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De novo clustering methods out-perform reference-based
methods for assigning 16S rRNA gene sequences to
operational taxonomic units

Sarah L Westcott, Patrick Schloss

Background. 16S rRNA gene sequences are routinely assigned to operational
taxonomic units (OTUs) that are then used to analyze complex microbial
communities. A number of methods have been employed to carry out the
assignment of 16S rRNA gene sequences to OTUs leading to confusion over
which method is optimal. A recent study suggested that a clustering method
should be selected based on its ability to generate stable OTU assignments that
do not change as additional sequences are added to the dataset. In contrast, we
contend that the quality of the OTU assignments, the ability of the method to
properly represent the distances between the sequences, is more important.

Methods. Our analysis implemented six de novo clustering algorithms including
the single linkage, complete linkage, average linkage, abundance-based greedy
clustering, distance-based greedy clustering, and Swarm and the open and
closed-reference methods. Using two previously published datasets we used the
Matthew’s Correlation Coefficient (MCC) to assess the stability and quality of
OTU assignments.

Results. The stability of OTU assignments did not reflect the quality of the
assignments. Depending on the dataset being analyzed, the average linkage and
the distance and abundance-based greedy clustering methods generated OTUs
that were more likely to represent the actual distances between sequences than
the open and closed-reference methods. We also demonstrated that for the
greedy algorithms VSEARCH produced assignments that were comparable to
those produced by USEARCH making VSEARCH a viable free and open source
alternative to USEARCH. Further interrogation of the reference-based methods
indicated that when USEARCH or VSEARCH were used to identify the closest
reference, the OTU assignments were sensitive to the order of the reference
sequences because the reference sequences can be identical over the region
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being considered. More troubling was the observation that while both USEARCH
and VSEARCH have a high level of sensitivity to detect reference sequences, the
specificity of those matches was poor relative to the true best match.

Discussion. Our analysis calls into question the quality and stability of OTU
assignments generated by the open and closed-reference methods as
implemented in current version of QIIME. This study demonstrates that de novo
methods are the optimal method of assigning sequences into OTUs and that the
quality of these assignments needs to be assessed for multiple methods to
identify the optimal clustering method for a particular dataset.
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Abstract

Background. 16S rRNA gene sequences are routinely assigned to operational taxonomic units
(OTUs) that are then used to analyze complex microbial communities. A number of methods
have been employed to carry out the assignment of 16S rRNA gene sequences to OTUs leading
to confusion over which method is optimal. A recent study suggested that a clustering method
should be selected based on its ability to generate stable OTU assignments that do not change as
additional sequences are added to the dataset. In contrast, we contend that the quality of the OTU
assignments, the ability of the method to properly represent the distances between the sequences,

is more important.

Methods. Our analysis implemented six de novo clustering algorithms including the single linkage,
complete linkage, average linkage, abundance-based greedy clustering, distance-based greedy
clustering, and Swarm and the open and closed-reference methods. Using two previously published
datasets we used the Matthew’s Correlation Coefficient (MCC) to assess the stability and quality of

OTU assignments.

Results. The stability of OTU assignments did not reflect the quality of the assignments. Depending
on the dataset being analyzed, the average linkage and the distance and abundance-based greedy
clustering methods generated OTUs that were more likely to represent the actual distances
between sequences than the open and closed-reference methods. We also demonstrated that for
the greedy algorithms VSEARCH produced assignments that were comparable to those produced
by USEARCH making VSEARCH a viable free and open source alternative to USEARCH. Further
interrogation of the reference-based methods indicated that when USEARCH or VSEARCH were
used to identify the closest reference, the OTU assignments were sensitive to the order of the
reference sequences because the reference sequences can be identical over the region being
considered. More troubling was the observation that while both USEARCH and VSEARCH have a
high level of sensitivity to detect reference sequences, the specificity of those matches was poor

relative to the true best match.
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Discussion. Our analysis calls into question the quality and stability of OTU assignments generated
by the open and closed-reference methods as implemented in current version of QIIME. This study
demonstrates that de novo methods are the optimal method of assigning sequences into OTUs
and that the quality of these assignments needs to be assessed for multiple methods to identify the

optimal clustering method for a particular dataset.
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Introduction

The ability to affordably generate millions of 16S rRNA gene sequences has allowed microbial
ecologists to thoroughly characterize the microbial community composition of hundreds of samples.
To simplify the complexity of these large datasets, it is helpful to cluster sequences into meaningful
bins. These bins, commonly known as operational taxonomic units (OTUs), are used to compare
the biodiversity contained within and between different samples (Schloss & Westcott, 2011). Such
comparisons have enabled researchers to characterize the microbiota associated with the human
body (e.g. Huttenhower et al., 2012), soil (e.g. Shade et al., 2013), aquatic ecosystems (e.g. Gilbert
et al., 2011), and numerous other environments. Within the field of microbial ecology, a convention
has emerged where sequences are clustered into OTUs using a threshold of 97% similarity or
a distance of 3%. One advantage of the OTU-based approach is that the definition of the bins
is operational and can be changed to suit the needs of the particular project. However, with the
dissemination of clustering methods within software such as mothur (Schloss et al., 2009), QIIME
(Caporaso et al., 2010), and other tools (Sun et al., 2009; Edgar, 2010, 2013; Cai & Sun, 2011;
Mahé et al., 2014), it is important to understand how different clustering methods implement this
conventional OTU threshold. Furthermore, it is necessary to understand how the selected method
affects the precision and accuracy of assigning sequences to OTUs. Broadly speaking, three

approaches have been developed to assign sequences to OTUs:

