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Fully-automated identification of fish species based on otolith

contour: using short-time Fourier transform and discriminant

analysis (STFT-DA)

Nima Salimi, Kar Hoe Loh, Sarinder Kaur Dhillon, Ving Ching Chong

Background. Fish species may be identified based on their unique otolith shape or contour.

Several pattern recognition methods have been proposed to classify fish species through

morphological features of the otolith contours. However, there has been no fully-

automated species identification model with the accuracy higher than 80%. The purpose of

the current study is to develop a fully-automated model, based on the otolith contours, to

identify the fish species with the high classification accuracy. Methods. Images of the right

sagittal otoliths of 14 fish species from three families namely Sciaenidae, Ariidae, and

Engraulidae were used to develop the proposed identification model. Short-time Fourier

transform (STFT) was used, for the first time in the area of otolith shape analysis, to

extract important features of the otolith contours. Discriminant Analysis (DA), as a

classification technique, was used to train and test the model based on the extracted

features. Results. Performance of the model was demonstrated using species from three

families separately, as well as all species combined. Overall classification accuracy of the

model was greater than 90% for all cases. In addition, effects of STFT variables on the

performance of the identification model were explored in this study. Conclusions. Short-

time Fourier transform could determine important features of the otolith outlines. The

fully-automated model proposed in this study (STFT-DA) could predict species of an

unknown specimen with acceptable identification accuracy. The current model has

flexibility to be used for more species and families in future studies.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1517v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015



1 
 

Fully-automated identification of fish species based on otolith 1 

contour: using short-time Fourier transform and discriminant 2 

analysis (STFT-DA) 3 

Nima Salimi 1, Kar Hoe Loh 2, Sarinder Kaur Dhillon 1, Ving Ching Chong 1,2  4 

1 Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Federal Territory KL, 50603, 5 

Malaysia 6 

2 Institute of Ocean & Earth Sciences, University of Malaya,  Kuala Lumpur, Federal Territory KL, 50603, 7 

Malaysia 8 

 9 

Corresponding Author:  10 

Ving Ching Chong 1,2 11 

Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Federal Territory KL, 50603, 12 

Malaysia 13 

Email address: chong@um.edu.my 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1517v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015



2 
 

Abstract 30 

Background. Fish species may be identified based on their unique otolith shape or contour. 31 

Several pattern recognition methods have been proposed to classify fish species through 32 

morphological features of the otolith contours.  However, there has been no fully-automated 33 

species identification model with the accuracy higher than 80%. The purpose of the current study 34 

is to develop a fully-automated model, based on the otolith contours, to identify the fish species 35 

with the high classification accuracy.  36 

Methods. Images of the right sagittal otoliths of 14 fish species from three families namely 37 

Sciaenidae, Ariidae, and Engraulidae were used to develop the proposed identification model. 38 

Short-time Fourier transform (STFT) was used, for the first time in the area of otolith shape 39 

analysis, to extract important features of the otolith contours. Discriminant Analysis (DA), as a 40 

classification technique, was used to train and test the model based on the extracted features.  41 

Results. Performance of the model was demonstrated using species from three families 42 

separately, as well as all species combined. Overall classification accuracy of the model was 43 

greater than 90% for all cases. In addition, effects of STFT variables on the performance of the 44 

identification model were explored in this study.  45 

Conclusions. Short-time Fourier transform could determine important features of the otolith 46 

outlines. The fully-automated model proposed in this study (STFT-DA) could predict species of 47 

an unknown specimen with acceptable identification accuracy. The current model has flexibility 48 

to be used for more species and families in future studies. 49 

 50 

 51 
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INTRODUCTION 52 

Automated taxon identification (ATI) systems which rely on pattern recognition and machine 53 

learning techniques have been developed in different areas of biology (Arbuckle et al. 2001; 54 

Chun et al. 2007; Cope et al. 2012; Culverhouse et al. 1996; Dietrich & Pooley 1994; Farr & 55 

