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The paper examined the vegetation coverage dynamic and its response to climate elements in Yellow 

River Basin from 1998 to 2008 by an integrated approach made from series methods including 

correlation analysis, wavelet analysis, and wavelet regression analysis. The main findings are as 

follows: (1) Vegetation coverage exhibited significant, positive correlation with temperature and 

precipitation, but negative correlation with sunshine hours and relative humidity at some sites. The 

correlation between NDVI and precipitation is closest, followed respectively by temperature, relative 

humidity, and sunshine hours. Precipitation and temperature are the two major climate elements 

affecting vegetation coverage dynamics. (2) The vegetation coverage dynamics reflected by NDVI 

time series presented nonlinear variations that depended on the time-scale. Precipitation and 

temperature both presented nonlinear variations that were morphologically similar with those of 

NDVI. These further supported the close relationship between NDVI and these two climate elements 

from a new perspective. (3) Although NDVI, temperature, and precipitation revealed nonlinear 

variations at different time scales, the vegetation coverage showed a significantly, positively linear 

correlation with temperature and precipitation at all the time scales under examination.
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1. Introduction 10 

Terrestrial ecosystems are permanently changing at a variety of spatial and temporal 11 

scales due to natural and/or anthropogenic causes (Martíneza and Gilabert 2009). 12 

Climate change is one of the causes resulting in land cover change (Lambin and 13 

Strahler 1994). Evidence shows that there is a strong relationship between terrestrial 14 

vegetation coverage and climate variability (Kaufmann et al., 2003). Therefore, the 15 

study on the relationship between vegetation coverage change and the related climate 16 

elements has been more and more attention in the recent years (Fu et al 2007; Yang et 17 

al. 2010). 18 

In most existing studies, remote sensing images have typically been used as the test 19 

datasets. An example is SPOT VEGETATION product, which can provide the 20 

required time-series of satellite images to extract vegetation parameters and monitor 21 

dynamic trends in vegetation. Among the surface parameters extracted from remote 22 

sensing data, normalized difference vegetation index (NDVI) has proved to be a proxy 23 

for the status of the aboveground biomass at the landscape level because of the high 24 

correlation with green-leaf density, net primary production and COB2B fluxes 25 

(Running and Nemani 1988; Tucker and Sellers 1986; Wylie et al. 2003), which can 26 

be calculated by the formula NDVI= (NIR-RED)/(NIR+RED), where NIR and RED 27 

are the reflectance in the near- infrared and red electromagnetic spectrums of objects 28 

on the earth surface, respectively (Eidenshink and Faundeen, 1994).  29 

Climate elements such as precipitation and temperature, effect the vegetation 30 

coverage growth, and NDVI time series have proven useful to reflect the change of 31 

vegetation coverage to a certain extent (Nemani et al. 2003). Therefore, the studies on 32 

the relationship between NDVI and climate elements have become a hot topic in a 33 

much larger context of ecological research (Fu et al. 2007). 34 

Many case studies in different countries and regions have also been conducted to 35 

evaluate vegetation dynamic. As a result, several methodologies have been used to 36 

monitor vegetation dynamic from multi- temporal data, including statistical methods 37 
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such as principal component analysis (Hall-Beyer 2003; Hirosawa et al. 1996) and 1 

curve fitting (Jonsson and Eklundh, 2004; Zhang et al., 2003), as well as 2 

spectral- frequency techniques such as Fourier analysis (Azzali and Menenti 2000; 3 

Stockli and Vidale 2004), harmonic analysis (Jakubauskas et al. 2001) and wavelet 4 

analysis (Martinez and Gilabert 2009；Galford et al. 2008). However, it has proven 5 

difficult to achieve a thorough understanding of the vegetation coverage dynamic 6 

mechanism by any individual method (Yang et al. 2012; Liu et al. 2011). Because 7 