The first approach has been referred to as phylotyping (Schloss & Westcott, 2011) or closed
reference clustering (Navas-Molina et al., 2013). This approach involves comparing sequences
to a curated database and then clustering sequences into the same OTU that are similar to the
same reference sequence. Reference-based clustering methods suffer when the reference does
not adequately reflect the biodiversity of the community. If a large fraction of sequences are
novel, then they cannot be assigned to an OTU. In addition, the reference sequences are selected
because they are less than 97% similar to each other over the full length of the gene; however, it is
known that the commonly used variable regions within the 16S rRNA gene do not evolve at the
same rate as the full-length gene (Schloss, 2010; Kim, Morrison & Yu, 2011). Thus, a sequence

representing a fragment of the gene may be more than 97% similar to multiple reference sequences.
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Defining OTUs in the closed-reference approach is problematic because two sequences might
be 97% similar to the same reference sequence, but they may only be 94% similar to each other.
Alternatively, a sequence may be equally similar to two or more reference sequences. A alternative
to this approach is to use a classifier to assign a taxonomy to each sequence so that sequences can
be clustered at a desired level within the Linnean taxonomic hierarchy (Schloss & Westcott, 2011).
The strengths of the reference-based methods include their speed, potential for trivial parallelization,
ability to compare OTU assignments across studies, and the hope that as databases improve, the

OTU assignments will also improve.

The second approach has been referred to as distance-based (Schloss & Westcott, 2011) or de
novo clustering (Navas-Molina et al., 2013). In this approach, the distance between sequences is
used to cluster sequences into OTUs rather than the distance to a reference database. In contrast
to the efficiency of closed-reference clustering, the computational cost of hierarchical de novo
clustering methods scales quadratically with the number of unique sequences. The expansion in
sequencing throughput combined with sequencing errors inflates the number of unique sequences
resulting in the need for large amounts of memory and time to cluster the sequences. If error
rates can be reduced through stringent quality control measures, then these problems can be
overcome (Kozich et al., 2013). As an alternative, heuristics have been developed to approximate
the clustering of hierarchical methods (Sun et al., 2009; Edgar, 2010; Mahé et al., 2014). Two
related heuristics implemented in USEARCH were recently described: distance-based greedy
clustering (DGC) and abundance-based greedy clustering (AGC) (Edgar, 2010; He et al., 2015).
These greedy methods cluster sequences within a defined similarity threshold of an index sequence
or creates a new index sequence. If a sequence is more similar than the defined threshold, it
is assigned to the closest centroid based (i.e. DGC) or the most abundant centroid (i.e. AGC).
One critique of de novo approaches is that OTU assignments are sensitive to the input order of
the sequences (Mahé et al., 2014; He et al., 2015). Whether the differences in assignments is
meaningful is unclear and the variation in results could represent equally valid clustering of the data.
The strength of de novo clustering is its independence of references for carrying out the clustering

step. For this reason, de novo clustering has been preferred across the field. After clustering,
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ss the classification of each sequence can be used to obtain a consensus classification for the OTU

s (Schloss & Westcott, 2011).

% The third approach, open-reference clustering, is a hybrid of the closed-reference and de novo
o1 approaches (Navas-Molina et al., 2013; Rideout et al., 2014). Open-reference clustering involves
92 performing closed-reference clustering followed by de novo clustering on those sequences that
o3 are not sufficiently similar to the reference. In theory, this method should exploit the strengths of
s« both closed-reference and de novo clustering; however, the different OTU definitions employed by
os commonly used closed-reference and de novo clustering implementations pose a possible problem
9% when the methods are combined. An alternative to this approach has been to classify sequences
o7 to a bacterial family or genus and then assign those sequences to OTUs within those taxonomic
es groups using the average linkage method (Schloss & Westcott, 2011). For example, all sequences
99 cClassified as belonging to the Porphyromonadaceae would then be assigned to OTUs using the
100 average linkage method using a 3% distance threshold. Those sequences that did not classify to
101 a known family would also be clustered using the average linkage method. An advantage of this
102 approach is that it lends itself nicely to parallelization since each taxonomic group is seen as being
103 independent and can be processed separately. Such an approach would overcome the difficulty of
104 mixing OTU definitions between the closed-reference and de novo approaches; however, it would

105 still suffer from the problems associated with database quality and classification error.

106 The growth in options for assigning sequences using each of these three broad approaches has
107 been considerable. It has been difficult to objectively assess the quality of OTU assignments. Some
108 have focused on the time and memory required to process a dataset (Sun et al., 2009; Cai & Sun,
100 2011; Mahé et al., 2014; Rideout et al., 2014). These are valid parameters to assess when judging
1o a clustering method, but have little to say about the quality of the OTU assignments. Others have
111 attempted to judge the quality of a method by its ability to generate data that parallels classification
112 data (White et al., 2010; Sun et al., 2011; Cai & Sun, 2011). This approach is problematic because
13 bacterial taxonomy often reflects historical biases amongst bacterial systematicists. Furthermore,
14 it is well known that the rates of evolution across lineages are not the same (Wang et al., 2007;
15 Schloss, 2010). A related approach has used clustering of mock community data to evaluate

116 methods (Huse et al., 2010; Barriuso, Valverde & Mellado, 2011; Bonder et al., 2012; Chen et al.,
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17 2013; Edgar, 2013; Mahé et al., 2014; May et al., 2014). Yet these approaches ignore the effects of
118 sequencing errors that tend to accumulate with sequencing depth and represent highly idealized
119 communities that lack the phylogenetic diversity of real microbial communities (Schloss, Gevers
120 & Westcott, 2011; Kozich et al., 2013). Others have assessed the quality of clustering based on
121 their ability to generate the same OTUs generated by other methods (Rideout et al., 2014; Schmidt,
122 Rodrigues & Mering, 2014b). This is problematic because it does not solve the fundamental
123 question of which method is optimal. The concept of ecological consistency as a metric of quality
124 asserts that sequences that cluster into the same OTU should share similar ecological affiliations
125 (Koeppel & Wu, 2013; Preheim et al., 2013; Schmidt, Rodrigues & Mering, 2014a). Although
126 this is an intriguing approach and is a quantitative metric, it is unclear how the metric would be
127 objectively validated. We recently proposed an approach for evaluating OTU assignments using the
128 distances between pairs of sequences (Schloss & Westcott, 2011). We were able to synthesize the
129 relationship between OTU assignments and the distances between sequences using the Matthew’s
130 correlation coefficient (MCC; Matthews, 1975). MCC is can be interpreted as representing the
131 correlation between the observed and expected classifications and can vary between -1.0 and
132 1.0. The strength of the MCC, as implemented by Schloss et al. (2011), is that it is an objective
133 approach to assessing the quality of the OTU assignments that can be calculated for any set of
13 OTU assignments where there is a distance matrix and a specific threshold without relying on an

135 external reference.

