the expected value when σ > 2. The average diversity225

is also slightly elevated for the exponential and gamma-1 simulations.226

Differences in effective population size between simulations can be measured by comparing the227

number of unique alleles observed in the transects. Different dispersal kernels produce similar levels of228

diversity, except for the Lomax distributions which have a higher θk and consequently a larger effective229

population size (Table 2).230
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Spatial Autocorrelation and Isolation-by-Distance231

To quantify the patterns of isolation-by-distance, we first measured the average probability of identity-232

by-descent for each sampled population as a function of distance. All dispersal kernels produced very233

similar patterns of isolation-by-distance especially for larger distance classes (Fig. 4). The probability234

of identity-by-descent is higher at small distance when σ is small but the relationship flattens out when235

σ = 4. Differences between the different dispersal distributions become apparent when the distance236

between individuals is small. The more leptokurtic dispersal distributions have a steeper incline as237

distance decreases and they have a higher probability of autozygosity at distance class zero. The plots for238

the triangular distribution nearly perfectly overlap the plots for the Rayleigh distribution in all cases.239

Because the probability of identity-by-descent is sensitive to differences in the number of alleles240

present in the sample, we also calculated the pairwise kinship coefficient over the log of distance (Fig. 5).241

The kinship coefficient shows how much more or less similar pairs of individuals in a given distance class242

are compared to the sample as a whole. The kinship coefficient is nearly independent of differences in243

allele number and there is much better overlap of the plots for the different dispersal distributions. When244

the kinship coefficient is plotted against the log of distance there is a negative linear relationship over245

a certain range of distances (Hardy and Vekemans, 1999). The slope of this linear range is also similar246

across distributions for each value of σ .247

Finally, we plot Rousset (2000)’s ar parameter against the log of distance. There is a positive linear248

relationship between ar and the log of distance (Fig. 6). The slope of ar is fairly similar among the249

dispersal distributions for a given value of σ . However, there is less overlap in the plots for the different250

dispersal distributions because the overall amount of differentiation varies.251

Estimated Neighborhood Size252

As mentioned previously, the populations with Lomax dispersal tend to have a greater number of unique253

alleles and this translates to higher θ̂k, higher effective population size, and ultimately higher effective254

density. Because s2 was similar for each dispersal kernel, this means that the estimated neighborhood size255

using demographic estimates, N̂b(θk), was slightly higher for the Lomax dispersing populations (Table 2).256

Otherwise, the estimates for the other dispersal distributions are similar and close to the expected values.257

Isolation-by-distance theory predicts that the slope of the regression of certain measures of genetic258

similarity and the log of distance will provide an estimate of 4πσ2D for haploid populations in two-259

dimensions. We calculated the slope over a distance range of 5 to 35 for each group of simulations. Both260

of the slope methods using ar and Fr statistics provide identical neighborhood size estimates so only the261

estimates using ar are reported in Table 2 as N̂b(ar). The estimates for the Lomax dispersal populations262

appear to be much closer to the expected value and more similar to the other populations.263

DISCUSSION264

Approximating continuous dispersal on a discrete lattice will introduce obvious biases when the dispersal265

distance is small compared to the scale of the lattice nodes (Chipperfield et al., 2011). This bias can be266

seen in Fig. 1 by the jagged nature of the empirical cumulative distribution (ECDF) (especially when σ is267

small) compared to the CDF of the continuous distribution. In the simulation, the distance between nodes268

is one lattice unit so dispersal has to exceed at least a distance of 0.5 lattice units to leave the original269

cell. For Lomax simulations with small σ , the high probability density near zero falls rapidly before a270

distance of 0.5 lattice units has been reached. This means that the majority of dispersal events do not271

leave the parent cell. The Pareto and Lomax distributions share a similar shape and a wide tail, but unlike272

the Lomax distribution, the mode of the Pareto is greater than zero and almost all dispersal events leave273

the original cell. We refer back to the differences between the Lomax and the Pareto when we discuss274

whether we can differentiate results that are specific to dispersal with a high peak at zero or are more275

general to wide-tailed dispersal.276

Allelic diversity is near the expected value predicted by the infinite alleles model for most distributions.277

