

A peer-reviewed version of this preprint was published in PeerJ
on 2 March 2016.

View the peer-reviewed version (peerj.com/articles/cs-49), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Wagner S, Abdulkhaleq A, Bogicevic I, Ostberg J, Ramadani J. 2016. How
are functionally similar code clones syntactically different? An empirical
study and a benchmark. PeerJ Computer Science 2:e49
https://doi.org/10.7717/peerj-cs.49

https://doi.org/10.7717/peerj-cs.49
https://doi.org/10.7717/peerj-cs.49

How are functionally similar code clones different?

Stefan Wagner, Asim Abdulkhaleq, Ivan Bogicevic, Jan-Peter Ostberg, Jasmin Ramadani

Background. Today, redundancy in source code, so-called �clones�, caused by

copy&paste can be found reliably using clone detection tools. Redundancy can arise also

independently, however, caused not by copy&paste. At present, it is not clear how only

functionally similar clones (FSC) differ from clones created by copy&paste. Our aim is to

understand and categorise the differences in FSCs that distinguish them from copy&paste

clones in a way that helps clone detection research. Methods. We conducted an

experiment using known functionally similar programs in Java and C from coding contests.

We analysed syntactic similarity with traditional detection tools and explored whether

concolic clone detection can go beyond syntax. We ran all tools on 2,800 programs and

manually categorised the differences in a random sample of 70 program pairs. Results.

We found no FSCs where complete files were syntactically similar. We could detect a

syntactic similarity in a part of the files in < 16 % of the program pairs. Concolic detection

found 1 of the FSCs. The differences between program pairs were in the categories

algorithm, data structure, OO design, I/O and libraries. We selected 58 pairs for an openly

accessible benchmark representing these categories. Discussion. The majority of

differences between functionally similar clones are beyond the capabilities of current clone

detection approaches. Yet, our benchmark can help to drive further clone detection

research.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

How Are Functionally Similar Code Clones1

Different?2

Stefan Wagner∗, Asim Abdulkhaleq, Ivan Bogicevic, Jan-Peter3

Ostberg, and Jasmin Ramadani4

Institute of Software Technology, University of Stuttgart, Germany5

Abstract6

Background. Today, redundancy in source code, so-called “clones”,7

caused by copy&paste can be found reliably using clone detection tools.8

Redundancy can arise also independently, however, caused not by copy&paste.9

At present, it is not clear how only functionally similar clones (FSC) dif-10

fer from clones created by copy&paste. Our aim is to understand and11

categorise the differences in FSCs that distinguish them from copy&paste12

clones in a way that helps clone detection research.13

Methods. We conducted an experiment using known functionally14

similar programs in Java and C from coding contests. We analysed syn-15

tactic similarity with traditional detection tools and explored whether16

concolic clone detection can go beyond syntax. We ran all tools on 2,80017

programs and manually categorised the differences in a random sample of18

70 program pairs.19

Results. We found no FSCs where complete files were syntactically20

similar. We could detect a syntactic similarity in a part of the files in21

< 16 % of the program pairs. Concolic detection found 1 h of the FSCs.22

The differences between program pairs were in the categories algorithm,23

data structure, OO design, I/O and libraries. We selected 58 pairs for an24

openly accessible benchmark representing these categories.25

Discussion. The majority of differences between functionally similar26

clones are beyond the capabilities of current clone detection approaches.27

Yet, our benchmark can help to drive further clone detection research.28

∗Corr. author: Stefan Wagner, Universitätsstr. 38, 70569 Stuttgart, Germany, phone +49

711 685 88455, stefan.wagner@informatik.uni-stuttgart.de

1

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

1 Introduction29

As software is now a key ingredient of current complex systems, the size of30

software systems is continuously increasing. While software with a code size of31

several thousand lines has been considered large in the seventies and eighties,32

we now reach code sizes of hundreds of millions of lines of code. This has strong33

effects on the complexity and manageability of these systems and, as a result,34

on the cost of maintaining them.35

By abstraction and code generation, modern programming languages and36

development techniques help to reduce the amount of code we have to under-37

stand. Nevertheless, it still tends to be overwhelming. A factor that aggravates38

the situation is that there is unnecessary code in these huge code bases: un-39

reachable code, never executed code and redundant code. The latter has been40

of increasing interest in the software engineering research community under the41

term “cloning”. Especially clones that resulted from copy&paste can now be42

detected reliably. In our own research with companies, we often found rates of43

redundant code caused by copy&paste in the range of 20 % – 30 % [Wagner,44

2013].45

More challenging is the detection of functionally similar source code. We46

will refer to it as functionally similar clones (FSCs). FSCs were not created by47

copy&paste but developers independently needed and implemented certain func-48

tionalities in their code base. We deliberately go beyond type-4 clones [Koschke,49

2007] or simions [Deissenboeck et al., 2012] which only include functional equiv-50

alence. In a refactoring session to reduce the size of a code base, a developer51

would still be interested in mostly similar and not only exactly equivalent func-52

tionality. Although this problem is in general undecidable, there have been53

several heuristic efforts [Marcus and Maletic, 2001, Jiang and Su, 2009, Deis-54

senboeck et al., 2012,Kim et al., 2011].55

Juergens, Deissenboeck and Hummel [Juergens et al., 2010b] showed that56

traditional clone detection approaches and tools are hardly able to detect func-57

tionally equivalent clones because they rely on syntactic similarities.58

1.1 Problem Statement59

So far, the work by Juergens, Deissenboeck and Hummel [Juergens et al., 2010b]60

is the only study investigating the differences in functionally similar clones.61

Furthermore, their study is limited: they use only programs implementing a62

single specification in Java. Therefore, we have no clear understanding of what63

differences make a functionally similar clone really different from copy&paste64

clones. Hence, a realistic, open benchmark for comparing and improving such65

approaches is also lacking although it is necessary for faster progress in the66

field [Lakhotia et al., 2003].67

2

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

1.2 Research Objectives68

The objective of this study is to better understand the differences that make69

up functionally similar clones to support future research on their detection. In70

particular, we want to classify and rate differences and build a representative71

benchmark.72

1.3 Contribution73

We contribute a large-scale quantitative study combined with a qualitative anal-74

ysis of the differences. We selected 2,800 Java and C programs which are solu-75

tions to the Google Code Jam programming contest and are therefore function-76

ally similar. We identified copy&paste clones by using two clone detection tools77

(ConQAT and Deckard) to quantify syntactic similarities. We explored how a78

type-4 detection tool (CCCD) using cocolic detection performs in detecting the79

not syntactically similar FSCs. We created a categorisation of differences be-80

tween undetected clones and quantified these categories. Finally, we derived a81

benchmark based on real FSCs covering the categories and degrees of differences82

which can drive the improvement of clone detection tools.83

As there is a large diversity in how the terms around FSCs are used, we84

provide definitions for the clone types we investigate in this paper. Moreover,85

we define terms for granularities of the software programs under analysis in86

Tab. 1.87

The structure of the remainder of the paper follows the guidelines in [Jedl-88

itschka and Pfahl, 2005].89

2 Related Work90

A code clone consists of at least two pieces of code that are similar according91

to a definition of similarity. Most commonly, clone detection approaches look92

for exact clones (also called type-1) and clones with simple changes such as re-93

naming (also called type-2). These types of clones are detectable today in an94

efficient and effective way. Even clones with additional changes (inconsistent,95

near-miss or type-3 clones) can be detected by several detection approaches96

and tools [Kamiya et al., 2002, Deissenboeck et al., 2008, Jiang et al., 2007a].97

There are also two surveys [Koschke, 2007,Roy and Cordy, 2007] and a system-98

atic literature review [Rattan et al., 2013] on this topic. Tiarks, Koschke und99