136 A recent analysis by He and colleagues (2015) characterized the three general clustering
137 approaches by focusing on what they called stability. They defined stability as the ability of a
138 method to provide the same clustering on a subset of the data as was found in the full dataset.
139 Their concept of stability did not account for the quality of the OTU assignments and instead
10 focused on the precision of the assignments. A method may be very stable, but of poor quality.
141 In the current analysis, we assessed the quality and stability of the various clustering methods.
122 Building on our previous analysis of clustering methods, our hypothesis was that the methods
143 praised by the He study for their stability actually suffered a lack of quality. In addition, we assess
144 these parameters in light of sequence quality using the original 454 dataset and a larger and more

125 modern dataset generated using the MiSeq platform.
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12s  Methods

147 454 FLX-generated Roesch Canadian soil dataset. After obtaining the 16S rRNA gene
1as fragments from GenBank (accessions EF308591-EF361836), we followed the methods outlined by
19 the He study by removing any sequence that contained an ambiguous base, was identified as
150 being a chimera, and fell outside a defined sequence length. Although they reported observing a
151 total of 50,542 sequences that were represented by 13,293 unique sequences, we obtained a total
152 0f 50,946 sequences that were represented by 13,393 unique sequences. Similar to the He study,
153 we randomly sampled, without replacement, 20, 40, 60, and 80% of the sequences from the full
154 data set. The random sampling was repeated 30 times. The order of the sequences in the full
155 dataset was randomly permuted without replacement to generate an additional 30 datasets. To
156 perform the hierarchical clustering methods and to generate a distance matrix we followed the
157 approach of the He study by calculating distances based on pairwise global alignments using
158 the pairwise.dist command in mothur using the default Needleman-Wunsch alignment method
159 and parameters. It should be noted that this approach has been strongly discouraged (Schloss,
1e0 2012). Execution of the hierarchical clustering methods was performed as described in the original
161 He study using mothur (v.1.37) and using the QIIME (v.1.9.1) parameter profiles provided in the

162 supplementary material from the He study for the greedy and reference-based clustering methods.

s MiSeq-generated Murine gut microbiota dataset. The murine 16S rRNA gene sequence data
164 generated from the V4 region using an lllumina MiSeq was obtained from http:/www.mothur.org/
165 MiSeqDevelopmentData/StabilityNoMetaG.tar and was processed as outlined in the original study
16 (Kozich et al., 2013). Briefly, 250-nt read pairs were assembled into contigs by aligning the reads
167 and correcting discordant base calls by requiring one of the base calls to have a Phred quality
168 score at least 6 points higher than the other. Sequences where it was not possible to resolve the
189 disagreement were culled from the dataset. The sequences were then aligned to a SILVA reference
170 alignment (Pruesse et al., 2007) and any reads that aligned outside of the V4 region were removed
171 from the dataset. Sequences were pre-clustered by combining the abundances of sequences that
172 differed by 2 or fewer nucleotides of a more abundant sequence. Each of the samples was then

173 screened for chimeric sequences using the default parameters in UCHIME (Edgar et al., 2011).

8

Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1511v1 | CC-BY 4.0 Open Access | rec: 17 Nov 2015, publ: 17 Nov 2015



http:/www.mothur.org/MiSeqDevelopmentData/StabilityNoMetaG.tar
http:/www.mothur.org/MiSeqDevelopmentData/StabilityNoMetaG.tar
http:/www.mothur.org/MiSeqDevelopmentData/StabilityNoMetaG.tar

174 The resulting sequences were processed in the same manner as the Canadian soil dataset with

175 the exception that the distance matrices were calculated based on the SILVA-based alignment.

176 Analysis of reference database. We utilized the 97% OTUs greengenes reference sequence
177 and taxonomy data (v.13.8) that accompanies the QIIME installation. Because the greengenes
178 reference alignment does a poor job of representing the secondary structure of the 16S rRNA gene
179 (Schloss, 2010), we realigned the FASTA sequences to a SILVA reference alignment to identify the

180 V4 region of the sequences.

181 Calculation of Matthew’s Correlation Coefficient (MCC). The MCC was calculated by two
182 approaches in this study using only the dereplicated sequence lists. First, we calculated the
183 MCC to determine the stability of OTU assignments following the approach of the He study. We
164 assumed that the clusters obtained from the 30 randomized full datasets were correct. We counted
185 the number of sequence pairs that were in the same OTU for the subsetted dataset and the full
186 dataset (i.e. true positives; TP), that were in different OTUs for the subsetted dataset and the full
157 dataset (i.e. true negatives; TN), that were in the same OTU for the subsetted dataset and different
188 OTUs in the full dataset (i.e. false positives; FP), and that were in different OTUs for the subsetted
189 dataset and the same OTU in the full dataset (i.e. false negatives; FN). For each set of 30 random
190 subsamplings of the dataset, we counted these parameters against the 30 randomizations of the
191 full dataset. This gave 900 comparisons for each fraction of sequences being used in the analysis.

122 The Matthew’s correlation coefficient was then calculated as:

TP xTN—-FPxFN

MCC = VTP +FP)TP + FN)(TN + FP)(TN + FN)

193 Second, we calculated the MCC to determine the quality of the clusterings as previously described
194 (Schloss & Westcott, 2011). Briefly, we compared the OTU assignments for pairs of sequences to
195 the distance matrix that was calculated between all pairs of aligned sequences. For each dataset
196 that was clustered, those pairs of sequences that were in the same OTU and had a distance less
197 than 3% were TPs, those that were in different OTUs and had a distance greater than 3% were

198 TNs, those that were in the same OTU and had a distance greater than 3% were FPs, and those
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190 that were in different OTUs and had a distance less than 3% were FNs. The MCC was counted for
200 each dataset using the formula above as implemented in the sens.spec command in mothur. To
201 judge the quality of the Swarm-generated OTU assignments we calculated the MCC value using
202 thresholds incremented by 1% between 0 and 5% and selected the threshold that provided the

203 optimal MCC value.