Chesmore 2007; Gaston & O'Neill 2004; Jonker et al. 2000; La Salle et al. 2009; Larios et al. 56 

2008; MacLeod et al. 2010; Parisi-Baradad et al. 2010; Potamitis 2014; Watson et al. 2003; 57 

Watson & Dallwitz 1991; Zhao et al. 2013). In marine biology, identification of the fish species 58 

based on the otolith image analysis has been an interesting area due to its applications in the 59 

palaeontological and ecological sciences (Aguirre & Lombarte 1999; Arellano et al. 1995; 60 

Bowen 2000; Fitch & Brownell Jr 1968; Lombarte & Castellón 1991; Reichenbacher et al. 61 

2007). Parisi et al. (2010) developed the first automated taxon classification system through the 62 

shape analysis of the otolith contour. In order to extract the important morphological features of 63 

the otolith contour, external outline of the otolith was first converted to a one-dimensional (1D) 64 

signal. This representative signal was obtained by calculating the distances between the outline 65 

points and the center of gravity of the otolith image. Then, wavelet transform (WT) was applied 66 

on the 1D signal to extract useful features of the otolith outline. Using WT, irregularities of the 67 

otolith contours were quantified and localized appropriately; this is the advantage of WT over 68 

other feature extractors such as Fourier transform (FT) and elliptical Fourier descriptors (EFD) 69 

used in the other studies (Parisi-Baradad et al. 2005; Sadighzadeh et al. 2012). Even though their 70 

proposed model could identify the family of the specimens with 94% accuracy, the performance 71 

of the system dropped significantly at the species level (72%) (Parisi-Baradad et al. 2010). 72 

Therefore, the aim of the present study is to develop a fully-automated identification model with 73 

improved classification accuracy at the level of species. Fourteen fish species from three 74 
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different families namely Engraulidae, Sciaenidae, and Ariidae were used in this study. Short-75 

time Fourier transform (STFT) is a conventional signal processing technique (Allen 1997; Buck 76 

et al. 1999; Rabiner & Schafer 1978) which to our knowledge has not yet been employed in the 77 

area of otolith image processing. STFT was applied in this study to extract morphological 78 

features of the otolith contours. 79 

 80 
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MATERIALS AND METHODS 94 

Images of the right sagittal otoliths were captured using a stereomicroscope (Olympus DP25FW, 95 

6.3X magnification) attached with a digital camera. Proximal view of the otolith, dorsal edge 96 

facing up and posterior end facing the positive direction, was used in this study. The proposed 97 

image identification system was implemented in MATLAB (MATLAB® Release 2013a, The 98 

MathWorks, Inc., Kuala Lumpur, Malaysia). Figure 1 illustrates the schematic diagram of the 99 

fully-automated image recognition model represented in this study. Different stages of this 100 

system are detailed as follows. 101 

 102 

Figure 1 A schematic diagram of the proposed image identification system. The left panel shows 103 

different stages for training the model, and the testing part of the system is illustrated in the right 104 

panel.  105 

Preprocessing  106 

Discrimination among different fish species was based on the 1D representation of the otolith 107 

outline. Firstly, the external outline of the surface contours of the otolith had to be extracted and 108 

then, distances between the center of gravity and the contour points had to be calculated. For this 109 
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purpose, the grayscale image of the otolith was converted to the binary image with the threshold 110 

value of 0.1. Choice of this threshold value (0.1) resulted in obtaining the binary images for the 111 

otoliths with a wide range of transparency. After clearing the borders and filling the holes, the 112 

small objects (objects that had fewer than 50000 pixels) were removed from the binary images. 113 

Then, coordinates of the boundary (outline) pixels as well as the center of gravity were 114 

calculated. By having these coordinates, characteristic 1D signals, which are the distances 115 

between the boundary pixels and center of gravity as a function of the corresponding angles, 116 

were determined.  Figure 2 shows an image of the otolith with its representative 1D signal.  117 