Falke [Tiarks et al., 2011] investigated in particular type-3 clones and also their100

differences. They concentrated, however, on differences in code metrics (e.g.101

fragment size), low level edits (e.g. variable) and abstracted them only slightly102

(e.g. to type substitution).103

Juergens, Deissenboeck and Hummel [Juergens et al., 2010b] report on an104

experiment to investigate the differences between syntactical/representational105

and semantic/behavioural similarities of code and the detectability of these sim-106

ilarities. They use a simple student assignment called email address validator107

and also inspect the open-source software JabRef. Both of them are in Java.108

3

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

Table 1: Terminology

Type-1
clone

Similar code fragments except for variation in whitespace,
layout and comments [Bellon et al., 2007]

Type-2
clone

Similar code fragments except for variation in identifiers,
literals, types, whitespaces layouts and comments [Bellon
et al., 2007]

Type-3
clone

Similar code fragments except that some statements may
be added or deleted in addition to variation in identifiers,
literals, types, whitespaces, layouts or comments [Bellon
et al., 2007]

Type-4
clone

Code fragments that perform the same function but are
implemented quite differently [Bellon et al., 2007]

Functionally
similar
clone
(FSC)

Code fragments that perform a similar function but are
implemented quite differently

Solution
file

A single program in one file implementing the solution to a
programming problem

Solution
set

A set of solution files all solving the the same programming
problem

Clone pair Two solution files from the same solution set which we as-
sume to be functionally similar

To detect the clones of types 1–3, they use the clone detection tools ConQAT109

and Deckard. They review the open-source system manually to identify if be-110

haviourally similar code that does not result from copy&paste can be detected111

and occurs in real-world software. The results indicate that behaviourally sim-112

ilar code of independent origin is highly unlikely to be syntactically similar.113

They also report that the existing clone detection approaches cannot identify114

more than 1 % of such redundancy. We build our work on their study but115

concentrate on understanding the differences in more detail based on a diverse116

sample with a larger sample size and different programming languages.117

Several researchers have proposed to move away from the concrete syntax118

to detect what they call semantic clones. Marcus and Malefic [Marcus and119

Maletic, 2001] used information retrieval techniques on source code to detect se-120

mantic similarities. Krinke [Krinke, 2001] proposed to use program dependence121

graphs (PDG) for abstracting source code. Komondoor and Horwitz [Komon-122

door and Horwitz, 2001] also use PDGs for clone detection and see the possibility123

to find non-contiguous clones as a main benefit. Gabel, Jiang and Su [Gabel124

et al., 2008] combine the analysis of dependence graphs with abstract syntax125

trees in the tool Deckard to better scale the approach.126

A very different approach to detecting semantic clones comes from Kim et127

4

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

al. [Kim et al., 2011] who use static analysis to extract the memory states128

for each procedure exit point. They can show that they find more semantically129

similar procedures as clones than previous clone detectors including PDG-based130

detectors. Nevertheless, the used approach as well as the examples of found131

semantic clones suggest that the syntactic representation still plays a role and132

that the clones have been created by copy&paste.133

These semantic clone detection techniques cannot guarantee that they also134

find all functionally similar clones as a completely different structure and mem-135

ory states can generate similar functionality.136

Jiang and Su [Jiang and Su, 2009] were the first to comprehensively detect137

functionally similar code by using random tests and comparing the output.138

Hence, they were also the first who were able to detect clones without any139

syntactic similarity. They claim they are able to detect “functionally equivalent140

code fragments, where functional equivalence is a particular case of semantic141

equivalence that concerns the input/output behavior of a piece of code.” They142

were able to detect a high number of functionally equivalent clones in a sorting143

benchmark and the Linux kernel. Several of the detected clones are dubious,144

however, as it is not clear how useful they are. They state: “Assuming the145

input and output variables identified by EQMINER for these code fragments are146

appropriate, such code fragments are indeed functionally equivalent according to147

our definition. However, whether it is really useful to consider them functionally148

equivalent is still a question worth of future investigation.”149

Deissenboeck et al. [Deissenboeck et al., 2012] followed an analogous ap-150

proach to Jiang and Su [Jiang and Su, 2009] to detect functionally similar code151

fragments in Java systems based on the fundamental heuristic that two func-152

tionally similar code fragments will produce the same output for the same ran-153

domly generated input. They implemented a prototype based on their toolkit154

ConQAT. The evaluation of the approach involved 5 open-source systems and155

an artificial system with independent implementations of the same specification156

in Java. They experienced low detection results due to the limited capability of157

the random testing approach. Furthermore, they mention that the similarities158

are missed due to chunking, i.e. if the code fragments perform a similar com-159

putation but use different data structures at their interfaces. They emphasise160

that further research is required to understand these issues.161

CCCD [Krutz and Shihab, 2013] also claims to detect functionally similar162

code for C programs based on concolic analysis. Its creators evaluated their163

implementation of the approach on the benchmarks mentioned below and found164

a 92 % recall even in the type-4 clones in those benchmarks. As the tool is freely165

available in a virtual machine, we were able to include it in our experiment.166

A clear comparison and measurement of the improvement in clone detection167

research would require a comprehensive benchmark. There have been few168

approaches [Lakhotia et al., 2003, Roy et al., 2009a, Tempero, 2013] trying to169

establish a benchmark but they are either small and artificial or do not con-170

tain (known) FSCs. The only exception is the recent BigCloneBench [Svajlenko171

et al., 2014] which has a huge number of clones mined from source code reposi-172

tories. Yet, they do not classify the types of differences and also state “there is173

5

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

no consensus on the minimum similarity of a Type-3 clone, so it is difficult to174

separate the Type-3 and Type-4 clones”.175

3 Experimental Design176

To reach our research objectives, we developed a study design based on the idea177

that we investigate sets of programs which we knew to be functionally similar:178

accepted submissions to programming contests. We formulated four research179

questions which we all answer by analysing these programs and corresponding180

detection results. All instrumentation, analysis scripts and results are freely181

available in [Wagner et al., 2014].182

3.1 Research Questions183

As we have independently developed but functionally similar programs, we first184

wanted to establish how much syntactic similarity is in these programs. We can185

investigate this by quantifying the share of type-1–3 clones186

RQ 1: What share of independently developed similar programs are187

type-1–3 clones?188

Then we wanted to understand what is different in clones not of type-1–189

3. This should result in a categorisation and rating of the differences between190

FSCs.191

RQ 2: What are the differences between FSC that go beyond type-1–3192

clones?193

Although we could not fully evaluate type-4 detectors, we wanted at least194

to explore what a modern clone detection approach can achieve on our FSCs.195

This should give us an indication how much more research is needed on those196

detection approaches.197

RQ 3: What share of FSC can be detected by a type-4 clone detector?198

Finally, to make our results an operational help for clone detection research,199

we wanted to create a representative benchmark from the non-detected clones.200

RQ 4: What should a benchmark contain that represents the differ-201

ences between FSC?202

3.2 Hypotheses203

We define two hypotheses regarding RQ 1. As we investigate the share of204

detectable Type-1–3 clones, we wanted to understand if there are differences205

between the used tools and analysed languages because this might have an206

influence on the generalisability of our results. We formulated the two null207

hypotheses:208

H1: There is no difference in the share of detected Type-1–3 clones209

between programming languages.210

H2: There is no difference in the share of detected Type-1–3 clones211

between clone detection tools.212

6

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

Moreover, in RQ 2, we wanted to understand the characteristics of non-213

detected clone pairs and, therefore, categorised them. In this categorisation,214

we also rated the degree of difference in each category. An ideal categorisa-215

tion would have fully orthogonal categories and, hence, categories would not be216

correlated in the degree of difference:217

H3: There is no correlation between the degrees of difference between218

categories.219

Furthermore, we could imagine that different programming languages might220

cause disparately strong differences in certain categories. As this again has an221

impact on the generalisability of our results, we formulated this null hypotheses:222