204 Software availability. A reproducible workflow including all scripts and this manuscript as a literate
205 programming document are available at https:/github.com/SchlossLab/Schloss_Cluster_Peerd_
206 2015. The workflow utilized QIIME (v.1.9.1; Caporaso et al., 2010), mothur (v.1.37.0; Schloss et al.,
207 2009), USEARCH (v.6.1; Edgar, 2010), VSEARCH (v.1.5.0; Rognes et al., 2015), Swarm (v.2.1.1;
208 Mahé et al., 2014), and R (v.3.2.0; R Core Team, 2015). The SL, AL, and CL methods are called
200 nearest neighbor (NN), average neighbor (AN), and furthest neighbor (FN) in mothur; we have
210 used the terminology from the He study to minimize confusion. The knitr (v.1.10.5; Xie, 2013), Rcpp
211 (v. 0.11.6; Eddelbuettel, 2013), rentrez (v. 1.0.0; Winter, Chamberlain & Guangchun, 2015), and

212 jsonlite (v. 0.9.16; Ooms, 2014) packages were used within R.

213 Results and Discussion

21« Summary and replication of He study. We obtained the Canadian soil dataset from Roesch et
215 al. (2007) and processed the sequences as described by He and colleagues. Using these data, we

216 reconsidered three of the more critical analyses performed in the He study.

217 First, we sought to quantify whether the OTU assignments observed for a subset of the data
218 represented the same assignments that were found with the full dataset. The He study used the
219 MCC to quantify the degree to which pairs of sequences were in the same OTUs in subsampled
220 and full datasets. A more robust approach would utilize metrics that quantify the mutual information
221 held between two sets of clusterings and has been applied to assess inter-method variation in
222 OTU composition (Schmidt, Rodrigues & Mering, 2014b). To maintain consistency with the original
223 He study, we also calculated the MCC value as they described. The He study found that when

224 they used the open and closed-reference methods the OTUs formed using the subsetted data
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225 most closely resembled those of the full dataset. Among the de novo methods they observed
226 that the AGC method generated the most stable OTUs followed by the single linkage (SL), DGC,
227 complete linkage (CL), and average linkage (AL) methods. We first calculated the MCC for the
228 OTU assignments generated by each of the clustering methods using 20, 40, 60, and 80% of the
220 sequences relative to the OTU composition formed by the methods using the full dataset (see
230 Methods for description; Figure 1A). Similar to the He study, we replicated each method and
231 subsampled to the desired fraction of the dataset 30 times. Multiple subsamplings were necessary
232 because a random number generator is used in some of the methods to break ties where pairs of
233 sequences have the same distance between them. Across these sequencing depths, we observed
234 that the stability of the OTUs generated by the SL and CL methods were highly sensitive to sampling
235 effort relative to the OTUs generated by the AL, AGC, and DGC methods (Figure 1A). Our results
23 (Figure 1B) largely confirmed those of Figure 4C in the He study with one notable exception. The
237 He study observed a broad range of MCC values among their AL replicates when analyzing OTUs
238 generated using 60% of the data. This result appeared out of character and was not explained by
239 the authors. They observed a mean MCC value of approximately 0.63 (95% confidence interval
240 between approximately 0.15 and 0.75). In contrast, we observed a mean value of 0.93 (95%
241 confidence interval between 0.91 and 0.95). This result indicates that the AL assignments were
242 far more stable than indicated in the He study. Regardless, although the assignments are quite
23 stable, it does support the assertion that the OTU assignments observed for the subset of the data
244 do not perfectly match the assignments that were found with the full dataset as they did with the

25 reference-based methods; however, the significance of these differences is unclear.

26 Second, the He study and the original Roesch study showed that rarefaction curves calculated
247 using CL-generated OTU assignments obtained using a subsample of the sequencing data did
248 not overlap with rarefaction curves generated using OTU assignments generated from the full
29 dataset. The He and Roesch studies both found that the CL method produced fewer OTUs in the
250 subset than in the rarefied data. In addition, the He study found that the SL method produced
251 more OTUs, the AGC produced fewer, and the other methods produced similar numbers of OTUs
252 than expected when comparing the subsetted data to the rarefied data. Our results support those

253 Of these previous studies (Figure 2). It was clear that inter-method differences were generally
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254 more pronounced than the differences observed between rarefying from the full dataset and from
255 Clustering the subsetted data. The number of OTUs observed was largest using the CL method,
256 followed by the open-reference method. The AL, AGC, and DGC methods all provided comparable
257 numbers of OTUs. Finally, the closed-reference and SL methods generated the fewest number of

258 OTUSs.

259 Third, the authors attempted to describe the effects of the OTU assignment instability on
260 comparisons of communities. They used Adonis to test whether the community structure
261 represented in subsetted communities resembled that of the full dataset when only using the
262 unstable OTUs (Anderson, 2001). Although they were able to detect significant p-values, they
263 appeared to be of marginal biological significance. Adonis R statistics close to zero indicate
26« the community structures from the full and subsetted datasets overlapped while values of one
265 indicate the communities are completely different. The He study observed adonis R statistics
266 Of 0.02 (closed-reference), 0.03 (open-reference), 0.07 (CL, AGC, DGC), and 0.16 (SL and
267 AL). Regardless of the statistical or biological significance of these results, the analysis was
268 tautological since, by definition, representing communities based on their unstable OTUs would
269 Yyield differences. Furthermore, the de novo and open-reference approaches do not consistently
270 label the OTUs that sequences belong to when the clustering methods are run multiple times with
271 different random number seeds. To overcome this, the authors selected representative sequences
272 from each OTU and used those representative sequences to link OTU assignments between the
273 different sized sequence sets. It was not surprising that the only analysis that did not provide a
274 significant p-value was for the closed-reference analysis, which is the only analysis that provides
275 consistent OTU labels. Finally, the authors built off of this analysis to count the number of OTUs
276 that were differentially represented between the subsetted and full datasets by each method. This
277 entire analysis assumed that the OTUs generated using the full dataset were correct, which was an

278 Unsubstantiated assumption since the authors did not assess the quality of the OTU assignments.

279 This re-analysis of the He study raised five complementary questions. First, how do the various
250 Methods vary in the quality of their OTU assignments? Second, how generalizable are these results
281 10 modern datasets generated using a large number of sequences that were deeply sequenced?