The Lomax distributions tend to have a higher number of alleles up until σ = 4. This appears to be in278

agreement with Maruyama (1972) which showed that the effective population size is larger than the279

census size when σ < 1 which is the case in many of the Lomax simulations (Fig. 2). Because the median280

allele number for the Pareto simulations falls near the expected value, it seems likely that the higher allelic281

diversity in the Lomax simulations is due to the high probability of not dispersing. This is supported282

by the fact that the average diversity is slightly higher for the exponential and gamma-1 as well. When283
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dispersal is unlikely to occur outside of the original cell, the number of migrants is low and the pool of284

offspring before competition will consist mostly of offspring from the same parent. It is unlikely that285

migrants will become established at their new location after competition and thus more alleles will be286

maintained.287

Much of the theory of isolation-by-distance in continuous populations is based on infinite or periodic288

lattice models. Here we simulated dispersal in a continuous population occupying a finite lattice with289

absorbing boundaries to better understand the effect of the dispersal kernel on isolation-by-distance290

models on a more natural landscape. As expected under isolation-by-distance, the probability of identity-291

by-descent between neutral alleles in pairs of individuals decreases as the distance between them increases.292

When neighborhood size is small, the relationship is very pronounced with a high initial probability that293

quickly declines. As neighborhood size increases (σ = 4), this relationship nearly disappears. This is294

similar to two-dimensional stepping stone models that show strong differentiation between populations295

when Nm << 1 and little differentiation when Nm > 4 (Kimura and Maruyama, 1971).296

Simulations with our different dispersal kernels show a strikingly similar pattern of isolation-by-297

distance. However, theory predicts that when distance is small, deviation in the shape of the dispersal298

kernel relative to the Rayleigh distribution will become important (Rousset, 1997, 2000). This is evident299

in our results when we compare the probabilities of identity-by-descent at small distances between the300

different dispersal kernels. When the dispersal kernel is leptokurtic, the probability is higher between301

individuals occupying the same location and it is slightly lower for short distances compared to the302

Rayleigh results. The pattern of identity-by-descent in other distributions, including the triangular are303

nearly identical to the Rayleigh. The situation is similar for the pairwise kinship except there is even304

greater similarity between the different dispersal kernels.305

Rousset (2008) makes it clear that the increase of genetic differentiation with distance is robust to306

the shape of the dispersal kernel but the overall magnitude of differentiation will depend on the shape of307

the kernel. Looking at the relationship between ar and the log of distance for our simulations, we can308

see that the slope for each distribution is similar for larger distance values but the plots are shifted up or309

down depending on kurtosis. Compared to the other wide tailed distributions, the Pareto distribution is310

not shifted upward due to the lack of dispersal at the origin. The ar statistic is a ratio that compares the311

amount genetic differentiation between individuals at certain distance to the differentiation within a single312

individual. When the probability of identity-by-descent within an individual is high, the differentiation313

between neighbors will appear much higher due to a steep initial drop in identity. As a result, the ar314

statistic will be greater for leptokurtic distributions even if the actual probability of identity is similar to315

other distributions.316

As expected, the neighborhood-size estimates are similar to the expected value for all simulations.317

Neighborhood size was slightly higher for the Lomax simulations when using allele diversity to estimate318

effective density. Otherwise, the slopes of the regression methods were similar and thus predicted similar319

neighborhood sizes. This reconfirms that neighborhood size is a robust descriptor of the decrease of320

genetic identity with distance. It also seems clear that fat-tailed dispersal kernels do not have much of an321

effect in isolated continuous populations.322

The triangular dispersal model can serve as a null model for the probability that two lineages will323

meet and coalesce in a previous generation. Identity-by-descent may be defined as the total probability of324

coalescence between the current generation, t0, and a generation at some time t in the past (Rousset, 2002).325

When a population is not panmictic due to limited dispersal, the time to coalescence depends on the326

probability that the two lineages will move close enough together so that there is some probability that they327

shared a parent in the previous generation. When the dispersal kernel has an infinite tail, there is always328

some small probability that two individuals coalesce even if they are very far apart. Under triangular329

dispersal, the probability that two individuals will coalesce in the previous generation is 1/(4πσ2D) if330

they are separated by a distance less than 2σ and zero otherwise.331

The triangular distribution has not been considered a reasonable distribution to use for modeling332

biological dispersal. However, as discussed previously, it arises from the simple assumption that dispersal333

is locally panmictic, making it potentially useful. When we compared the triangular distribution against334

more popular dispersal models, there were no significant differences between the resulting patterns of335

isolation-by-distance. Furthermore, the bounded range of the triangular distribution allows us to simulate336

dispersal more efficiently than other dispersal kernels. The algorithm we provide in the Appendix C337

allows us to bypass the costly conversion from polar to Cartesian coordinates by using a discrete sampling338
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method. This method requires some complicated pre-processing but it allows us to draw a relative dispersal339