NDVI and climate elements time series usually present different frequency 8 

components, such as seasonal variations, long-term and short-term fluctuations, there 9 

is still a lack of effective means available for underlying the vegetation coverage 10 

dynamic and its related climate elements at different time scales (Cao et al. 2012; Nie 11 

et al. 2012).  12 

The Yellow River Basin (YRB), as one of seven river basins in China, spans across 13 

arid, semi-arid, and semi-humid climate zones, which results in rich vegetation types, 14 

but with a very fragile ecosystem in part of the basin. Specially, drought and flooding 15 

disasters frequently occur in this basin, which is in response to regional climate 16 

change (Deng et al. 2007). The basin dominates the ecological stability in north China. 17 

It is, therefore, necessary to gain a deep and through understanding of the relationship 18 

between vegetation coverage and climate elements in the basin. 19 

In the last 20 years, numerous researches have investigated the relationships 20 

between vegetation dynamic and climate elements in YRB (Miao et al. 2012; Liang et 21 

al. 2012; Liu et al. 2008), but the majority is of the single-time scale analysis. As 22 

mentioned above, the time series of NDVI and climate elements usually characterized 23 

by patterns like seasonal variations, long-term trends and localized abrupt changes, 24 

thus, a multiple time-scale analysis on these relationships is essential and meaningful.  25 

By now, a detailed study of climate-vegetation interaction at multiple time scales, 26 

however, has not systematically undertaken in the YRB. 27 

On the other hand, although advances in the relationship between NDVI and 28 

climate elements has been taken, the mechanism and extent of the climatic influence 29 

on NDVI has not been understood fully, the interaction between temperature, 30 

radiation and water imposing complex and varying limitations on vegetation activity.  31 

Particularly, few studies could investigate the relationship from morphological 32 

similarity. This would support the relationship between NDVI and climate variability 33 

from a new perspective. 34 

The objective of the present study is to reveal the relationship between vegetation 35 

coverage and major climate elements at multiple time scales in YRB using an 36 

integrated approach. Firstly, a correlation analysis was used to identify the major 37 

climate elements affecting vegetation coverage based on the data of NDVI time series 38 

and the climatic data from 24 meteorological stations. Secondly, a wavelet transform 39 

(WT) was used to reveal the nonlinear pattern in changes of vegetation coverage and 40 

major climate elements at different time scales, trying to look into the morphological 41 

similarity between both temporal patterns. Lastly, the regression analysis was 42 

employed to show the quantitative relationship between vegetation coverage and the 43 

major climate elements based on results of wavelet analysis at different time scales. 44 
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2. Study area and data 1 

2.1 Study area 2 

Originating in the Bayan Har Mountains in Qinghai Province of western China, the 3 

Yellow River is the second-longest river in China and the sixth- longest in the world, 4 

with the estimated length of 5464km. It flows through nine provinces of China and 5 

empties into the Bohai Sea. The Yellow River Basin (Fig.1) ranges between 96º-119ºE 6 

and 32º-42ºN with an area of 794712kmP2P, an east-west extent of 1900km, and a 7 

north-south extent of 1100km (Yang et al., 2002). The climate in the basin is 8 

continental climate, with humid climate in the south-east, semiarid climate in the 9 

middle and arid climate in the north-west. The average annual precipitation is between 10 

200 and 600mm, and drought is the basic characteristic. Together with the complex 11 

geomorphic type and the inconsistent topography, the vegetation type is diverse 12 

(Fig.1). From east to west, the vegetation consists of warm temperature zone forest, 13 

temperate zone forest (meadow) steppe, temperature zone typical steppe, temperate 14 

zone desert steppe, temperate zone shrub and semi-shrub desert, alpine shrubs and 15 

meadow, and alpine steppe. 16 

 17 

 18 

Fig.1 Types of Vegetation Coverage and Selected Metrological Stations in Yellow 19 

River Basin 20 

 21 

2.2 Climate data 22 

The climate data series from April 1998 to July 2008 were from 24 selected 23 
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meteorological stations in YRB (Fig.1), provided by China Meteorological Data 1 

Sharing Service System (CMDSSS, http://cdc.cma.gov.cn). The data included ten-day 2 

mean temperature (T, 0.1 ºC), ten-day mean precipitation (P, 0.1 mm), ten-day average 3 

relative humidity (H, 1 %) and ten-day sunshine hours (S, 0.1 h). The standards of the 4 

measurement instruments and data processing have been outlined in the CMDSSS. 5 

For these time series, the homogeneity test has been done using SNHT, Buishand and 6 