282 Third, how does the stability and quality of OTU assignments generated by new methods compare
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253 to those analyzed in the He study? Fourth, are there open-source alternatives to USEARCH that
23« perform just as well? Finally, although the stability of reference-based methods did not appear
285 10 be impacted by the input order of the sequences to be assigned to OTUs, is the stability of
236 reference-based methods impacted by the order of the reference sequences? In the remainder of

257 the Results and Discussion section we address each of these questions.

238 How do the various methods vary in the quality of their OTU assignments? More important
239 than the stability of OTUs is whether sequences are assigned to the correct OTUs. A method
290 can generate highly stable OTUs, but the OTU assignments may be meaningless if they poorly
201 represent the specified cutoff and the actual distance between the sequences. To assess the quality
202 of OTU assignments by the various methods, we made use of the pairwise distance between the
293 UNique sequences to count the number of true positives and negatives and the number of false
204 positives and negatives for each method and sampling depth. Counting the frequency of these
205 different classes allowed us to judge how each method balanced the ratio of true positives and
206 Negatives to false positives and negatives using the MCC. We used the average MCC value as a
297 measure of a method’s quality and its variation as a measure of its consistency. We made three
208 important observations. First, each of the de novo methods varied in how sensitive their MCC
200 values were to additional sequences (Figure 1C). The SL and CL methods were the most sensitive;
a0 however, the quality of the OTU assignments did not meaningfully differ when 80 or 100% of the
a1 data were assigned to OTUs using the de novo methods. Second, the AL method had higher MCC
302 values than the other methods followed by DGC, AGC, CL, open-reference, and closed-reference,
a3 and SL (Figure 1D). Third, with the possible exception of the CL method, the MCC values for each
s« Of the methods only demonstrated a small amount of variation between runs of the method with
s0s a different ordering of the input sequences. This indicates that although there may be variation
s between executions of the same method, they produced OTU assignments that were of equal
a7 quality. Revisiting the concept of stability, we question the value of obtaining stable OTUs when the
sos full dataset is not optimally assigned to OTUs. Our analysis indicates that the most optimal method

a9 for assigning the Canadian soils sequences to OTUs using a 97% threshold was the AL method.

sio  How generalizable are these results to modern datasets generated using a large number of

311 sequences that were deeply sequenced? Three factors make the Canadian soil dataset less
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sz than desirable to evaluate clustering methods. First, it was one of the earliest 16S rRNA gene
313 sequence datasets published using the 454 FLX platform. Developments in sequencing technology
314 now permit the sequencing of millions of sequences for a study. In addition, because the original
a5 Phred quality scores and flowgram data are not available, it was not possible for us to adequately
a6 remove sequencing errors (Schloss, Gevers & Westcott, 2011). The large number of sequencing
317 errors that one would expect to remain in the dataset are likely to negatively affect the performance
a8 Of all of the clustering methods. Second, the dataset used in the He study covered the V9 region
a9 Of the 16S rRNA gene. For a variety of reasons, this region is not well represented in databases,
320 including the reference database used by the closed and open-reference methods. Of the 99,322
321 sequences in the default QIIME database, only 48,824 fully cover the V9 region. In contrast,
32 99,310 of the sequences fully covered the V4 region. Inadequate coverage of the V9 region would
323 adversely affect the ability of the reference-based methods to assign sequences to OTUs. Third,
324 our previous analysis has shown that the V9 region evolves at a rate much slower than the rest
a5 Of the gene (Schloss, 2010). With these points in mind, we compared the clustering assignment
a6 for each of these methods using a time series experiment that was obtained using mouse feces
327 (Schloss et al., 2012; Kozich et al., 2013). The MiSeq platform was used to generate 2,825,000
a8 sequences from the V4 region of the 16S rRNA gene of 360 samples. Parallel sequencing of a
320 mMock community indicated that the sequencing error rate was approximately 0.02% (Kozich et
a0 al.,, 2013). Although no dataset is perfect for exhaustively testing these clustering methods, this
331 dataset was useful for demonstrating several points. First, when using 60% of the data, the stability
sz relationships amongst the different methods were similar to what we observed using the Canadian
a3 Soil dataset (Figure 3AB). With the exception for the clusters generated using CL, the methods all
a4 performed very well with stabilities greater than 0.91. Second, the MCC values calculated relative
a5 to the distances between sequences were generally higher than was observed for the Canadian
a6 Soil dataset for all of the methods except the CL and SL methods. Surprisingly, the MCC values for
37 the DGC (0.77) and AGC (0.76) methods were comparable to the AL method (0.76; Figure 3CD).

a8 1his result suggests that the optimal method is likely to be database-dependent.

a9 Finally, as was observed with the Canadian soil dataset, there was little variation in MCC values

a0 Observed among the 30 randomizations. Therefore, although the methods have a stochastic
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a1 component, the OTU assignments did not vary meaningfully between runs. The results from
a2 both the Canadian soil and murine microbiota datasets demonstrate that the de novo methods
a3 can generate stable OTU assignments and that the the overall quality of the assignments were
a4 consistent. Most importantly, these analyses demonstrate that the OTU assignments using the
as AL, AGC, and DGC de novo methods were consistently better than either of the reference-based

a6 methods.