position in constant time by using alias method look-up tables (Vose, 1991). Both these theoretical and340

computation concerns suggest that triangular distributions should be included in the molecular ecologists341

toolkit.342

Our results suggest that the relationship between probability of identity-by-descent and distance is343

similar for a wide range of dispersal kernels in a continuous population. These results should not be344

taken to mean that it is always safe to ignore the shape of the dispersal kernel. The shape of the tail,345

in particular, can impact many population processes but it does not appear to have a strong effect on346

isolation-by-distance in a finite, isolated population. Because speed is an important factor in deploying347

isolation-by-distance simulations in analytical contexts, e.g. approximate Bayesian computation, we348

recommend using the triangular distribution when long distance dispersal and other features of the349

dispersal kernel can safely be ignored.350

DATA ACCESSIBILITY351

Source code for simulations can be found at https://github.com/tfursten/IBD/tree/352

vpub. Simulation parameters and results can be accessed at http://dx.doi.org/10.6084/353

m9.figshare.1611097.354
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A XORSHIFT RANDOM NUMBER GENERATOR453

Xorshift is a type of pseudo-random number generator that relies on exclusive-or and bitshift operators454

(Marsaglia, 2003). Xorshift is one of the most efficient, high-quality random-number generators known.455

Our implementation is a 64-bit xorshift with shift parameters (5, 15, 27) added to a Weyl series to decrease456

bit correlations (Brent, 2007). It passes the BigCrush tests in the TestU01 suite (L’Ecuyer and Simard,457

2007).458

B GENERATING FROM A TRIANGULAR DISTRIBUTION459

Inverse sampling can be used to generate values from a triangular distribution. — Note that we are only460

working with monotonically increasing triangular distributions and not more general formulations. —461

If u is uniformly distributed in (0,1), the value d = 2s
√

u has a triangular distribution with parameter s.462

However, a modified rejection sampling algorithm is faster. If u1 and u2 are independent and uniformly463

distributed in (0,1), then d = 2smax(u1,u2) also has a triangular distribution. Because we can generate464

32-bit values for both u1 and u2 from a single 64-bit random number, this second algorithm is more465

efficient than the first. While it is possible to construct a ziggurat algorithm (Marsaglia and Tsang, 2000)466

for a triangular distribution, our second algorithm is more efficient because it involves fewer steps and467

never rejects.468

We compared the speed of these algorithms and a naive rejection sampler using the medium Crush469

tests (L’Ecuyer and Simard, 2007). This allowed us to compare the speeds of these algorithms in a470

data-intensive application as well as verify that the algorithms produced independent and identically471

distributed values from the correct distribution. The ‘maximum’ algorithm took 1656 seconds to complete,472

while the ‘sqrt’ took 1700s and the rejection sampler took 1911s. The maximum algorithm produced473

faster execution, but only sped up the tests by 3% over sqrt.474

C GENERATING DISCRETE TWO-DIMENSIONAL DISPERSAL FROM A TRI-475

ANGULAR DISTRIBUTION476

We can use the maximum algorithm above to generate the values in polar coordinates and convert them477

to Cartesian coordinates; however, this requires calculating sine and cosine functions, which we would478

rather not do. When modeling dispersal on a lattice, the bounded nature of the triangular distribution479

allows dispersal to be modeled discretely. To discretize this distribution on a rectangular lattice we must480

determine the probabilities for each cell which are proportional to the area of the cell that is covered by a481

disk of radius r = 2σ (centered on a focal cell). The algorithm described here produces probability tables482

by calculating the appropriate area for each cell and dividing by the total area. We assume that cells are483

squares with unit area.484

Since the disk is symmetrical, this algorithm may be simplified by calculating areas for quadrant485

I of the disk and mirroring those values to the other quadrants. We further simplify by calculating486

approximately half of the areas for quadrant I and mirroring those as well. — Note that this results in cells487

along the x and y axes having an area of 1/2. — Starting at the center of the focal cell (y0 = 0), we record488

the top/bottom boundary of each cell along the y-axis up to the radius: y1 = 0.5,y2 = 1.5, . . . ,yn = n−0.5489

where n = supn∈Z yn ≤ r.490

Next we calculate the area of the first column of cells which has a left boundary at x0 = 0 and a right

boundary at x1 = min(0.5,r):