Pettitt homogeneity test method. The 24 stations were fairly evenly distributed in the 7 

study region, representing all the vegetation types in YRB, with 4 stations in alpine 8 

shrubs, meadow, 9 stations in warm temperate zone forest, 2 stations in temperate 9 

zone typical steppe, 1 station in temperate zone shrub, semi-shrub desert, 3 stations in 10 

temperate zone desert steppe, and 5 stations in temperate zone forest (meadow) 11 

steppe. 12 

  13 

2.3 NDVI data 14 

In this research, a time series of 372 SPOT-VGT scenes, covering the period from 15 

April 1998 to July 2008, were obtained from the Image Processing and Filing Center 16 

of VITO Institute, Belgium, which has been improved by applying atmospheric 17 

correction, cloud removal, and bi-directional reflectance distribution function (BRDF) 18 

correction (Morawitz et al. 2006). Each 10-day NDVI data was synthesized by a 19 

revised Maximum Value Composites (MVC) method. The 10-day periods of synthetic 20 

SPOT-VGT scenes were defined as from date 1 to date 10, date 11 to date 20, and date 21 

21 to the end of each month. The spatial resolution was 1 km×1 km, nearly as a 22 

constant across the whole 2,250 km swath covered, which meant that there was almost 23 

no distortion at the image edge (Maisongrande et al. 2004).  24 

The SPOT-VGT images record the digital number (DN) between 0 and 255. To 25 

recalculate digital numbers to proper NDVI values, the grey value of every pixel is 26 

linearly stretched by NDVI=DN×0.004-0.1, which converts the data range to [0, 1]. In 27 

order to match the climate data, 24 mete-stations，belonging to different vegetation 28 

cover types respectively，were chosen as typical sites to investigate the relationship 29 

between NDVI and climate elements. Eight neighboring pixels of each station could 30 

cover the station well; therefore, Average NDVI value from eight neighboring pixels 31 

was calculated to represent the vegetation cover condition near station. According to 32 

Wang et al. (2010), the land use/cover map of YRB in 2000 was obtained (Fig.2), 33 

from which, the information on the nature of the land use/cover near stations could be 34 

clearly got. 35 
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 1 
Fig.2 Spatial distribution of Land use in 2000, Yellow River Basin  2 

 3 

3 Methodology 4 

Three steps were taken to evaluate different temporal characteristics of NDVI and its 5 

relationship with regional climate variables. Firstly, a correlation analysis was 6 

employed to identify the major climate elements affecting vegetation coverage. 7 

Secondly, WT was used to reveal the periodicity and nonlinear pattern in change of 8 

NDVI and major climate elements. Thirdly, a regression analysis was employed to 9 

show the quantitative relationship between vegetation coverage and its related climate 10 

elements based on the results of WT at different time scales. 11 

 12 

3.1 correlation analysis 13 

In this study, Pearson correlation coefficient was used to check the strength of 14 

relations between NDVI and the related climate elements (i.e. temperature, 15 

precipitation, relative humidity, and sunshine hours), and further identify the major 16 

climate elements affecting vegetation coverage change during the period of 17 

1998-2008. 18 

 19 

3.2 Wavelet analysis  20 

Wavelet analysis is becoming a common tool for analyzing localized variations of 21 

power within a time series. WT uses local basis functions (wavelets) that can be 22 

stretched and translated with a flexible resolution in both frequency and time domains 23 

to analyze signals. It can be understood as a technique that looks at different sections 24 

of the time series with a window adjusted by changing its size, so that a narrow 25 

window captures the presence of short- lived events (high frequency variability), 26 

whereas a wide window resolves processes that show low frequency variability in 27 

time scale (Xu et al. 2009).  28 
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The continuous wavelet function that depends on a non-dimensional time parameter 1 

η can be written as (Labat 2005): 2 

)(||),()( 21

a

bt
aba


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                          (2) 3 