a7 How does the stability and quality of OTU assignments generated by new methods compare
us to those analyzed in the He study? The Swarm algorithm is a recently proposed de novo method
a9 for assigning sequences to OTUs that uses user-defined parameters to break up chains generated
a0 by SL clustering (Mahé et al., 2014). Swarm was originally validated by comparing the results
351 against the expected clusters formed based on the taxonomic composition of a mock community.
352 Similar to the authors of the He study, the Swarm developers suggest that methods are needed
353 that are insensitive to input order. Use of Swarm on the Canadian soil and murine datasets
s«  demonstrated that similar to the other de novo methods, Swarm’s OTU assignments changed
355 as sequences were added (Figures 1A and 3A). When we compared the OTU assignments for
a6 both datasets when using all of the sequence data, the variation in MCC values across the 30
357 randomizations were not meaningfully different (Figures 1D and 3D). Most importantly, when we
38 selected the distance threshold that optimized the MCC value, the quality of the OTU assignments
359 was close to that of the AL assignments when using the Canadian soil dataset and considerably
30 worse than that of the murine dataset (Figures 1D and 3D). Interestingly, the distance thresholds
st that resulted in the largest MCC values were 3 and 2% for the Canadian soil and murine datasets,
s2 respectively. This suggests that distance-based OTU definitions are not consistent across datasets
33 When using the Swarm algorithm, although they do appear to be within the neighborhood of 3%.
s« Finally, the Swarm developers indicated that hierarchical de novo algorithms were too impractical to
35 USe on large MiSeq-generated datasets. Our ability to apply AL to the large mouse dataset and
36 even larger datasets suggests that it is not necessary to sacrifice OTU assignment quality for speed

7 (e.g. Schubert, Sinani & Schloss, 2015; Zackular et al., 2015).

s Are there open-source alternatives to USEARCH that perform just as well? For some

a0 datasets the AGC and DGC methods appear to perform as well or better than the hierarchical
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a0 clustering methods. As originally described in the He study, the AGC and DGC methods utilized
sn1 the USEARCH program and the DGC method is used for clustering in UPARSE (Edgar, 2010,
sz 2013). The source code for USEARCH is not publicly available and only the 32-bit executables are
a73  available for free to academic users. Access for non-academic users and those needing the 64-bit
a74  version is available commercially from the developer. An alternative to USEARCH is VSEARCH,
a7s which is being developed in parallel to USEARCH as an open-source alternative. One subtle
are  difference between the two programs is that USEARCH employs a heuristic to generate candidate
a7z alignments whereas VSEARCH generates the actual global alignments. The VSEARCH developers
a7 Claim that this difference enhances the sensitivity of VSEARCH relative to USEARCH. Using the
a9 two datasets, we determined whether the AGC and DGC methods, as implemented by the two
a0 programs, yielded OTU assignments of similar quality. In general the overall trends that we observed
ss1 with the USEARCH-version of AGC and DGC were also observed with the VSEARCH-version
a2 Of the methods (Figure 4). When we compared the two implementations of the AGC and DGC
a3 methods, the OTUs generated by the VSEARCH-version of the methods were as stable or more
a4 stable than the USEARCH-version when using 60% of the datasets. In addition, the MCC values
ass for the entire datasets, calculated relative to the distance matrix, were virtually indistinguishable.
ass Ihese results are a strong indication that VSEARCH is a suitable and possibly better option for

37 executing the AGC and DGC methods.

s Is the stability of reference-based methods impacted by the order of the reference
0 sequences? The He study and our replication attempt validated that the closed-reference method
a0 generated perfectly stable OTUs. This was unsurprising since, by definition, the method is designed
391 10 return one-to-one mapping of reads to a reference. Furthermore, because it treats the input
392 sequences independently the input order or use of a random number generator is not an issue. An
se3 important test that was not performed in the He study was to determine whether the clustering
a4 Wwas sensitive to the order of the sequences in the database. The default database used in QIIME,
395 Which was also used in the He study, contains full-length sequences that are at most 97% similar
sss to each other. We randomized the order of the reference sequences 30 times and used them to
a7 carry out the closed-reference method with the full murine dataset, which contained 32,106 unique

s sequences (Figure 5). Surprisingly, we observed that the number of OTUs generated was not the
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a9 same in each of the randomizations. On average there were 28,059 sequences that mapped to
a0 a reference OTU per randomization (range from 28,007 to 28,111). The original ordering of the
a1 reference resulted in 27,876 sequences being mapped, less than the minimum observed number
a2 of mapped sequences when the references were randomized. This surprising result was likely due
s03 to the performance of the USEARCH heuristic. To test this further, we substituted VSEARCH for
s04 USEARCH in the closed-reference method. When we used VSEARCH the original ordering of the
s0s reference sequences and all randomizations were able to map 27,737 sequences to reference
w6 OTUs. When we calculated the true distance between each of the murine sequences and the
w07 references, we were able to map 28,238 of the murine sequences to the reference sequences
a8 When using a 97% similarity threshold without the use of a heuristic. This result indicates that the
a9 closed reference approach, whether using USEARCH or VSEARCH, does not exhaustively or
a0 accurately map reads to the closest reference. To quantify this further, we calculated the MCC for
a1 the USEARCH and VSEARCH assignments relative to the assignments using the non-heuristic
412 approach. Using USEARCH the average MCC was 0.78 (range: 0.75 to 0.80) and using VSEARCH
s13 the average MCC was 0.65 (range: 0.64 to 0.66). The two methods had similar sensitivities
414 (USEARCH: 0.98 and VSEARCH: 0.97), but the USEARCH specificity (0.73) was considerably
a5 higher than VSEARCH (0.60). Overall, these results indicate that although heuristic approaches
416 May be fast, they do a poor job of mapping reads to the correct reference sequence relative to

417 non-heuristic approaches.