A =
∫ x1

x0

√

r2 − xx dx

Starting with the bottom cell, we check if the area of a cell is less than the area of the column. If so, the491

cell is completely contained in the disk, and the cell is assigned a weight equal to its area. Its area is then492

subtracted from the area of the column. We continue this procedure until the the area of last cell is less493

than the remaining area of the column and assign the final cell a weight equal to the remaining area in the494

column.495

We then move to the next column by setting x0 = 0.5 and x1 = 1.5. However, before we calculate496

the area, we must check if the edge of the disk passes through the bottom of the top cell. This occurs497

if x2
1 + y2 > r2, where y is the value of the bottom boundary of the cell. When this occurs, we split the498
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column into two smaller columns and each column is processed just like before. We continue calculating499

the area of subsequent columns until we reach the column that contains the point {x,y}=
{

r/
√

2,r/
√

2
}

,500

which marks the point where the edge of the disk intersects the diagonal. After this column is processed,501

the weights for these cells can be copied symmetrically. The weight of each cell is divided by the total502

area of the disk and becomes a probability. These probabilities are then copied symmetrically to the503

other three quadrants. The completed table of probabilities can then be passed into the alias algorithm for504

discrete sampling (Vose, 1991).505

Our implementation of a discretized triangular kernel can be found in src/disk.h and src/disk.cpp in506

the source code. Code for generating an alias table can be found in src/aliastable.h.507
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Figure 1. Discretization has a small effect on dispersal distributions. The empirical cumulative

distribution function for each dispersal distribution on a discrete lattice compared to the CDF of its

continuous counterpart (black line). The different plots in each panel represent simulations run using

different σ parameters: 1, 1.5, 2, 4. An increase in the thickness of the line corresponds to increasing σ

parameter.
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Figure 2. Different dispersal kernels have equivalent second moments but different third

moments. Each panel represents groups of simulations run with different σ parameters and contains

box-whisker plots summarizing the distribution of the average (A) squared or (B) cubed parent-offspring

distance of 2,000 sampled transects. The top and bottom of the boxes represent the 75% and 25%

quartiles, while the central bar represents the median. The gray dots outside the whiskers represent

outliers. The gray horizontal line in A represents the expected σ2 value. The observed values are shown

on a log scale which is different in some panels.
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Figure 3. The distribution of unique alleles is similar for most dispersal kernels. Each panel

represents simulations run with a the σ parameter provided in the gray box. For each dispersal

distribution, the box-whisker plot summarizes the number of unique alleles (k) found in 2,000

50-individual transects. The gray horizontal line represents the expectation under the infinite alleles

model. The features of the box-whisker summary are the same as Fig. 2.

15/12

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1545v1 | CC-BY 4.0 Open Access | rec: 30 Nov 2015, publ: 30 Nov 2015



Distance (Lattice Units)

P
ro

b
a

b
ili

ty
 o

f 
Id

e
n

ti
ty

−
b
y
−

D
e

s
c
e

n
t

0.0

0.2

0.4

0.6

0.8
Rayleigh
Exponential
Normal
Triangular

1 1.5 2 4

0.0

0.2

0.4

0.6

0.8
Gamma 1
Gamma 2
Gamma 4
Gamma 8

0.0

0.2

0.4

0.6

0.8
Lomax 2.4
Lomax 2.6
Lomax 2.8
Lomax 3.0

0.0

0.2

0.4

0.6

0.8

5 25 45

Pareto 2.4
Pareto 2.6
Pareto 2.8
Pareto 3.0

5 25 45 5 25 45 5 25 45

Figure 4. Identity-by-descent is similar between different dispersal models. Each plot shows the

average probability of identity-by-descent for pairs of individuals in each distance class. Each panel

represents simulations run with different σ parameters (gray box) for different groups of dispersal

distributions.
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Figure 5. Kinship coefficients are similar between different dispersal models. Each plot shows the

average kinship coefficient for pairs of individuals over the log of the distance between them. Each panel

represents simulations run with different σ parameters (gray box) for different groups of dispersal

distributions. The gray dashed line is at zero so values above the line are more similar than the sample as

a whole while values below the line are less similar than the population as a whole.
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Figure 6. Slopes of genetic differentiation are similar between different dispersal models. Each

plot shows the average differentiation, ar, for pairs of individuals over the log of the distance between

them. Each panel represents simulations run with different σ parameters (gray box) for different groups

of dispersal distributions.
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Table 1. Dispersal Kernels. The dispersal function, range and probability density function for σ = 1.
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Table 2. Estimated neighborhood sizes are similar across all dispersal distributions. Estimates of

allele diversity, θ̂k, effective population density, D̂e, dispersal, s2, and neighborhood size. Neighborhood

size is estimated two different ways. N̂b(θ) is 4πs2D̂e where D̂e is estimated from θ̂k. N̂b(ar) is twice the

inverse of the slope of ar and the log of distance. The expected neighborhood size (4πσ2 ·1) is 12.56,

28.28, 50.26, and 201.06 for σ =1, 1.5, 2, and 4, respectively.