H4: There is no difference in the degree of difference between pro-223

gramming languages.224

3.3 Design225

The overall study design is a combination of quantitative and qualitative anal-226

ysis. For the quantitative part of our study we used a factorial design with227

two factors (programming language and clone detection tool). As applying the228

treatments of both factors was mostly automated we could apply almost all229

factor levels to all study object programs (which we call solutions). Only if a230

detection tool did not support a certain programming language, we would not231

apply it. We tried to minimise that but to include a contemporary tool, we232

accepted an unbalanced design. Table 2 shows the factors in our experiment.233

Table 2: The factorial design used in this experiment

Programming language
Java C

Clone CCCD – X

detection ConQAT X X

tool Deckard X X

We will describe the programming languages, clone detection tools and cor-234

responding programs under analysis in more detail in the next subsection.235

3.4 Objects236

The general idea of this experiment was that we analyse accepted solutions to237

programming contests because we know that for a given problem, the solutions238

must be functionally similar. Therefore, our selection of study objects needed239

to include clone detection tools we could access and execute as well as solutions240

in programming languages supported by most of the detection tools.241

7

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

3.4.1 Clone Detection Tools242

Primarily, we needed clone detection tools for detecting type-1–3 clones to in-243

vestigate with RQ 1 the syntactic similarity of FSCs. We did a literature and244

web search for available tools.245

Many research prototypes were not available or could not be brought to execute246

correctly. Commercial tools were not exact enough in what they detect. Several247

tools were not included in the study due their lower performance and scalabil-248

ity or their lack of support for some clone types. CloneDR and CPMiner have249

lower performance and scalability compared to Deckard [Jiang et al., 2007a].250

CCFinder has also lower performance than Deckard and does not support type-251

3 clones [Svajlenko and Roy, 2014].252

In the end, we chose two clone detection tools that both can analyse Java and253

C programs: ConQAT [Deissenboeck et al., 2008] and Deckard [Jiang et al.,254

2007a]. They have been described as most up-to-date implementations of to-255

ken based and AST based clone detection algorithms [Juergens et al., 2010b]256

Choosing tools based on different techniques, we allow distincit approaches in257

finding code clones [Roy et al., 2009b].258

ConQAT is a stable open-source dashboard toolkit also used in industry.259

It is a general-purpose tool for various kinds of code measurement and analysis.260

For our experiment, ConQAT offers several specific clone detection configu-261

rations for various programming languages including Java, C/C++, C# and262

Cobol. It has separate detection algorithms for type-1/2 clones and type-3263

clones. We employed the latter algorithm. ConQAT has been used in various264

studies on clone detection [Juergens et al., 2009,Juergens et al., 2010a] including265

the study we build on [Juergens et al., 2010b].266

The language-independent clone detection tool Deckardworks on code in267

any programming language that has a context-free grammar. Deckard uses an268

efficient algorithm for identifying similar subtrees and applies it to tree represen-269

tations of source code. It automatically generates a parse tree builder to build270

parse trees required by its algorithm. By a similarity parameter it is possible271

to control whether only type-1/2 clones or type-3 clones are detected. Deckard272

is a stable tool used in other studies [Gabel et al., 2008, Jiang et al., 2007b]273

including the study we build on.274

To explore the state of type-4 clone detection tools, we also searched for275

such tools. Most existing tools, however, could not be used. For example,276

EqMiner [Jiang and Su, 2009] was too tightly coupled with the Linux kernel277

and MeCC [Kim et al., 2011] could not detect clones across files. Finally, we278

were able to only include a single type-4 detector.279

CCCD [Krutz and Shihab, 2013] is a novel clone detection tool that uses280

concolic analysis as its primary approach to detect code clones. Concolic anal-281

ysis combines symbolic execution and testing. CCCD detects only clones in282

programs implemented in C. The concolic analysis allows CCCD to focus on283

the functionality of a program rather than the syntactic properties. Yet, it has284

the restriction that it only detects function-level clones.285

8

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

3.4.2 Solution Sets and Solutions286

We looked at several programming contests and the availability of the submitted287

solutions. We found that Google Code Jam1 provided us with the broadest288

selection of programming languages and the highest numbers of submissions.289

Google Code Jam is an annual coding contest organised by Google. Several290

tens of thousands of people participate each year. In seven competition rounds,291

the programmers have to solve small algorithmic problems within a defined time292

frame. Although over one hundred different programming languages are used,293

the majority of the solutions are in C, C++, Java and Python. Most solutions294

of the participants are freely available on the web.2295

We define a solution as a single code file delivered by one participant during296

the contest. We define a solution set as a set of solutions all solving the same297

problem. A typical solution set consists of several hundred to several thousand298

solutions. We can be sure that all solutions in a solution set should be FSCs be-299

cause they passed the judgement of the programming contest. Even if there are300

differences in the programs, e.g. in the result representation, these are instances301

of similarity instead of equivalence.302

We selected 14 out of 27 problem statements of the Google Code Jam 2014.303

For every problem we randomly chose 100 solutions in Java and 100 solutions304

in C from sets of several hundreds to several thousands of solutions. Table 3305

shows a summary of the size of the chosen solution sets. Hence, on average a C306

solution has a length of 46 LOC and a Java solution of 94 LOC.307

Table 3: Summary of the Solution Sets

#No. Sets #Files/Set Size LOC
C 14 100 6 MB 64,826
Java 14 100 7 MB 131,398

In Table 4, we detail the size of the selected Java solution sets and in Table 5308

of the C solution sets. The solution sets differ in size but the means all lie309

between 33 and 133 LOC per solution.310

3.5 Data Collection Procedure311

3.5.1 Preparation of Programs Under Analysis312

We implemented an instrumentation which automatically downloaded the solu-313

tions from the website, sampled the solution sets and solutions and normalised314

the file names. The instrumentation is freely available as Java programs in our315

GitHub project. Every downloaded solution consisted of a single source code316

file.317

1https://code.google.com/codejam/
2http://www.go-hero.net/jam/14/

9

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

Table 4: Information on the Java Solution Sets

Set #Files LOC #Functions
1 100 11,366 823
2 100 7,825 523
3 100 10,624 575
4 100 6,766 473
5 100 7,986 585
6 100 10,137 611
7 100 13,300 869
8 100 8,568 614
9 100 8,580 717
10 100 9,092 459
11 100 8,536 584
12 100 11,412 648
13 100 9,436 465
14 100 7,770 357

3.5.2 Configuration of Clone Detection Tools318

We installed ConQAT, Deckard and CCCD and configured the tools with a319

common set of parameters. As far as the parameters between the tools were320

related to each other, we tried to set the same values based on the configuration321

in [Juergens et al., 2010b]. We set the parameters conservatively so that the322

tools find potentially more clones as we would normally consider valid clones.323

This ensured that we do not reject our null hypotheses because of configura-324

tions. For example, we set the minimal clone length in ConQAT to 6 statements.325

All the detailed configurations are available on GitHub. For CCCD, we only in-326

cluded clone pairs which have a Levenshtein similarity score below 35 as advised327

in [Krutz and Shihab, 2013] where the score is calculated for the concolic output328

for each function. The detection failed for 4 of the solutions of our sample set.329

We had to exclude them from further analysis.330

3.5.3 Executing Clone Detection Tools331

We manually executed the clone detection tools for every solution set. Con-332

QAT generated an XML file for every solution set containing a list of found333

clone classes and clones. Deckard and CCCD generate similar CVS files. Our334

instrumentation tool parsed all these result files and generated reports in a uni-335

fied format. The reports are tables in which both rows and columns represent336

the solutions. The content of the table shows the lowest detected clone type337

between two files. Additionally, our tool calculated all shares of syntactic sim-338

ilarity as described in the next section and wrote the values into several CSV339

files for further statistical analysis. We also wrote all the detected clones into340