418 We also observed that regardless of whether we used USEARCH or VSEARCH, the reference
a9 OTU labels that were assigned to each OTU differed between randomizations. When we used
220 USEARCH to perform closed-reference clustering, an average of 57.38% of the labels were
a1 shared between pairs of the 30 randomizations (range=56.14 to 59.55%). If we instead used
s22 VSEARCH an average of 56.23% of the labels were shared between pairs of the 30 randomizations
123 (range=53.48 to 59.12%). To better understand this result, we further analyzed QIIME’s reference
24 database. We hypothesized that within a given region there would be sequences that were more
a5 than 97% similar and possibly identical to each other. When a sequence was used to search the
a6 randomized databases, it would encounter a different reference sequence as the first match with

a7 each randomization. Among the 99,310 reference sequences that fully overlap the V4 region,
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w28 there were 7,785 pairs of sequences that were more than 97% similar to each other over the full
229 length of the 16S rRNA gene. When the extracted V4 sequences were dereplicated, we identified
a0 88,347 unigue sequences. Among these dereplicated V4 sequences there were 311,430 pairs of
131 sequences that were more than 97% similar to each other. The presence of duplicate and highly
132 similar V4 reference sequences explains the lack of labeling stability when using either USEARCH
s33 or VSEARCH to carry out the closed-reference method. We suspect that the reference database
s34 was designed to only include sequences that were at most 97% similar to each other as a way to

435 overcome the limitations of the USEARCH search heuristic.

s Beyond comparing the abundance of specific OTUs across samples, the reference database is
s37 - used in the open and closed-reference methods to generate OTU labels that can be used in several
a8 downstream applications. It is commonly used to extract information from a reference phylogenetic
a9 tree to carrying out UniFrac-based analyses (Hamady, Lozupone & Knight, 2009) and to identify
a0 reference genomes for performing analyses such as PICRUSt (Langille et al., 2013). Because
a1 these downstream applications depend on the correct and unique labeling of the OTUs, the lack of
a2 label stability is problematic. As one illustration of the effects that incorrect labels would have on an
a3 analysis, we asked whether the duplicate sequences had the same taxonomies. Among the 3,132
a4 V4 reference sequences that had one duplicate, 443 had discordant taxonomies. Furthermore,
a5 among those 1,699 V4 reference sequences with two or more duplicates, 698 had discordant
w5 taxonomies. Two V4 reference sequences mapped to 30 and 10 duplicate sequences and both
447 contained 7 different taxonomies. Among the V4 sequences within the database, there was also a
ws  sequence that had 131 duplicates and represented 5 different taxonomies. When we analyzed the
w9 28,238 sequences that mapped to the V4 reference sequences using a non-heuristic approach,
a0 we observed that 18,315 of the sequences mapped to more than one reference sequence. Of
51 these sequences, 13,378 (73.04%) mapped to references that were identical over the V4 region
ss2 - and 4,937 (26.96%) mapped equally well to two or more references that were not identical over the
a3 V4 region. Among the combined 18,315 sequences that mapped to multiple reference sequences,
154 the taxonomy of the multiple reference sequences conflicted for 3,637 (19.86%). Together, these
55 results demonstrate some of the considerable problems with the reference-based clustering of

456 Sequences.
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7 Conclusions

sss It is worth noting that the analysis from the Roesch study that motivated the He study is not typical
ss9  of microbial ecology studies. First, their analysis was based on a single soil sample. Researchers
w0 generally have dozens or hundreds of samples that are pooled and clustered together to enable
st comparison across samples. Second, all of the sequence data from these datasets is pooled for
s2 @ single analysis. Rarely would a researcher rarefy their data prior to clustering since it can be
s more efficiently done after all of the data are assigned to OTUs. Third, the CL method used in the
w4 oOriginal Roesch study has since been shown to not generate optimal OTUs (Schloss & Westcott,
s 2011). As for the approach used in the He study, the value of identifying stable OTUs is unclear.
a6 Although there is concern that running the methods multiple times yields different clusterings, we
a7 have shown that there is little variation in their quality. This suggests that the different clusterings by
w8 the same method are equally good. Greater emphasis should be placed on obtaining an optimal
w9 balance between splitting similar sequences into separate OTUs and merging disparate sequences

470 into the same OTU.

sn The approach of the current study quantified the effects of merging and splitting by using an
a2 Objective metric. Through the use of the pairwise distances between sequences, we were able to
473 use the MCC to demonstrate that, in general, the AL method was consistently the optimal method
a74  for each dataset, but that Swarm, AGC, and DGC sometimes perform as well as AL. At least for the
a7s murine dataset, Swarm also could be among the methods that performed poorly. It is impossible to
476 Obtain a clustering with no false positives or false negatives and the optimal method may vary by
a7 dataset. With this in mind, researchers are encouraged to calculate and report their MCC values
a7s and to use these values to justify using methods other than the AL. As an alternative to the He
479 study’s method of measuring stability, we propose using the variation in the quality of the clustering
ss0  Of the full dataset. Given the tight 95% confidence intervals shown in Figures 1D and 3D, with the
w81 exception of CL, it is clear that this variation is quite small. This indicates that although the order
a2 0Of the sequences being clustered can affect the actual cluster assignments, the quality of those

ss3  different clusterings is not meaningfully different.
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ss4  Our analysis of those methods that implemented USEARCH as a method for clustering sequences
sss revealed that its heuristic limited its specificity. When we replaced USEARCH with VSEARCH, the
a5 clustering quality was as good or better. Although there may be parameters in USEARCH that can
a7 be tuned to improve the heuristic, these parameters are likely dataset dependent. Based on the
w8 data presented in this study, its availability as an open source, and free program, VSEARCH should
a0 replace USEARCH in the de novo clustering methods; however, USEARCH performed better
a0 than VSEARCH for closed-reference clustering. Furthermore, although not tested in our study,
st VSEARCH can be parallelized leading to potentially significant improvements in speed. Although
a2 USEARCH and VSEARCH do not utilize aligned sequences, it is important to note that a sequence
s93 curation pipeline including denoising, alignment, trimming to a consistent region of the 16S rRNA
s94 gene, and chimera checking are critical to making proper inferences (Schloss, Gevers & Westcott,

a5 2011; Schloss, 2012; Kozich et al., 2013).