Where t is time, a is the scale parameter and b is the translation parameter. 4 

For a discrete signal x(t), such as the time series of NDVI, runoff, temperature, or 5 

precipitation, its continuous wavelet transform (CWT) can be expressed by the 6 

convolution of x(t) with a scaled and translatedΨ(η): 7 
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Where Wx(a,b) is the wavelet coefficient, and(*) is the complex conjugate. From this, 9 

the concept of frequency is replaced by that of scale. For different combinations of 10 

scale a and location b resulting in the decomposition of the signal into time-scale 11 

space, a series of wavelet coefficients can be obtained for these specific points. Thus, 12 

it can characterize the variation in the signal x(t) at a given time scale. 13 

The wavelet variance Wx(a) can be obtained: 14 

dbbaWaW xx 



 2|),(|)(

                            (4) 15 

Wavelet variance reflects the energy distribution with scale, and it is usually used to 16 

detect the periods present in the signal x(t). 17 

Taking discrete values of a and b, the discrete wavelet transform (DWT) can be 18 

defined for signal x(t) (Mallat 1989): 19 
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                        (5) 20 

Where φj0,k (t) and Ψj,k (t) are the flexing and parallel shift of the basic scaling 21 

function,φ(t), and the mother wavelet function, Ψ(t), and μj0,k (j<j0) and ωj,k are the 22 

scaling coefficients and the wavelet coefficients, respectively.  23 

A signal can be decomposed according to DWT, allowing separation of the 24 

fine-scale behavior from the coarse-scale behavior of the signal (Bruce et al. 2002). 25 

Usually, the fine scale corresponds to a compressed wavelet as well as rapidly 26 

changing details (high frequency), whereas coarse scale corresponds to a stretched 27 

wavelet and slowly changing coarse features (low frequency).  28 

According to the actual criteria for wavelet selection including self-similarity, 29 

compactness, and smoothness, symmlet was chosen as the base wavelet. Using this 30 

base wavelet, a number of scaling functions were experimented to determine the most 31 

suitable wavelet for these datasets of NDVI and climate elements. It was found that 32 

‗Sym8‘ (Fig.2) produced the most robust quantitative results. Therefore, ‗Sym8‘ was 33 

chosen as the base wavelet in this paper. 34 

One major interest of this research is to obtain the approximate components based 35 

on wavelet decomposition for the time series of NDVI and major climate elements. To 36 

accomplish that, the levels analyzed were restricted to S1, S2, S3, S4, and S5 to 37 

represent the approximate components. These five time scales are designated as S1 38 
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through S5 and started from 20-day (S1), then increased by twofold for the next scale 1 

level until a 320-day time scale was attained (S5).  2 

  3 

 4 
Fig.3 the sym8 wavelet 5 

 6 

3.3 Wavelet regression analysis 7 

Wavelet regression analysis (Xu et al. 2008 2011) was conducted to examine the 8 

quantitative relationship between NDVI and major climate variables. Firstly, the 9 

nonlinear series of NDVI and the relevant climate elements were approximated using 10 

wavelet decomposition at multiple time scales; regression analysis method was then 11 

used to reveal the statistical relationship between NDVI and the related climate 12 

elements based on the results from wavelet approximation. 13 

4 Results  14 

4.1 Major climate elements affecting vegetation coverage 15 

In order to identify the major climate elements affecting vegetation coverage, the 16 

NDVI values at the 24 meteorological stations were extracted from the SPOT-VGT 17 

Images, and then correlation coefficients was computed based on the times series of 18 

372 data on NDVI, precipitation, temperature, relative humidity, and sunshine hours.  19 

The analytical results (Table 1) indicated that NDVI had a positive correlation with 20 

precipitation and temperature, but a negative correlation with relative humidity and 21 

sunshine hours at a few sites. The correlation between NDVI and precipitation is 22 

closest, followed respectively by temperature, relative humidity, and sunshine hours. 23 

Different vegetation types showed little difference in the correlation strengths 24 

between NDVI and precipitation and temperature. 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 
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Table 1 Correlation coefficients between NDVI and climate elements 1 

 2 
No

. 