10

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

Table 5: Information on the C Solution Sets

Set #Files LOC #Functions
1 100 3.917 233
2 100 3,706 167
3 100 4,750 265
4 100 3,928 219
5 100 4,067 187
6 100 6,840 166
7 100 4,701 263
8 100 4,679 176
9 100 6,831 227

10 100 4,063 159
11 100 4,624 266
12 100 3,574 163
13 100 3,335 168
14 100 5,811 249

several large CSV files. Altogether, the tools reported more than 9,300 clones341

within the Java solutions and more than 22,400 clones within the C solutions.342

3.6 Analysis Procedure343

3.6.1 Share of Syntactic Similarity (RQ 1)344

All solutions in a solution set solve the same programming problem and were345

accepted by Google Code Jam. Hence, their functionality can only differ slightly346

and, therefore, they are functionally similar. To understand how much of this347

similarity is expressed in syntactic similarity, we calculate the share of FSCs348

which are also type-1–2 or type-1–3 clones.349

Inspired by [Juergens et al., 2010b], we distinguish partial and full syntactic350

similarity. The share of full syntactic similarity is the ratio of clone pairs where351

all but an defined looseness of the statements of the solutions of the pair were352

detected as a clone in relation to all clone pairs. We set the threshold of this353

looseness to a maximum of 16 lines of code difference within a clone pair, which354

leads to rations of 5% to 33 % of difference based on the functions lines of code.355

Share of full synt. similarity =
|Found full clone pairs|

|All clone pairs|
(1)

Because we expected the share of full syntactic similarity to be low, we356

wanted to check whether there are at least some parts with syntactic similarity.357

It would give traditional clone detection tools a chance to hint at the FSC.358

Furthermore, it allowed us to inspect more closely later on what was not detected359

as a clone. We called the ratio share of partial syntactic similarity.360

11

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

Share of partial synt. similarity =
|Found partial clone pairs|

|All clone pairs|
(2)

For a more differentiated analysis, we calculated two different shares each361

representing certain types of clones. We first computed the share for type-1–362

2 clones. This means we only need to accept exact copies, reformatting and363

renaming. Then, we determined the shares for type-1–3 clones which includes364

type-1–2 and adds the additional capability to tolerate smaller changes.365

In ConQAT and Deckard, we can differentiate between type-1/2 clones and366

type-3 clones by configuration or result, respectively. In ConQAT, clones with367

a gap of 0 are type-1/2 clones. In Deckard, analysis results with a similarity368

of 1 are type-1/2 clones. The others are type-3 clones. The instrument tooling369

described in Sec. 3.5 directly calculated the various numbers. We computed370

means per clone type and programming language.371

For a further statistical understanding and to answer the hypotheses H1–372

H4, we did statistical hypotheses tests. For answering H1 and H2, we performed373

an analysis of variance (ANOVA) on the recall data with the two factors pro-374

gramming language and detection tool. We tested the hypotheses at the 0.05375

level. All analyses implemented in R together with the data are available in our376

GitHub project.377

The combined descriptive statistics and hypothesis testing results answered378

RQ 1.379

3.6.2 Classifying Differences (RQ 2)380

For the categorisation of the differences of FSCs that were not syntactically381

similar, we took a random sample of these clone pairs. As we had overall 69,300382

clone pairs for Java and C, we needed to restrict the sample for a manual anal-383

ysis. We found in an initial classification (see also Sec. 3.7) that a sample of384

0.5 h per language and fully/partially different clone pairs is sufficient for find-385

ing repeating categories and getting a quantitative impression of the numbers386

of clone pairs in each category. With larger samples, the categories just kept387

repeating. Therefore, we took a sample of 2 h of the syntactically different388

clone pairs: 70 pairs each of the fully and partially different clone pairs (35 C389

and 35 Java).390

The set of fully syntactically different clone pairs is the set of all pairs in391

all solution sets minus any pair detected by any of the type-1–3 detection. We392

apply random sampling to get pairs for further analysis: First, we randomly393

selected one of the solution sets in a language. Second, we randomly selected394

a solution file in the solution set and checked if it was detected by Deckard or395

ConQAT. If it was detected, we would discard it and select a new one. Third,396

we randomly picked a second solution file, checked again if it was detected and397

discard it if it was.398

The set of partially syntactically different clone pairs is then the superset of399

all partially different clone pairs minus the superset of all fully different clone400

pairs. From that set, we randomly selected clone pairs from all partially different401

12

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

pairs of a programming language and checked if it was fully different. If that402

was the case, we would discard it and take a new random pair. We found their403

analysis to be useful to understand also smaller syntactic differences.404

We then employed qualitative analysis. We manually classified the charac-405

teristics in the clone pairs that differed and, thereby, led to being not detected as406

type-1–3 clone. This classification work was done in pairs of researchers in three407

day-long workshops in the same room. It helped us to discuss the categories408

and keep them consistent. The result is a set of categories of characteristics that409

describe the differences. We added quantitative analysis to it by also counting410

how many of the sampled clone pairs have characteristics of the found types.411

After the creation of the categories we also assessed the degree of difference412

(high, medium, or low) per category. From the discussion of the categories, we413

discovered that this gave us a comprehensive yet precise way to assign clone414

pairs to the categories. Furthermore, it gave us additional possibilities for a415

quantified analysis. First, we wanted to understand better how we categorised416

and assessed the degrees of difference as well as answer H3. Therefore, we per-417

formed correlation analysis on them. We chose Kendall’s tau as the correlation418

coefficient and tested all correlations on the 0.05 level.419

For answering H4, we performed a multivariate analysis of variance (MANOVA)420

which allows more than one dependent variable to be used. Here, our depen-421

dent variables are the degrees of difference and the independent variable is the422

programming language. In this analysis, we have a balanced design because we423

ignored the category OO design which was only applicable to Java programs.424

We use the Pillar-Bartlett statistic for evaluating statistical significance. We425

checked H4 also on the 0.05 level.426

These categories with frequencies as well as the results of the hypothesis427

tests answered RQ 2.428

3.6.3 Running a Type-4 Detector (RQ 3)429

As this part of the study is only for exploratory purposes, we focused on the430

recall of CCCD in the FSCs. As all solutions contain a main function, we431

expected it to find each main-pair as clone. We calculate the recall as the432

number of detected clone pairs by the sum of all clone pairs. A perfect clone433

detection tool would detect all solutions from a solution set as clones.434

3.6.4 Creating a Benchmark (RQ 4)435

After the categorisation to answer RQ 2, we had a clear picture of the various436

differences. Therefore, we could select representative examples of each difference437

for each programming language and put them into our new benchmark. To check438

that the clone pairs cannot be detected by the tools, we run the tools again on439

the benchmark. If one of the tools still detected a clone, we would replace the440

clone pair by another representative example until no clones are detected.441

We created the benchmark by choosing clone pairs consisting of two source442

code files out of the same solution set. The two files therefore solve the same443

13

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

problem. We selected three pairs where the difference between the files belong444

to that category for each of the categories we created by answering RQ 2. We445

chose three pairs for all of the three levels of difference. The other categories of446

the pairs are very low, ideally zero. Additionally, we added one extra clone pair447

with extreme differences in all categories.448

Preferably, we would provide the source code of the chosen solutions directly449

all in one place. Yet, the copyright of these solutions remains with their authors.450

Therefore, we provide source files following the same structure as the original451

files but not violating the copyright.452

A final set of clone pairs that are not detected as full clones by any of the453

tools constitutes the benchmark and answered RQ 4.454

3.7 Validity Procedure455

To avoid selection bias, we performed random sampling where possible. We456

randomly selected the solution sets and solutions that we use as study objects.457