a5 We have assessed the ability of reference-based clustering methods to capture the actual distance
a7 between the sequences in a dataset in parallel with de novo methods. Several studies have
a8 lauded both the open and closed-reference approaches for generating reproducible clusterings
a9 (Navas-Molina et al., 2013; Rideout et al., 2014; He et al., 2015), yet we have shown that both
soo reference-based approaches did a poor job of representing the distance between the sequences
st compared to the de novo approaches. Although the OTU assignments are reproducible and stable
s02 across a range of library sizes, the reference-based OTU assignments are a poor representation of
so3 the data. We also observed that the assignments were not actually reproducible when the order
so4 Of the reference sequences was randomized. When USEARCH was used, the actual number
sos Of sequences that mapped to the reference changed depended on the order of the reference.
sos Perhaps most alarming was that the default order of the database provided the worst MCC of any
so7  Of the randomizations we attempted. This has the potential to introduce systematic a bias rather
sos than a random error. Even when we used VSEARCH to perform closed-reference clustering and
soo were able to obtain a consistent clusterings, we observed that the labels on the OTUs differed
sto  between randomizations. Because the OTU labels are frequently used to identify representative
st sequences for those OTUs, variation in labels, often representing different taxonomic groups, will

si2 have a detrimental effect on the interpretation of downstream analyses.
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si3 Because the open-reference method is a hybrid of the closed-reference and DGC methods, it is
s14 also negatively affected by the various problems using USEARCH. An added problem with the
sts open-reference method is that the two phases of the method employ different thresholds to define
si6 its OTUs. In the closed-reference step, sequences must be within a threshold of a reference to be in
57 the same OTU. This means that in the worst case scenario two sequences that are 97% similar to
sts a reference and are joined into the same OTU, may only be 94% similar to each other. In the DGC
st9  step, the goal is to approximate the AL method which requires that, on average, the sequences
s20 within an OTU are, on average, 97% similar to each other. The end result of the open-reference
st approach is that sequences that are similar to previously observed sequences are clustered with
s22 one threshold while those that are not similar to previously observed sequences are clustered with

s23  a different threshold.

s24  As the throughput of sequencing technologies have improved, development of clustering algorithms
s2s  Mmust continue to keep pace. De novo clustering methods are considerably slower and more
s26 computationally intensive than reference-based methods and the greedy de novo methods are faster
s27  than the hierarchical methods. In our experience (Kozich et al., 2013), the most significant detriment
528 t0 execution speed of the de novo methods has been the inadequate removal of sequencing error
s20 and chimeras. As the rate of sequencing error increases so do the number of unique sequences
s30 that must be clustered. The speed of the de novo methods scales approximately quadratically, so
s31 that doubling the number of sequences results in a four-fold increase in the time required to execute
sz the method. The rapid expansion in sequencing throughput has been likened to the Red Queen
s33  in Lewis Carroll's, Through the Looking-Glass who must run in place to keep up to her changing
s3¢  surroundings (Schloss et al., 2009). Microbial ecologists must continue to refine clustering methods
s35  to better handle the size of the datasets, but they must also take steps to improve the quality of the
s3s underlying data. Ultimately, objective standards must be applied to assess the quality of the data

s37 - and the quality of OTU clustering.
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538 Figures

s39 Figure 1. Comparison of the stability (A, B) and quality (C, D) of de novo and
s¢0 reference-based clustering methods using the Canadian soil dataset. The average
s stability of the OTUs was determined by calculating the MCC with respect to the OTU assignments
sz for the full dataset using varying sized subsamples. The quality of the OTUs was determined by
s43  calculating the MCC with respect to the distances between the sequences using varying sized
s44  subsamples. Thirty randomizations were performed for each fraction of the dataset and the average
s¢s  and 95% confidence interval are presented when using 60% of the data. The vertical gray lines in
s«6 A and C indicates the fraction of the dataset represented in B and D, respectively. The color and
s¢7 shape of the plotting symbol is the same between the different panels and is described along the

ses  X-axis of panel D. The optimum threshold for the Swarm-generated assignments was 3%.

s¢9  Figure 2. The clustering methods varied in their ability to generate the same number of
sso. OTUs using a subset of the data as were observed when the full dataset was rarefied. The
ss1 - subsetted data are depicted by closed circles and the data from the rarefied full dataset is depicted

ss2 by the open circles.

ss3 Figure 3. Comparison of the stability (A, B) and quality (C, D) of de novo and
554 reference-based clustering methods using the murine dataset. The average stability of
555 the OTUs was determined by calculating the MCC with respect to the OTU assignments for the full
ss6 - dataset using varying sized subsamples. The quality of the OTUs was determined by calculating
ss7 the MCC with respect to the distances between the sequences using varying sized subsamples.
sss 1 hirty randomizations were performed for each fraction of the dataset and the average and 95%
ss9 confidence interval are presented when using 60% of the data. The vertical gray lines in A and C
seo indicates the fraction of the dataset represented in B and D, respectively. The color and shape of
set  the plotting symbol is the same between the different panels and is described along the x-axis of

se2  panel D. The optimum threshold for the Swarm-generated assignments was 2%.

ses  Figure 4. The stability and quality of USEARCH and VSEARCH OTUs generated by the AGC

s« and DGC methods were similar. The stability of the OTUs was determined by calculating the
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MCC for OTUs calculated using 60% of the data relative to the OTU assignments for the full dataset.
The quality of the OTUs was determined by calculating the MCC of the OTUs calculated using the
full dataset with respect to the distances between the sequences. The error bars represent the 95%

confidence interval across the 30 randomizations.

Figure 5. The number of closed-reference OTUs observed in the murine dataset when
using USEARCH, VSEARCH, and without a heuristic. In addition to the default ordering of
the references provided with the QIIME package, the reference sequences were randomized 30
times; the order of the murine dataset was not randomized. Regardless of whether the default or
randomized ordering was used, the number of OTUs generated using VSEARCH did not differ. The
non-heuristic approach calculated the exact distance between the murine sequences and the the

reference sequences and assigned the sequences to the reference with the smallest distance.
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