 118 

Figure 2 Image of an otolith (upper panel) with its corresponding 1D signal (lower panel). 1D 119 

signal was obtained by calculating the radius, distances between the boundary pixels (red) and 120 

the center of gravity (blue), as a function of angle. 121 
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1D signals obtained from the previous stage were down-sampled to 1000 points (samples) by 123 

interpolation using fast Fourier transform (FFT). In this study, short-time Fourier transform 124 

(STFT) was applied as a feature extraction method on the resampled signals. STFT of the 125 

original (1D) signals were determined by using 100-point Gaussian window with 40 overlapped 126 

samples (totally 16 segments for each signal). Type of the windowing function affected the 127 

performance of the identification system. To explore this effect, results obtained using different 128 

windowing techniques were compared in the next section.  Figure 3 shows the spectrogram 129 

(using STFT) obtained from 1D signal illustrated in fig. 2. Each segment of the original signal 130 

consisted of 129 frequency components. Absolute values and phase angles of the frequency 131 

components of each segment were determined and then standardized by calculating the 132 

corresponding z-scores (Z_ABSs: z-scores of the absolute values and Z_ANGs: z-scores of the 133 

angles). In each segment of the signal, two important parameters were determined: maximum of 134 

the Z_ABSs (MAXABS) and maximum of Z_ANGs (MAXANG). Having 16 segments in each 135 

signal, 32 attributes (16 MAXABS + 16 MAXANG) were extracted from each representative signal. 136 

By this way, each otolith image could be converted to a 32- element vector in which the first 16 137 

elements were MAXABS values and the rest were the values of MAXANG.   138 

 139 
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Figure 3 The spectrogram of the characteristic signal shown in fig. 2. The original signal was 141 

resampled to 1000 points before calculating the short-time Fourier transform (STFT).   142 

Classification 143 

The characteristic vectors obtained from the previous stage were utilized as inputs to the 144 

Discriminant Analysis (DA) classifier in order to train and test the identification system. 145 

Fourteen species from three different families were used in this study (Table 1).  All otoliths 146 

were extracted from fish obtained from fish landing sites or the wet markets.  No ethics clearance 147 

was required from the University of Malaya – Institutional Animal Care and Use Committee 148 

(UM-IACUC). 149 

Table 1. Fish species used in the proposed fully-automated identification system.  150 

 151 

 152 

Species Family 
  

Dendrophysa russelli    Sciaenidae 
Johnius belangerii                    ʺ 
Johnius carouna                       ʺ 
Otolithes ruber        ʺ 
Panna microdon           ʺ 
  
Nemapteryx caelata    Ariidae 

Arius maculatus         ʺ 
Cryptarius truncatus         ʺ 
Hexanematichtys sagor         ʺ 
Osteogeneiosus militaris         ʺ 
Plicofollis argyropleuron         ʺ 

 

  

Coilia dussumieri                Engraulidae 
Setipinna taty                           ʺ 
Thryssa hamiltonii                   ʺ 
    

 153 

 154 

 155 
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RESULTS 156 

Three different fish families (Sciaenidae, Ariidae, and Engraulidae) were used separately to train 157 

and test the model. In addition, the proposed image identification model was evaluated for all 14 158 

species combined.  159 

Engraulidae  Family 160 

Three species namely Coilia dussumieri, Setipinna taty and Thryssa hamiltonii from the 161 

Engraulidae family were used in this study. From each species, 20 specimens (otolith images) 162 

were used for training the model. Then, the trained model was tested with 10 specimens per 163 

species (total of 30 images for testing the model). Table 2 demonstrates the confusion matrix 164 

obtained from the predicted species in this family.  165 

Table 2. Confusion matrix for the classification results of the Engraulidae family. The predicted 166 

species (columns) are compared with the species confirmed by an expert (rows). 167 