Station NDVI vs 

P 

NDVI vs 

T  

NDVI vs 

H 

NDVI vs 

S 

Vegetation types 

1 LuShi 0.820** 0.443** 0.349** 0.106* warm temperate zone forest 

2 HeZuo 0.826** 0.616** 0.613** 0.028 warm temperate zone forest 

3 YunCheng 0.775** 0.408** 0.124* 0.514** warm temperate zone forest 

4 Yan'An 0.807** 0.471** 0.356** 0.177** warm temperate zone forest 

5 Ji'Nan 0.807** 0.468** 0.480** 0.156** warm temperate zone forest 

6 JieXiu 0.123* 0.407** 0.444** 0.034 warm temperate zone forest 

7 YuanPing 0.841** 0.519** 0.504** 0.265** warm temperate zone forest 

8 ZhengZhou 0.584** 0.182** 0.077 0.396** warm temperate zone forest 

9 HuiMingcounty 0.578** 0.254** 0.246** 0.331** warm temperate zone forest 

10 Hohhot 0.721** 0.515** 0.228** 0.381** temperate zone typical steppe 

11 darfur joint flag 

Abraham 0.754** 0.480** -0.048 0.316** 

temperate zone typical steppe 

12 GangCha 
0.787** 0.734** 0.773** -0.159** 

temperate zone shrub,semi-shrub 
desert  

13 PingLiang 
0.841** 0.449** 0.362** 0.266** 

temperate zone forest (meadow) 
steppe 

14 Xi'Ning 
0.809** 0.562** 0.537** 0.196** 

temperate zone forest (meadow) 
steppe 

15 YanChi 

0.615** 0.307** 0.273** 0.226** 

temperate zone forest (meadow) 

steppe 
16 YuLin 

0.812** 0.332** 0.118* 0.441** 

temperate zone forest (meadow) 

steppe 

17 WuQiaoling 
0.806** 0.623** 0.416** -0.187** 

temperate zone forest (meadow) 
steppe 

18 YinChuan 0.839** 0.336** 0.280** 0.466** temperate zone desert steppe 

19 Otog Banner 0.608** 0.407** 0.264** 0.238** temperate zone desert steppe 

20 Urad Middle Banner 0.721** 0.340** -0.234** 0.505** temperate zone desert steppe 

21 DaRi 0.749** 0.542** 0.571** 0.228** Alpine shrubs, meadow  

22 MaDuo 0.740** 0.529** 0.448** 0 Alpine shrubs, meadow  

23 YuShu 0.776** 0.626** 0.630** 0.167** Alpine shrubs, meadow  

24 QuMacai 0.620** 0.435** 0.303** 0.106* Alpine shrubs, meadow  

note: **correlation is significant at the 0.01 level(2-tailed), *correlation is significant at the 0.05 level(2-tailed). P: precipitation T: 3 
temperature, H: relative humidity, S: sunshine hours. 4 

The results indicated that the two major climate elements that affect vegetation 5 

coverage are precipitation and temperature. So, the following discussion about the 6 

climate elements affecting vegetation coverage will focus on precipitation and 7 

temperature. 8 

4.2 Nonlinear variations of vegetation coverage depending on the time scale 9 

Based on the SPOT-VGT images, the original NDVI time series for 24 10 

meteorological stations were built. These series all showed a fluctuating 11 

characteristic. As shown in the Hohhot station (Fig.4 (a)), the original NDVI time 12 

series showed fluctuating patterns of NDVI for the period of 1998-2008. It is difficult 13 

to identify any trend of NDVI change. With the ascending time scale from S1 to S5, 14 

the approximate components based on DWT were obtained (Fig.4(b,c,d)). According 15 

to this, the nonlinear patterns for NDVI changes were analyzed at multiple-time 16 

scales. 17 

The wavelet decomposition for the NDVI time series at five time scales resulted in 18 

five variants of nonlinear patterns (Fig.4(b,c,d)). The S1 curve (Fig.4(b)) shows 11 19 

peaks with multiple sub-peaks and 10 valleys with sub-valleys, which is smoother 20 
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than the original signal but still retains a large amount of residual noise from the raw 1 

data. These characteristics indicate that although the NDVI varied greatly throughout 2 

the study period, there was a hidden trend. At the 40-day scale, the S2 curve (Fig.4(c)) 3 

still retains a considerable amount of residual noise. However, it is much smoother 4 

than the S1 curve, which allows the hidden trend to be more apparent. Compared to 5 