In addition, before we manually analysed the category of syntactically different458

clone pairs, we chose random samples of clone pairs.459

To avoid errors in our results, we manually checked for false positives and460

clone types with samples of clones in the solution sets. Furthermore, by working461

in pairs during all manual work, we controlled each other and detected problems462

quickly. Overall, the manual inspection of 70 clone pairs for RQ 2 also was a463

means to detect problems in the detection tools or our instrumentation.464

For the manual categorisation, we started by categorising 30 syntactically465

different clone pairs to freely create the categories of undetected clone pairs.466

Afterwards, we discussed the results among all researchers to come to a unified467

and agreed categorisation. The actual categorisation of clone pairs was then468

performed on a fresh sample. Additionally, we performed an independent cate-469

gorisation of a sample of 10 categorised clone pairs and calculated the inter-rater470

agreement using Cohen’s kappa.471

4 Analysis and Results472

We structure the analysis and results along our research questions. All quanti-473

tative and qualitative results are also available in [Wagner et al., 2014].474

4.1 Share of Syntactic Similarity (RQ 1)475

We summarised the results of the calculated shares for fully and partially syn-476

tactically similar clone pairs in Tab. 6. We divided the results by programming477

languages, detection tools and detected clone types. The results differ quite478

strongly from tool to tool but only slightly between the programming languages.479

The average syntactic similarities and the standard deviations (SD) are all very480

low. ConQAT detects more full and partial clones in clone pairs.481

14

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

Table 6: Full and partial syntactic similarity (in %)

Partially similar Fully similar
Type 1–2 Type 1–3 Type 1–2 Type 1–3

Lang. Tool Mean SD Mean SD Mean SD Mean SD

Java
ConQAT 6.36 0.05 11.53 0.07 0.00 0.00 0.00 0.00
Deckard 0.33 0.00 0.87 0.01 0.00 0.00 0.00 0.00
Mean 3.35 0.03 6.11 0.04 0.00 0.00 0.00 0.00

C
ConQAT 5.24 0.09 11.48 0.13 1.30 0.00 1.73 0.00
Deckard 0.28 0.00 1.44 0.01 0.01 0.00 0.01 0.00
Mean 1.82 0.00 4.32 0.06 0.47 0.00 0.58 0.00

Grand mean 2.45 0.04 5.07 0.04 0.26 0.00 0.35 0.00

Table 7 shows the ANOVA results which we need for answering hypotheses482

H1 and H2. As our experiment is unbalanced, we use the Type II sum of squares.483

This is possible because we found no significant interactions between the factors484

in any of the ANOVA results.485

The results give us no single evaluation of the hypotheses H1 and H2. We486

have to differentiate between partial and full syntactic similarity. For the par-487

tial similarity, we consistently see a significant difference in the variation in the488

detection tools but not in the programming languages. Hence, for partial clone489

similarity, we corroborate H1 that there is no difference in recall between pro-490

gramming languages. Yet, we reject H2 in favour of the alternative hypothesis491

that there is a difference in the similarity share between different tools. For492

full similarity, we reject H1 in favour of the alternative hypothesis that there is493

a difference between the programming languages. Instead, we accept H2 that494

there is no difference between the detection tools.495

How can we interpret these results? The overall interpretation is that share496

of syntactic similarity in FSCs is very small. There seem to be many possibili-497

ties to implement a solution for the same problem with very different syntactic498

characteristics. When we only look at the full syntactic similarity, the results499

are negligible. Both tools detect none in Java and only few clone pairs for C.500

Hence, the difference between the tools is marginal. The difference is significant501

between C and Java, however, because we found no full clone pairs in Java. As502

we saw in manual inspection, the full detection is easier in C if the developers503

implement the whole solution in one main function.504

For partial syntactic similarity, we get higher results but still stay below505

12 %. Hence, for almost 90 % of the clone pairs, we do not even detect smaller506

similarities. We have no significant difference between the languages but the507

tools. ConQAT has far higher results than Deckard in the type-1–3 clones. The508

distinct detection algorithms seem to make a difference here. For the further509

15

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

Table 7: ANOVA results for variation in recalls (Type II sum of squares, *
denotes a significant result)

Partial type 1–2 Sum of Squares F value Pr(>F)

Language 0.0005 0.2352 0.6294
Tool 0.0491 12.2603 3 · 10−5 *

Partial type 1–3

Language 0.0010 0.0210 0.8853
Tool 0.1884 20.5846 1 · 10−7 *

Full type 1–2

Language 1 · 10−7 7.8185 0.0072 *
Tool 2 · 10−8 1.1566 0.2871

Full type 1–3

Language 2 · 10−7 7.7757 0.0074 *
Tool 5 · 10−8 1.9439 0.1692

analysis, we accept an FSC as syntactically similar if one of the tool detected510

it.511

4.2 Categories of Differences (RQ 2)512

Initially, we created 18 detailed categories. In our qualitative analysis and dis-513

cussions, we finally reduced them to five main categories of characteristics de-514

scribing the differences between the solutions in a clone pair. The five categories515

are algorithm, data structure, object-oriented design, input/output and libraries.516

We could assign each of the 18 initial categories there and realised that we can517

assign them to different degrees of difference. Therefore, we ended up with a518

categorisation including an ordinal quantification of the degree of difference with519

the levels low, medium and high. The overall categorisation is shown in Fig. 1.520

The centre of the dimensions would be a type-1 clone. The further out we go521

on each dimension, the larger the difference.522

To make the categories and degrees of difference clearer, we give examples of523

characteristics in clone pairs in Tab. 8 that led us to classify them in the specific524

degrees of difference. The guiding principle was how much effort (in terms of525

edit operations) it would be to get from one solution to the other.526

The two main aspects in any program are its algorithms and its data struc-527

tures. This is reflected in our two main categories. Our corresponding degrees528

of difference reflect that there might be algorithms that are almost identical529

with e.g. only a switch instead of nested if statements up to completely dif-530

ferent solutions, e.g. iterative vs. recursive. Similiarly, in data structures, we531

16

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

Algorithms

Input/output
Libraries

Object-oriented

design

Data structures

Degree of differencelow

medium

high

Figure 1: The categories of characteristics of differences between clone pairs

can have very simple type substitutions which change the behaviour but are still532

functionally very similar (e.g. from int to long) but also completely user-defined533

data types with strong differences.534

Related to data structures is the category OO design. We made this a535

separate category because it only applies to OO languages and it had a particular536

kind of occurrence in the programs we inspected. Some developers tended to537

write Java programs like there were no object-oriented features while others538

created several classes and used their objects.539

As our programming environments and languages are more and more defined540

by available libraries, this was also reflected in the differences between solutions.541

If one developer of a solution knew about a library with existing functionality542

needed, and the other developer implemented it herself, this created code that543

looks strongly different but can have similar functionality.544

Finally, maybe a category that arose because the programming contest did545

not specify if the input and output should come from a console or a file was546

the usage of I/O. Nevertheless, we think that this might also be transferable to547

other FSCs and contexts because we might be interested in functionally similar548

code even if one program writes the output on a network socket while the other549

writes into a file.550

Table 9 shows descriptive statistics for the categories in our sample of unde-551

tected clone pairs. The column Share shows the ratio of clone pairs with a degree552

of difference higher than 0 in relation to all clone pairs in that language. The553

median and median absolute deviation (MAD) give the central tendency and554

dispersion of the degrees in that category. For that, we encoded no difference555