σ

1 1.5

θ̂k D̂e s2 N̂b(θk) N̂b(ar) θ̂k D̂e s2 N̂b(θk) N̂b(ar)

Ray 1.82 0.91 0.99 11.31 13.07 1.83 0.91 2.33 26.79 31.16

Exp 2.09 1.04 1.04 13.70 14.32 2.04 1.02 2.26 29.04 29.00

Nor 1.94 0.97 0.98 11.94 13.49 1.91 0.95 2.31 27.69 30.61

Tri 1.82 0.91 1.00 11.37 13.58 1.83 0.92 2.36 27.18 31.02

Gam 1 2.07 1.04 1.05 13.63 14.41 2.01 1.00 2.32 29.22 30.07

Gam 2 1.89 0.94 0.98 11.62 12.80 1.85 0.92 2.32 26.98 30.13

Gam 4 1.83 0.92 1.00 11.49 12.88 1.87 0.94 2.32 27.31 28.27

Gam 8 1.80 0.90 1.01 11.45 13.31 1.79 0.90 2.32 26.16 29.91

Lom 2.4 2.97 1.49 1.06 19.70 13.41 2.62 1.31 2.16 35.53 26.65

Lom 2.6 2.88 1.44 0.97 17.61 13.23 2.47 1.24 2.34 36.25 26.11

Lom 2.8 2.73 1.36 1.04 17.78 12.82 2.41 1.21 2.22 33.66 25.30

Lom 3 2.72 1.36 1.00 17.07 14.28 2.36 1.18 2.34 34.71 28.50

Par 2.4 1.98 0.99 0.98 12.18 11.71 1.93 0.97 2.19 26.56 27.12

Par 2.6 1.95 0.98 1.04 12.74 13.82 1.81 0.91 2.28 25.98 27.95

Par 2.8 1.90 0.95 0.97 11.57 12.25 1.85 0.93 2.25 26.16 30.85

Par 3 1.89 0.95 0.99 11.80 13.56 1.89 0.94 2.24 26.54 29.79

2 4

θ̂k D̂e s2 N̂b(θk) N̂b(ar) θ̂k D̂e s2 N̂b(θk) N̂b(ar)

Ray 1.97 0.99 4.07 50.39 58.81 2.02 1.01 16.11 204.93 236.23

Exp 2.02 1.01 4.08 51.88 49.60 2.09 1.05 16.16 212.48 154.94

Nor 1.95 0.97 4.08 49.87 55.00 2.04 1.02 16.04 205.76 189.69

Tri 1.94 0.97 4.11 50.13 54.57 2.09 1.04 16.09 210.87 245.02

Gam 1 2.03 1.01 4.06 51.74 52.25 2.16 1.08 16.15 218.67 257.28

Gam 2 1.89 0.95 4.12 48.88 54.39 2.02 1.01 16.08 204.41 214.04

Gam 4 1.94 0.97 4.08 49.80 55.60 1.98 0.99 15.94 197.97 191.02

Gam 8 1.89 0.94 4.06 48.21 52.47 2.02 1.01 16.11 203.96 231.04

Lom 2.4 2.48 1.24 3.98 62.01 47.94 2.19 1.09 16.06 220.82 180.03

Lom 2.6 2.36 1.18 3.94 58.49 48.10 2.15 1.07 15.45 208.62 219.14

Lom 2.8 2.27 1.13 4.16 59.23 51.08 2.14 1.07 15.81 212.44 241.05

Lom 3 2.24 1.12 3.97 56.05 47.23 2.07 1.04 16.55 215.21 211.19

Par 2.4 1.93 0.97 4.13 50.12 48.20 2.03 1.02 16.04 204.74 192.65

Par 2.6 1.95 0.97 4.11 50.29 51.74 2.03 1.02 15.91 203.23 189.19

Par 2.8 1.98 0.99 4.02 49.95 47.73 1.95 0.97 15.53 189.90 219.90

Par 3. 1.98 0.99 4.10 50.92 49.58 2.01 1.00 16.30 205.48 169.53
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