 

 

Coilia 

dussumieri 

Setipinna 

taty 

Thryssa 

hamiltonii 

Coilia 

dussumieri 

10 

(100%) 

0 

(0%) 

0 

(0%) 

Setipinna 

taty 

0 

(0%) 
10 

(100%) 

0 

(0%) 

Thryssa 

hamiltonii 

0 

(0%) 

1 

(10%) 
9 

(90%) 

 168 

All of the 10 specimens from the Coilia sussumieri and Setipinna taty species were classified 169 

correctly. For the Thryssa hamiltonii species, one specimen was misclassified as the Setipinna 170 

taty species. In the overall, 29 out of 30 specimens from the Engraulidae   family (~ 97%) were 171 

correctly predicted as the target species.  172 

Sciaenidae Family 173 
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Five species of the Sciaenidae family were also used to evaluate performance of the 174 

identification system. In this family, 19 specimens per species (total number of 95 specimens) 175 

were used to train the system, and then the trained model was tested with 50 specimens (10 176 

specimens per species). The predicted results of this family are presented in Table 3. Among five 177 

species in this family, three species (Johnius belangerii, Johnius carouna, and Panna microdon) 178 

were identified with 100% accuracy. Two other species (Dendrophysa russelli and Otolithes 179 

ruber) had one misclassified specimen each. In this family, similar to the Engraulidae family, 180 

there was no species with a classification accuracy of less than 90%. The proposed model could 181 

identify five species of the Sciaenidae family with an overall accuracy of 96%. 182 

Table 3. Confusion matrix obtained from five species of the Sciaenidae family. The columns 183 

indicate the predicted species by the identification model, while rows indicate the target species. 184 

Dendrophysa 

russelli 
9 

(90%) 

0 

(0%) 

0 

(0%) 

1 

(10%) 

0 

(0%) 
Johnius belangerii 0 

(0%) 

10 

(100%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 
Johnius carouna 0 

(0%) 

0 

(0%) 
10 

(100%) 

0 

(0%) 

0 

(0%) 
Otolithes ruber 1 

(10%) 

0 

(0%) 

0 

(0%) 
9 

(90%) 

0 

(0%) 
Panna microdon 0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 
10 

(100%) 

 185 

Ariidae Family 186 

Six species from the Ariidae family were also used in this study. The number of specimens per 187 

species for training and testing the model were 18 and 10, respectively. The classification results 188 

obtained from this family are shown in table 4.  Overall accuracy of the model in this family was 189 

~93% which is slightly less than the other two families. The lowest classification accuracy (80%) 190 

in this family was for the Nemapteryx caelatus. Two specimens of the Nemapteryx caelatus 191 

 Dendrophysa 

russelli 
Johnius belangerii Johnius carouna Otolithes ruber Panna microdon 
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species were predicted as the Cryptarius truncatus. Three species namely Arius maculatus, 192 

Hexanematichtys sagor and Plicofollis argyropleuron had 100% correct prediction results. The 193 

accuracy of the model for the Cryptarius truncatus and Osteogeneiosus militaris species was 194 

90%. Both of these species had one specimen that was misclassified as Nemapteryx caelatus.  195 

Table 4. Classification results (confusion matrix) of the Ariidae family. Outputs of the 196 

identification model (columns) are compared with the target species (rows). 197 

 Nemapteryx 

caelatus 

Arius 

maculatus 

Cryptarius 

truncatus 

Hexanematichtys 

sagor 

Osteogeneiosus 

militaris 

Plicofollis 

argyropleuron 

Nemapteryx 

caelatus 

8 

(80%) 

0 

(0%) 

2 

(20%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Arius maculatus 0 

(0%) 
10 

(100%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Cryptarius 

truncatus 

1 

(10%) 

0 

(0%) 
9 

(90%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Hexanematichtys 

sagor 

0 

(0%) 

0 

(0%) 