= 0, low = 1, medium = 2 and high = 3.556

All categories occur in the majority of clone pairs. The categories algorithm557

and libraries even occur in about three quarters of the clone pairs. The occur-558

rence of categories is consistently smaller in C than in Java. The medians are559

mostly low but with a rather large deviation. Only input/output in C has a me-560

dian of 0. This is consistent with our observation during the manual inspection561

17

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

Table 8: Examples for the levels in the degree of difference per category

Algorithm low Only syntactic variations
medium Similarity in the control structure but different

method structure
high No similarity

Data low Different data types, e.g. int – long
structure medium Related data types with different interface, e.g. array

vs. List
high Standard data types vs. own data classes or structs

OO de-
sign

low Only one/few static methods vs. object creation

medium Only one/few static methods vs. data classes or sev-
eral methods

high Only one/few static methods vs. several classes with
methods

Library low Different imported/included but not used libraries
medium Few different libraries or static vs. non-static import
high Many different or strongly different libraries

I/O low Writing to file vs. console with similar library
medium Strongly different library, e.g. Scanner vs. FileReader
high Strongly different library and writing to file vs. con-

sole

that I/O is done similarly in the C programs.562

For evaluating H3, we calculated Kendall’s correlation coefficients for all563

combinations of categories. The results are shown in Tab. 10. The statistical564

tests for these correlations showed significant results for all the coefficients.565

Therefore, we need to reject H3 in favour of the alternative hypothesis that there566

are correlations between the degrees of difference between different categories.567

Finally, for evaluating H4, we show the results of the MANOVA in Tab. 11.568

We can reject H4 in favour of the alternative hypothesis that there is a difference569

between the degrees of difference between the programming languages. This is570

consistent with the impression from the descriptive statistics in Tab. 9.571

In summary, we interpret these results such that there are differences in572

FSC pairs in their algorithms, data structures, input/output and used libraries.573

In Java, there are also differences in the object-oriented design. On average,574

these differences are mostly small but the variance is high. Hence, we believe575

that with advances in clone detectors for tolerating the smaller differences, there576

could be large progress in the detection of FSCs. Yet, there will still be many577

medium to large differences. We also saw that the programming languages vary578

in the characteristics of undetected difference. Therefore, it might be easier to579

overcome those differences in non-object-oriented languages, such as C, than in580

18

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

Table 9: Descriptive statistics of degrees of difference over categories and pro-
gramming languages

Lang. Category Share Median MAD

Java

Algorithm 96 % 3 0.0
Libraries 86 % 1 1.5
I/O 83 % 2 1.5
Data structure 72 % 1 1.5
OO design 71 % 1 1.5

C

Algorithm 76 % 2 1.5
Libraries 73 % 1 1.5
Data structure 66 % 1 1.5
I/O 38 % 0 0.0

Total

Algorithm 86 % 2 1.5
Libraries 79 % 1 1.5
OO design 71 % 1 1.5
Data structure 69 % 1 1.5
I/O 60 % 1 1.5

object-oriented languages which offer even more possibilities to express solutions581

for the same problem. Yet, we were impressed by the variety in implementing582

solutions in both languages during our manual inspections.583

Our categories are significantly correlated with each other. This can mean584

that there might be other, independent categories with less correlation. Never-585

theless, we believe the categories are useful because they describe major code586

aspects in a way that is intuitively understandable to most programmers. It587

would be difficult to avoid correlations altogether. For example, a vastly differ-588

ent data structure will always lead to a very different algorithm.589

4.3 Type-4 Detection (RQ 3)590

Table 12 shows the recall of fully and partially detected clone pairs in our sample.591

CCCD has a considerable recall for partial clones in the clone pairs of about592

16 %. It does, however, detect almost none of the clone pairs a full clones.593

The overlap with ConQAT and Deckard, and therefore type-1–3 clones, is tiny594

(0.05 % of the recall).595

We interpret this result such that also contemporary type-4 detection tools596

have still problems detecting real-world FSCs and to handle the differences we597

identified in RQ 2.598

19

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

Table 10: Correlation matrix with Kendall’s correlation coefficient for the cat-
egory degrees (all are significant)

Data OO

Algo. struct. design I/O Libraries

Algorithm 1.00 0.38 0.44 0.15 0.31
Data struct. 0.38 1.00 0.26 0.25 0.21
OO design 0.44 0.26 1.00 0.29 0.39
I/O 0.15 0.25 0.29 1.00 0.27
Libraries 0.31 0.21 0.39 0.27 1.00

Table 11: MANOVA results for variation in degree of differences (Type I sum
of squares, * denotes a significant result)

Pillai-Bartlett approx. F Pr(>F)

Language 0.1513 6.0196 0.0002 *

4.4 Benchmark (RQ 4)599

The number of study objects used in our analysis is quite high. As described600

above, we examined 1,400 Java files and 1,400 C files. For many demonstrations601

and clone detection tool analyses a much smaller file set is sufficient. We call602

this smaller set of files benchmark.603

The first half of the benchmark we provide consists of 29 clone pairs. For604

Java, we include 16 clone pairs. The set of clone pairs we provide for C is605

structured in exactly the same way as the Java samples except that we do not606

have the three clone pairs that differ only in object-oriented design. Therefore,607

we do not have 16 samples here but 13 which make the 29 clone pairs for both608

languages.609

Figure 2 shows a rating of an example clone pair in the benchmark set where610

the two files only differ significantly in the kind of input/output, but not in the611

other categories.612

We provide this distribution of clone pairs for both partial clones and full613

Table 12: Full and partial clone recall means over solution sets for CCCD (in
%)

Mean SD

Partial 16.03 0.07
Full 0.10 0.00

20

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

Algorithms

Input/output
Libraries

Object-oriented

design

Data structures

Degree of difference
low

medium

high

Figure 2: Example category rating of a clone pair in the benchmark set

public stat ic void main (S t r ing [] a rgs) {
reader = new BufferedReader (

new Fi leReader (”A−l a r g e . in ”)) ;
w r i t e r = new PrintWriter (”a . out”) ;

public stat ic void main (S t r ing [] a rgs) {
F i l e f i l e = new F i l e (System . in) ;
try (Scanner scanner = new Scanner (

new Fi leReader (f i l e))) {
F i l e out = new F i l e (System . out) ;
try (Pr intWriter wr i t e r = new . . .

Figure 3: Example of a high difference in the category Input/Output

21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

clones. Hence, the total number of clone pairs within the benchmark is 58.614

Figure 4 shows an overview of the structure of the whole benchmark set. This615

structure enables developers of a clone detection tool to test their tool easily as616

well analyse the nature of the clones found and not found by a tool.617

Our benchmark provides several advantages to the research community.618

First, developers of a clone detection tool can easily test their tool with the619

source files as input. They can see whether their tool detects the clones or they620

can analyse why it did not. Second, the clones in the benchmark are easily621

understandable examples for the categories we created. Third, the clones in622

the benchmark were not built artificially; the solutions were implemented inde-623

pendently by at least two persons during the Code Jam contest. Despite our624

modifications to avoid copyright problems, neither changing structure nor algo-625

rithm, the code clones are more realistic than fully artificial copies where one626

file is modified as part of a study.627

Language Java C

Category

Degree of Diff.

Clone Kind

Data OO-Design ...

...

low medium high

partial full

...

......

Solution (fle) left right

...