S2, the S3 curve (Fig.4(d)) retains much less residual noise, and presents obvious 6 

periodicity, which is indicated by the 11 peaks without sub-peak and 10 valleys with 7 

fewer sub-valleys. Perceptibly, the S4 curve (Fig.4(d)) with no sub-peak and 8 

sub-valley is much smoother than the S3 curve, and the trend is more obvious in the 9 

S4 curve at the time scale of 160-day. Finally, the S5 curve (Fig.4(d)) at the time scale 10 

of 320-day, nearly 1 year, presents a clear pattern. Therefore, the nonlinear patterns of 11 

NDVI were found to be dependent on the time scale. 12 

 13 
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 1 
Fig.4 Nonlinear pattern for NDVI at different time scales 2 

 3 
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4.3 Nonlinear variations of major climate elements depending on the time scale 1 

The approximate components of temperature and precipitation based on DWT were 2 

obtained. As illustrated in Fig.5, the five variants of nonlinear patterns from wavelet 3 

decomposition on temperature series showed fluctuating patterns of temperature for 4 

the period of 1998-2008. The S1 curve shows 11 peaks with multiple sub-peaks and 5 

10 valleys with sub-valleys. Compared to S1, the S2, S3 and S4 curve is 6 

incrementally smoother, with less sub-peaks and sub-valleys. Finally, the S5 curve at 7 

the time scale of 320-day, nearly 1 year, presents a clear pattern. Therefore, the 8 

nonlinear patterns of temperature were found to be dependent on the time scale. 9 

 10 

 11 
Fig.5 Nonlinear pattern for temperature at different time scales  at Hohhot 12 

station 13 

 14 

Similar observations were also obtained for precipitation (Fig.6). With the 15 

ascending time scale from S1 to S4, the curves become increasing smoother, 16 

represented by 11 peaks with less sub-peaks and 10 valleys with less sub-valleys, and 17 

finally, the S5 curve exhibited an apparent pattern. Hereby, the nonlinear patterns of 18 

precipitation were found to be dependent on the time scale. 19 

 20 
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 1 
Fig.6 Nonlinear pattern for precipitation at different time scales at Hohhot 2 

station 3 

 4 

The correlation analysis indicated the existence of climatic impact on the NDVI 5 

dynamics in YRB, but it is still instrumental to investigate the morphological 6 

similarity between both temporal patterns. From the aforementioned results from 7 

wavelet analysis, the nonlinear variations of temperature and precipitation were 8 

similar with those of NDVI.  9 

 10 

4.4 The relationship between vegetation coverage and climate elements 11 

Based on the close relationship between NDVI and the major climate elements 12 

revealed in the above studies, further investigations became necessary to interpret the 13 

vegetation dynamic responses to changes in the two major climate variables and 14 

establish quantitative relations between them. This was done through the following 15 

three steps. Firstly, nonlinear patterns of NDVI, temperature and precipitation were 16 

approximated at ascending time scales. Secondly, the statistical relationship between 17 

NDVI and the two climate elements were established at given time scales based on 18 

the results from wavelet approximation. Finally, the most significant regression 19 

models and the most suitable time scales for investigating the NDVI response to the 20 

two climate changes were identified. 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 
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Table 2 Regression equations between NDVI and climatic elements at different 1 

time scales at Hohhot station 2 

 3 
Time scale Regression equation R2 F Significance level 

S1 N=0.422T+0.507P-0.00412 0.61 289.6 0.005 

S2 N=0.371T+0.574P-0.0017 0.65 337.113 0.005 

S3 N=0.371T+0.47P-0.028 0.67 381.86 0.005 

S4 N=0.38T+0.414P+0.12 0.68 388.49 0.005 

S5 N=0.628T+0.08P+0.324 0.27 69.56 0.005 

Note: N is 10-day maximum NDVI, p is 10-day average precipitation, T is 10-day average temperature, 4 
S1 represents 20-day scale, S2 represents 40-day scale, S3 represents 80-day scale, S4 represents 5 
160-day scale, S5 represents 320-day scale. 6 