0 

(0%) 
10 

(100%) 

0 

(0%) 

0 

(0%) 

Osteogeneiosus 

militaris 

1 

(10%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 
9 

(90%) 

0 

(0%) 

Plicofollis 

argyropleuron 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

10 

(100%) 

 198 

All Three Families  199 

To test the model with more species, all three families were combined (total number of 14 200 

species) and the results of the classification are demonstrated in Table 5. From each species, 18 201 

and 10 specimens were used to train and test the model, respectively (total numbers of 252 202 

images for the training and 140 images for the testing).  All 14 species were predicted by the 203 

proposed model with an overall accuracy of ~92%. Eight of these species, three from the 204 

Sciaenidae, three from the Ariidae, and two from the Engraulidae family, were classified with 205 

the accuracy of 100%. Three species showed the identification accuracy of less than 90% 206 

(Dendrophysa russelli: 80%, Nemapteryx caelatus: 70%, and Cryptarius truncatus: 70%).  Both 207 

Nemapteryx caelatus and Cryptarius truncatus from the Ariidae family had the most numbers of 208 
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misclassified specimens among the 14 species used in this study. The classification accuracy for 209 

Otolithes ruber, Osteogeneiosus militaris,and  Setipinna taty was 90%. It is worth-noting that 210 

there was no cross-family misclassification for all six species that had at least one misclassified 211 

specimen (all six species had specimens correctly classified in their families). As a result, 212 

developing a model that first identifies the family and then species cannot lead to an 213 

improvement in the overall accuracy of the system.  214 

Table 5. Confusion matrix for the identification results obtained from 14 species of three 215 

different families. In each target species (rows), numbers of specimens are indicated in the 216 

corresponding predicted species (columns). Species are Dendrophysa russelli (1), Johnius 217 

belangerii (2), Johnius carouna (3), Otolithes ruber (4), Panna microdon (5), Nemapteryx 218 

caelatus (6), Arius maculatus (7), Cryptarius truncatus (8), Hexanematichtys sagor (9), 219 

Osteogeneiosus militaris (10), Plicofollis argyropleuron (11), Coilia dussumieri (12), Setipinna 220 

taty (13), Thryssa hamiltonii (14). 221 
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 222 

Effect of the windowing function 223 

As mentioned in section 2, the windowing function used to calculate STFT of the representative 224 

signals could influence the performance of the model. To explore this effect, the identification 225 

system was trained and tested with several types of the window function. The overall accuracy 226 

obtained from three families, as well as the combined families, are compared and shown in Table 227 

6.  228 

Table 6. Classification results of the model for 16 different window functions. Using each 229 

window function (rows), the model performance was calculated for all four datasets (columns).  230 

Window 

Functions 

Overall Accuracy  

Engrauli

dae  

Family 

Sciaenidae 

Family 

Ariidae 

Family 

All 

Families 

Bartlett-

Hann 
87% 82% 85% 83% 

Bartlett 

 
90% 82% 90% 85% 

Blackman 

 
60% 80% 88% 77% 

Blackman- 

Harris 
50% 80% 85% 62% 

Bohman 

 
53% 82% 87% 63% 
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 231 

 232 

 233 

 234 

 235 

 236 

Using the Gaussian window function led to the highest classification accuracy (97%) in the 237 

Engraulidae family. In the Sciaenidae family, the best result (96%) was achieved by using four 238 

functions namely Gaussian, Hamming, Kaiser, and Rectangular. The most accurate prediction 239 

(93%) in the Ariidae family was obtained by using the Gaussian function. In the combined 240 

families, using the Rectangular function resulted in the highest overall accuracy (94%). 241 