Benchmark

Figure 4: Structure of the benchmark set (overview)

5 Threats to Validity628

We analyse the validity threats for this study following common guidelines for629

empirical studies [Yin, 2003,Wohlin et al., 2012].630

5.1 Conclusion Validity631

As most of our measurements and calculations were performed automatically,632

the threats to conclusion validity are low. For the corresponding hypothesis633

tests, we checked all necessary assumptions. Only the classification and rating634

of the degree of difference is done manually and, hence, could be unreliable.635

We worked in pairs to reduce this threat. Furthermore, one of the researchers636

performed an independent classification of a random sample of 10 clone pairs637

to compare the results. We calculated Cohen’s kappa for the categories of638

differences between clone pairs as presented in Table 13.639

We interpret the kappa results according to the classification by Landis and640

Koch [Landis and Koch, 1977]. Hence, our results are a moderate agreement641

22

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

Table 13: Kappa values for difference categories

Category Kappa

Data structures 0.41
OO design 0.35
Algorithms 0.47
Libraries 0.36
Input/Output 0.47

between the categories: data structures, algorithms and input/output. For the642

categories object-oriented design and libraries we have a fair agreement. We643

consider this to be reliable enough for our investigations.644

5.2 Internal Validity645

There is the threat that the implementation of our instrumentation tooling may646

contain faults and, therefore, compute incorrect results for the detected clones647

and recalls. We reduced this threat inherently by the manual inspections done648

to answer RQ 2 and independently to investigate the type-4 clones.649

A further threat to internal validity is that we took our solution sets from650

Google Code Jam. We cannot be sure that all the published solutions of the651

Code Jam within a solution set are actually functionally similar. We rely on652

the fact that the organisers of the Code Jam must have checked the solutions to653

rank them. Furthermore, we assume to have noticed in the manual inspections654

if there were solutions in a solution set with highly differing functionality.655

5.3 Construct Validity656

To fully understand the effectiveness of a clone detection approach, we need to657

measure precision as well as recall. In our study, we could not measure precision658

directly because of the large sample size. We checked for false positives during659

the manual inspections and noted only few rather short clones. Our minimal660

clone length is below recommended thresholds. This is a conservative approach661

to the problem. By that we will find more clones than in an industrial approach.662

We decided to use this threshold to be sure that we cover all the interesting clone663

pairs that would be lost due to variation in the precision of the tools.664

There is a threat because we count each clone pair only once. In partial665

clones, one clone pair might contain a type-2 as well as a type-3 partial clone.666

In those cases, we decided that the lower type – the easier detection – should be667

recorded. Hence, the assignment to the types might be imprecise. We accept668

this threat as it has no major implication for the conclusions of the experiment.669

23

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

5.4 External Validity670

There is also a threat to external validity in our usage of solutions from Google671

Code Jam. The submitted programs might not represent industrial software672

very well. Participants had a time limit set for turning in their solutions. Fur-673

thermore, the programming problems contained mostly reading data, perform-674

ing some calculations on it and writing data. This might impact the method675

structure within the solutions. This threat reduces the generalisability of our676

results. Yet, we expect that other, more complex software will introduce new677

kinds of difference categories (e.g. differences in GUI code) and only extend but678

not contradict our results.679

For the study, we chose three well-known and stable clone detection tools.680

Two of them analyse Java and C programs detecting type-1 to type-3 clones.681

The third one detects type 4 clones and supports only programs written in C682

and only finds clones in complete functions. Overall, we are confident that these683

tools represent the available detection tools well.684

6 Conclusions and Future Work685

In this paper, we investigated the characteristics of clones not created by copy&paste.686

We base our study on [Juergens et al., 2010b], but this is the first study with pro-687

grams implementing different specifications in diverse programming languages688

including CCCD as concolic clone detector for type-4 clones. We found that a689

full syntactic similarity was detected in less than 1 % of clone pairs. Even partial690

syntactic similarity was only visible in less than 12 %. The concolic approach691

of CCCD can detect FSCs without syntactic similarity as type-4 clones. Yet, a692

full detection was only possible in 0.1 % of clone pairs.693

Our categorisation of the differences of clone pairs not syntactically similar694

showed that usually several characteristics make up these differences. On av-695

erage, however, the differences were mostly small. Hence, we believe there is a696

huge opportunity to get a large improvement in detection capabilities of type-4697

detectors even with small improvements in tolerating additional differences. We698

provide a carefully selected benchmark with programs representing real FSCs.699

We hope it will help the research community to make these improvements.700

6.1 Relation to Existing Evidence701

We can most directly relate our results to Juergens, Deissenboeck and Hum-702

mel [Juergens et al., 2010b]. We support their findings that using type-1–3703

detectors, below 1 % is fully and below 10 % is partially detected. We can704

add that with the type-4 detection of CCCD, the partial clone recall can reach705

16 %. They introduce categories which were derived from other sources but not706

created them with a systematic qualitative analysis. Yet, there are similarities707

in the categories.708

Their category syntactic variation covers “if different concrete syntax con-709

structs are used to express equivalent abstract syntax”. We categorised this710

24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

as small algorithm difference. Their category organisational variation “occurs711

if the same algorithm is realized using different partitionings or hierarchies of712

statements or variables”. We categorise these differences as a medium algorithm713

difference. Their category delocalisation “occurs since the order of statements714

that are independent of each other can vary arbitrarily between code fragments”715

is covered as difference in algorithm in our categorisation. Their category gen-716

eralisation “comprises differences in the level of generalization” which we would717

cover under object-oriented design. They also introduce unnecessary code as718

category with the example of a debug statement. We did not come across such719

code in our sample but could see it as potential addition.720

Finally, they clump together different data structure and algorithm which721

we categorised into separate categories. We would categorise these variations722

as either data structure or algorithm differences with probably a high degree723

of difference. They found that 93 % of their clone pairs had a variation in724

the category different data structure or algorithm. We cannot directly support725

this value but the tendency. We found that 91 % of the inspected clone pairs726

had a difference at least in either algorithm or data structure and especially for727

algorithm the difference was on average large.728

Tiarks, Koschke und Falke [Tiarks et al., 2011] created a categorisation for729

differences in type-3 clones. Therefore, their focus was on classifying syntactic730

differences that probably hail from independent evolution of initially copied731

code. Yet, the larger the differences, the more their categories are similar to732

ours. For example, they abstract edit operations to type substitution or different733

algorithms. We believe, however, that our categorisation is more useful for FSCs734

and to improve clone detection tools along its lines.735

6.2 Impact736

Independently developed FSCs have very little syntactic similarity. Therefore,737

type-1–3 clone detectors will not be able to find them. Newer approaches,738

such as CCCD, can find FSCs but their effectiveness still seems limited. Hence739

more research in approaches more independent of syntactic representations is740

necessary. We will need to find ways to transfer the positive results of Jiang741

and Su [Jiang and Su, 2009] with the Linux kernel to other languages and742

environments while overcoming the challenges in such dynamic detections as743

discussed, for example, in Deissenboeck et al. [Deissenboeck et al., 2012]. We744

hope our benchmark will contribute to this.745

6.3 Limitations746

The major limitation of our study is that we did not use a wide variety of747

types of programs that exist in practice. The programs from Google Code Jam748

all solve structurally similar problems, for example, without any GUI code.749

We expect, however, that such further differences would rather decrease the750

syntactic similarity even more. The categories might have to be extended to751

cover these further differences. Nevertheless, the investigated programs were all752

developed by different programmers and are not artificial.753

25

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

Furthermore, we had to concentrate on three clone detectors and two pro-754

gramming languages. Other tools and languages might change our results but755

we are confident that our selection is representative of a large class of detectors756

and programming languages.757

6.4 Future Work758

We plan to investigate the differences between the tools and the detected clone759

pairs of different types in more detail. In particular, we would like to work760

with researchers who have built type-4 detectors to test them against our clone761

database and to inspect the found and not found clones.762

Acknowledgment763

The authors would like to thank Benjamin Hummel, Lingxiao Jiang and Daniel764

Krutz for their help in getting their tools to work and Kornelia Kuhle for feed-765

