
Textual Analysis or Natural Language Parsing?
A Software Engineering Perspective

Sebastiano Panichella
University of Zurich

Abstract—The problem of designing effective methodology
to summarize, and analyze the amount of textual information
produced by developers remains particularly challenging espe-
cially when the goal is to help developers in making better de-
velopment/maintenance decisions. Moreover, contrasting results
might be obtained depending on the communication channel
being mined and the technique adopted for its analysis. In our
work we investigate the usage of Natural Language Parsing
(NLP) and Textual Analysis (TA) techniques to automatically
classify development content. Results of our study highlight the
superiority of NLP techniques over the traditional TA techniques
when used to analyze the textual data produced in software
development. We also show the benefits of NLP when used to
enhance software engineering recommenders.

Index Terms—Unstructured Data Mining, Natural Language
Parsing, Empirical Study.

I. CONTEXT

In many open sources and industrial projects, developers
make an intense usage of written communication channels,
such as mailing lists, issue trackers and chats. Developers’
communication contains valuable information for guiding de-
velopers to accomplish different maintenance and evolution
tasks. For example, such information have been extensively
analyzed by software engineering researchers to build rec-
ommenders aimed at performing bug triaging, profiling de-
velopers, re-documenting existing source code [2], or simply
classifying textual development content [1]. However, because
of the rapid increasing of the amount of textual data to analyze,
the ability to summarize and understand such information
remain challenging.

II. MOTIVATIONAL EXAMPLE

We argue that approaches based on NLP analysis can be
highly beneficial to determine the information needed by
developers for making better development/maintenance deci-
sions. The usage of NLP is motivated by the need of better
capturing the intent of a sentences in a discussion, a task for
which techniques based on lexicon analysis, such as Vector
Space Models (VSM), Latent Semantic Indexing (LSI), or
Latent Dirichlet Allocation (LDA) would not be sufficient. For
example, let us consider the following two sentences:

1) We could use a leaky bucket algorithm to limit the bandwidth.
2) The leaky bucket algorithm fails in limiting the bandwidth.

A topic analysis technique (e.g., LDA) will reveal that
these two sentences are likely to discuss the same topics:
“leaky bucket algorithm” and “bandwidth”. However, these two
sentences have completely different intentions: in sentence (1)
the writer proposes a solution for a specific problem, while in

sentence (2) the writer points out a problem. This example
highlights that understanding the intentions in developers’
communication could add valuable information for guiding
developers in detecting text content useful to accomplish
different and specific maintenance and evolution tasks.

III. EMPIRICAL STUDY AND MAJOR FINDINGS

In our work we propose an approach, named DECA
(Development Email Content Analyzer), that uses NLP to
capture linguistic patterns and classify emails’ content [3].
Thus, we investigate the use of NLP and TA techniques to
automatically classify development content in according to
a taxonomy of high-level categories of sentences, obtained
by manually classifying development emails using grounded
theory: feature request, opinion asking, problem discovery, solution
proposal, information seeking and information giving.

Results of our study highlight the limits of traditional TA
techniques and the superiority of our NLP technique when
used to classify development content. Specifically, DECA
outperforms traditional ML techniques in terms of recall, pre-
cision and F-Measure when classifying e-mail content. More-
over, we also successfully used DECA for re-documenting
source code of two Java systems, improving the recall, while
keeping high precision, of a previous approach based on ad-
hoc heuristics.

IV. PERSPECTIVE

The proposed approach can be used for a wider appli-
cation domain, such as the preprocessing phase of various
summarization tasks (as partially showed in our study). For
example, it could be used as a preprocessing support to discard
irrelevant sentences within emails or bug report summarization
approaches. Furthermore, DECA can be used in combination
with topic models for retrieving contents with the same inten-
tions and treating the same topics from developers discussions
in order to plan a set of change activities.

REFERENCES

[1] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza. Content clas-
sification of development emails. In Proceedings of the 34th International
Conference on Software Engineering (ICSE), 2012, pp. 375-385.

[2] S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and G. Canfora, Mining
source code descriptions from developer communications. In Proceedings
of the 20th IEEE International Conference on Program Comprehension
(ICPC), 2012, pp. 63-72.

[3] A. Di Sorbo, S. Panichella, C. Visaggio, M. Di Penta, G. Canfora,
H. Gall, Development Emails Content Analyzer: Intention Mining in
Developer Discussions. Proceedings of the 30th international conference
on Automated Software Engineering (ASE 2015), 2015, To appear.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1534v1 | CC-BY 4.0 Open Access | rec: 25 Nov 2015, publ: 25 Nov 2015