The analytical results (Table 2) indicated that each regression model is statistically 7 

significant at the 0.005 level. All the regression models yielded meaningful 8 

explanations in which NDVI was positively correlated with temperature and 9 

precipitation at all the time scales under examination (i.e., 20-day, 40-day, 80-day, 10 

160-day, and 320-day). Furthermore, the regression models at 20-, 40-, 80- and 160- 11 

scales have revealed a stronger relationship between NDVI and precipitation, while 12 

the regression models at 320-day scale have revealed a stronger relationship between 13 

NDVI and temperature. These results provided further evidence supporting the view 14 

that the nonlinear pattern of NDVI time series in the study area was influenced by the 15 

two climate variables. In addition, the regression model at 160-day scale was the most 16 

significant, therefore, the 160-day time scale can be regarded as the most suitable time 17 

scale for evaluating the vegetation dynamic responses to climate elements at Hohhot 18 

station. 19 

For the other stations, the same steps were done, and the regression models at the 20 

most suitable time scales were produced (Table 3). At the stations for forest and 21 

alpine shrubs, meadow vegetation, S4 scale (i.e. 160-day) was the most suitable time 22 

scale, while at most stations of temperature vegetation, S3 scale (i.e. 80-day) was the 23 

most suitable.  24 

The results also suggested that although the time series of NDVI, temperature, and 25 

precipitation presented nonlinear patterns, NDVI had a linear correlation with the 26 

temperature and precipitation. 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 
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Table 3 Regression equations between NDVI and climate elements at the most 1 

suitable time scales 2 

 3 
Station Regression equation RP

2P
 F Significance level Most suitable scale 

DaRi N=0.28P+0.57T+0.1 0.76 575.71 0.005 S4 

MaDuo N=0.42P+0.51T+0.08 0.8 754.95 0.005 S4 

YuShu N=0.53P+0.33T+0.108 0.817 824.9 0.005 S4 

QuMacai N=0.82P+0.131T+0.114 0.726 488.99 0.005 S4 

LuShi N=0.43P+0.57T-0.014 0.95 3584.119 0.005 S4 

HeZuo N=0.44P+0.47T+0.097 0.889 1492.234 0.005 S4 

YunCheng N=0.33P+0.58T+0.094 0.867 1206.5 0.005 S3 

Yan'An N=0.49P+0.37T+0.093 0.816 817.11 0.005 S4 

Ji'Nan N=0.68P+0.35T+0.027 0.892 1526.37 0.005 S4 

JieXiu N=0.77P+0.14T+0.047 0.795 717.55 0.005 S4 

YuanPing N=0.7P+0.25T+0.023 0.928 2380.455 0.005 S4 

ZhengZhou N=0.04P+0.76T+0.17 0.7333 507.34 0.005 S4 

HuiMingcounty N=0.05P+0.74T+0.12 0.752 558.26 0.005 S4 

darfur joint flag 

Abraham 

N=0.49P+0.37T+0.07 0.7481 547.845 0.005 S3 

GangCha N=0.92P+0.06T+0.001 0.8422 984.38 0.005 S3 

YinChuan N=0.27P+0.62T-0.06 0.7873 683.2 0.005 S3 

Otog Banner N=0.62P+0.09T+0.097 0.6 277.66 0.005 S3 

Urad Middle 
Banner 

N=0.14P+0.47T+0.132 0.6631 363.2 0.005 S3 

PingLiang N=0.35P+0.57T+0.05 0.8848 1416.43 0.005 S4 

Xi'Ning N=0.75P+0.212T+0.019 0.8578 1113.22 0.005 S3 

YanChi N=0.33P+0.27T+0.143 0.5213 200.94 0.005 S3 

YuLin N=0.27P+0.56T+0.08 0.7999 737.52 0.005 S4 

WuQiaoling N=0.62P+0.26T+0.078 0.8855 1427.11 0.005 S4 

Note: N is 10-day maximum NDVI, P is 10-day average precipitation, T is 10-day average temperature, 4 
S3 represents 80-day scale, S4 represents 160-day scale. 5 