back on the text.766

26

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

References767

[Bellon et al., 2007] Bellon, S., Koschke, R., Antoniol, G., Krinke, J., and768

Merlo, E. (2007). Comparison and evaluation of clone detection tools. IEEE769

Transactions on Software Engineering, 33(9):577–591.770

[Deissenboeck et al., 2012] Deissenboeck, F., Heinemann, L., Hummel, B., and771

Wagner, S. (2012). Challenges of the dynamic detection of functionally similar772

code fragments. In Proc. 16th European Conference on Software Maintenance773

and Reengineering (CSMR), pages 299–308. IEEE.774

[Deissenboeck et al., 2008] Deissenboeck, F., Juergens, E., Hummel, B., Wag-775

ner, S., y Parareda, B. M., and Pizka, M. (2008). Tool support for continuous776

quality control. IEEE Software, 25(5):60–67.777

[Gabel et al., 2008] Gabel, M., Jiang, L., and Su, Z. (2008). Scalable detec-778

tion of semantic clones. In Proc. 30th International Conference on Software779

Engineering (ICSE ’08), pages 321–330. ACM.780

[Jedlitschka and Pfahl, 2005] Jedlitschka, A. and Pfahl, D. (2005). Reporting781

guidelines for controlled experiments in software engineering. In Proc. 4th782

International Symposium on Empirical Software Engineering (ISESE). IEEE.783

[Jiang et al., 2007a] Jiang, L., Misherghi, G., Su, Z., and Glondu, S. (2007a).784

Deckard: Scalable and accurate tree-based detection of code clones. In Proc.785

29th International Conference on Software Engineering (ICSE), pages 96–786

105. IEEE.787

[Jiang and Su, 2009] Jiang, L. and Su, Z. (2009). Automatic mining of func-788

tionally equivalent code fragments via random testing. In Proc. Eighteenth In-789

ternational Symposium on Software Testing and Analysis (ISSTA’09), pages790

81–92. ACM.791

[Jiang et al., 2007b] Jiang, L., Su, Z., and Chiu, E. (2007b). Context-based792

detection of clone-related bugs. In Proc. 6th Joint Meeting of the European793

Software Engineering Conference and the ACM SIGSOFT Symposium on The794

Foundations of Software Engineering (ESEC/FSE), pages 55–64. ACM.795

[Juergens et al., 2010a] Juergens, E., Deissenboeck, F., Feilkas, M., Hummel,796

B., Schaetz, B., Wagner, S., Domann, C., and Streit, J. (2010a). Can clone797

detection support quality assessments of requirements specifications? In798

Proc. ACM/IEEE 32nd International Conference on Software Engineering799

(ICSE’10), pages 79–88. ACM.800

[Juergens et al., 2010b] Juergens, E., Deissenboeck, F., and Hummel, B.801

(2010b). Code similarities beyond copy & paste. In Proc. 14th European802

Conference on Software Maintenance and Reengineering (CSMR), pages 78–803

87. IEEE.804

27

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

[Juergens et al., 2009] Juergens, E., Deissenboeck, F., Hummel, B., and Wag-805

ner, S. (2009). Do code clones matter? In Proc. 31st International Conference806

on Software Engineering (ICSE’09), pages 485–495. IEEE.807

[Kamiya et al., 2002] Kamiya, T., Kusumoto, S., and Inoue, K. (2002).808

CCFinder: A multilinguistic token-based code clone detection system for large809

scale source code. IEEE Transactions on Software Engineering, 28(7):654–810

670.811

[Kim et al., 2011] Kim, H., Jung, Y., Kim, S., and Yi, K. (2011). MeCC: Mem-812

ory comparison-based clone detector. In Proc. 33rd International Conference813

on Software Engineering (ICSE ’11), pages 301–310. ACM.814

[Komondoor and Horwitz, 2001] Komondoor, R. and Horwitz, S. (2001). Us-815

ing slicing to identify duplication in source code. In Proc. 8th International816

Symposium on Static Analysis (SAS’01), pages 40–56. Springer.817

[Koschke, 2007] Koschke, R. (2007). Survey of research on software clones. In818

Dagstuhl Seminar Proc. Duplication, Redundancy, and Similarity in Software.819

[Krinke, 2001] Krinke, J. (2001). Identifying similar code with program depen-820

dence graphs. In Proc. Eighth Working Conference on Reverse Engineering821

(WCRE), pages 301–309. IEEE.822

[Krutz and Shihab, 2013] Krutz, D. E. and Shihab, E. (2013). CCCD: Con-823

colic code clone detection. In Proc. 20th Working Conference on Reverse824

Engineering (WCRE’13). IEEE.825

[Lakhotia et al., 2003] Lakhotia, A., Li, J., Walenstein, A., and Yang, Y.826

(2003). Towards a clone detection benchmark suite and results archive. 11th827

IEEE International Workshop on Program Comprehension, pages 285–286.828

[Landis and Koch, 1977] Landis, R. J. and Koch, G. G. (1977). The measure-829

ment of observer agreement for categorical data. Biometrics, 33(1):159–74.830

[Marcus and Maletic, 2001] Marcus, A. and Maletic, J. I. (2001). Identification831

of high-level concept clones in source code. In Proc. 16th Annual International832

Conference on Automated Software Engineering (ASE 2001), pages 107–114.833

IEEE.834

[Rattan et al., 2013] Rattan, D., Bhatia, R., and Singh, M. (2013). Software835

clone detection: A systematic review. Information and Software Technology,836

55(7):1165–1199.837

[Roy and Cordy, 2007] Roy, C. K. and Cordy, J. R. (2007). A survey on soft-838

ware clone detection research. Technical Report 2007-541, Queen’s University,839

Kingston, Canada.840

[Roy et al., 2009a] Roy, C. K., Cordy, J. R., and Koschke, R. (2009a). Compari-841

son and evaluation of code clone detection techniques and tools: A qualitative842

approach. Science of Computer Programming, 74(7):470–495.843

28

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

[Roy et al., 2009b] Roy, C. K., Cordy, J. R., and Koschke, R. (2009b). Compari-844

son and evaluation of code clone detection techniques and tools: A qualitative845

approach. Sci. Comput. Program., 74(7):470–495.846

[Svajlenko et al., 2014] Svajlenko, J., Islam, J. F., Keivanloo, I., Roy, C. K., and847

Mia, M. M. (2014). Towards a big data curated benchmark of inter-project848

code clones. In Proc. International Conference on Software Maintenance and849

Evolution (ICSME’14), pages 476–480. IEEE.850

[Svajlenko and Roy, 2014] Svajlenko, J. and Roy, C. K. (2014). Evaluating851

Modern Clone Detection Tools. In Proceedings of the 30th International Con-852

ference on Software Maintenance and Evolution, pages 321–330. IEEE.853

[Tempero, 2013] Tempero, E. (2013). Towards a curated collection of code854

clones. In Proc. 7th International Workshop on Software Clones (IWSC’13),855

pages 53–59. IEEE.856

[Tiarks et al., 2011] Tiarks, R., Koschke, R., and Falke, R. (2011). An extended857

assessment of type-3 clones as detected by state-of-the-art tools. Software858

Quality Journal, 19(2):295–331.859

[Wagner, 2013] Wagner, S. (2013). Software Product Quality Control. Springer.860

[Wagner et al., 2014] Wagner, S., Abdulkhaleq, A., Bogicevic, I., Ostberg, J.-861

P., and Ramadani, J. (2014). Detection of functionally similar code clones:862

Data, analysis software, benchmark. DOI 10.5281/zenodo.12646.863

[Wohlin et al., 2012] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-864

nell, B., and Wesslén, A. (2012). Experimentation in Software Engineering.865

Springer.866

[Yin, 2003] Yin, R. K. (2003). Case Study Research: Design and Methods.867

Applied Social Research Methods. SAGE Publications.868

29

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1516v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2015, publ: 19 Nov 2015