However, utilizing the Rectangular windowing function led to relatively poor performance of the 242 

model in the Engraulidae (87%) and Ariidae (83%) families. Taking into accounts all the results 243 

obtained using these 16 functions, the Gaussian window function was selected in this study due 244 

to its good performance in all the four data sets.  245 

 246 

 247 

 248 

 249 

 250 

Chebyshev 

 
47% 78% 78% 69% 

Flat Top 

 
40% 68% 80% 64% 

Gaussian 97% 96% 93% 92% 

Hamming 

 
93% 96% 92% 92% 

Hann 70% 88% 88% 84% 

Kaiser 90% 96% 82% 93% 

Nuttall's  57% 84% 85% 68% 

Parzen 50% 68% 90% 66% 

Rectangular 87% 96% 83% 94% 

Tapered 

cosine 
93% 88% 87% 89% 

Triangular 57% 84% 90% 84% 
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Discussion  251 

The identification model proposed in this study could predict the species of an unknown 252 

specimen from the Engraulidae, Sciaenidae, and Ariidae family with the overall accuracy of 253 

97%, 96%, and 93%, respectively. Even after combining three families the accuracy of the model 254 

remained above 90% (~ 92%), which is noticeably higher than the results obtained by the 255 

identification model proposed in the most related study (~ 72%) (Parisi-Baradad et al. 2010). It is 256 

noted that training data sets used in the present study were relatively small (19, 20, and 18 257 

specimens per species for Sciaenidae, Engraulidae, and Ariidae family, respectively). Using 258 

more samples in the training sets could lead to increasing the accuracy of the model.  259 

Two spectral analysis methods namely Fourier transform (FT) and wavelet transform (WT) have 260 

been applied in the previous studies as the feature extractors (Castonguay et al. 1991; Parisi-261 

Baradad et al. 2005; Parisi-Baradad et al. 2010). Short-time Fourier transform (STFT) has been 262 

utilized in the present study, for the first time in the area of otolith image recognition, to analyse 263 

the spectrum of the 1D signal obtained from the fish otolith contour. As was demonstrated in 264 

section 3 (Table 6), the choice of window function had a direct effect on the performance of the 265 

system. In addition to the type of windowing function, the number of points of the window 266 

function and the number of overlapped samples played important roles in the classification 267 

results. The proposed model was also tested with a variety of these two parameters (not reported 268 

here), and the best match was selected (100-points Gaussian function with 40 overlapped 269 

samples). 270 

In this study, only proximal view of the otolith image was used to develop the identification 271 

model. However, adding other views (e.g. anterior, dorsal) could lead to improving the 272 
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performance of the model. Adding other views would be more crucial when other families and 273 

species are added to the system. The same procedure explained in section 2 can be applied on the 274 

other views of the otolith image. The other types of the window function could be more effective 275 

in analyzing the other views. In that case, a 32-element vector (section 2.2) can be extracted from 276 

each view of the otolith. Consequently, each specimen can be represented by a combination of 277 

up to six vectors (depending on the number of views), rather than only one vector corresponding 278 

to the proximal view. By this way, more important morphological features could be extracted 279 

from the otolith contours. 280 

Two classification techniques namely Decision Tree and Discriminant Analysis were tested in 281 

this study (the results obtained by the Decision Tree are not shown here) and the latter was 282 

selected due to more accurate results. However, there are other classification methods such as 283 

Naive Bayes, Nearest Neighbors, Support Vector Machine, and Neural Network which may 284 

improve the performance of the model in the future studies.  285 

 286 

Conclusions 287 

A fully-automated identification system (STFT-DA) has been proposed in this study to classify 288 

the fish species based on the morphological characteristics of the otolith outline contour. 289 

Fourteen species from three families were used to develop and evaluate performance of the 290 

model. Combining the short-time Fourier transform (STFT), as the feature extractor, with the 291 

Discriminant Analysis (DA), as the classifier, led to improving the accuracy of the species 292 

classification in comparison with the existing automated model. The STFT window function as 293 
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well as classification technique had significant effects on the performance of the model. Future 294 

enhancements of the proposed model may be needed to include more species into the system. 295 
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