5 Discussions 6 

5.1 NDVI correlation with climate elements 7 

Climate elements affect vegetation growth by changing soil moisture and heat energy. 8 

The correlation analysis above indicated that precipitation and temperature are two 9 

primary climate parameters that directly impact vegetation growth in a positive 10 

fashion in the YRB. Many researches have confirmed the correlations between NDVI 11 

and precipitation and temperature in YRB (Hao et. al. 2011; Liang et. al. 2012), but 12 

most research is based on monthly or yearly interval and few studies have connected 13 

climate elements with 10-day NDVI. In addition, in this study, little difference in 14 

correlation strengths between NDVI and precipitation has been found among different 15 

vegetation type. However, some studies (Li et. al. 2004) have indicated that the 16 

vegetation is more sensitive to precipitation in the middle reaches and upper reaches. 17 

The reason is that the spatial-temporal scales employed by different studies are 18 

different. Furthermore, the conflicting results indicated that the NDVI response to 19 
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climate elements was scale-dependent in the temporal dimension. 1 

It is worth noting that NDVI had a negative correlation with relative humidity at 2 

two stations in steppe. The negative statistical correlation is mainly a temperature 3 

effect. To detect the correlation between humidity and vegetation cover the use of 4 

absolute measures (saturation deficit for example) is necessary. Therefore, further 5 

studies and results will be expected. 6 

In addition, this paper investigated the morphological similarity between NDVI and 7 

the climatic element temporal patterns, suggesting that the relationship between the 8 

NDVI and climate elements could be explored from a new perspective. 9 

 10 

5.2 long-term influences of climate elements on NDVI 11 

This study investigated the relationship between vegetation coverage and climate 12 

elements only in a study period of 11 years that is not enough compared with the 13 

long-term climatic behavior. According to the research of Liu and others (2011), the 14 

temperature would apparently increase and precipitation would have a slightly 15 

increment in 2050 within the study region, which is the results of global climate 16 

change. How would the long-term climatic behavior be influence on NDVI? 17 

Therefore, further research would be necessary on a longer investigation period. 18 

 19 

6 Conclusions 20 

Using an integrated method including correlation analyses, wavelet analysis and 21 

wavelet regression analyses, this study investigated the relationship between 22 

vegetation coverage and two main climate elements in YRB by coupling SPOT-VGT 23 

image-based NDVI time series (1998-2008) with the climate data from 24 24 

meteorological stations within the study area.  25 

From the previous results, the main findings can be concluded as follows: 26 

(1) There was a close relationship between temporal variations in the NDVI and 27 

regional climate elements. NDVI was found to significantly correlate with 28 

precipitation and temperature in a positive fashion, but negatively correlate with 29 

relative humidity and sunshine hours at a few sites. The correlation between NDVI 30 

and precipitation is closest, followed respectively by temperature, relative humidity, 31 

and sunshine hours. The high values of correlation coefficients have no doubt 32 

revealed that precipitation and temperature were the two major climate elements 33 

affecting vegetation coverage. 34 

(2) The nonlinear NDVI pattern was found to be scale-dependent with respect to 35 

time. The wavelet decomposition of the NDVI time series at the five time scales 36 

resulted in five variants of a nonlinear pattern. With the time scale changing from 37 

small to large, the wavelet curves became incrementally smoother and stabilizing onto 38 

an obvious tendency. 39 
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(3) The approximate components from wavelet decomposition on temperature and 1 

precipitation series both showed fluctuating patterns that were scale-dependent in the 2 

time domain. With the ascending time scale, the curves become increasing smoother, 3 

and finally, an obvious pattern was presented, respectively. These nonlinear variations 4 

were found to be similar with those of the NDVI. 5 

(4) At all the time scales (20-, 40-, 80-, 160-, and 320-day) under examination, 6 

NDVI and the major climate elements (i.e. temperature and precipitation) were 7 

significantly and positively correlated at the 24 stations. The most suitable time scale 8 

to investigate the responses of vegetation dynamics to the major climate elements was 9 

80 days for temperature vegetation, as well as 160 days for forest and alpine shrubs, 10 

meadow vegetation at most stations.  11 
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