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De novo clustering methods out-perform reference-based

methods for assigning 16S rRNA gene sequences to

operational taxonomic units

Sarah L Westcott, Patrick Schloss

Background. 16S rRNA gene sequences are routinely assigned to operational

taxonomic units (OTUs) that are then used to analyze complex microbial

communities. A number of methods have been employed to carry out the

assignment of 16S rRNA gene sequences to OTUs leading to confusion over

which method is optimal. A recent study suggested that a clustering method

should be selected based on its ability to generate stable OTU assignments that

do not change as additional sequences are added to the dataset. In contrast, we

contend that the quality of the OTU assignments, the ability of the method to

properly represent the distances between the sequences, is more important.

Methods. Our analysis implemented six de novo clustering algorithms including

the single linkage, complete linkage, average linkage, abundance-based greedy

clustering, distance-based greedy clustering, and Swarm and the open and

closed-reference methods. Using two previously published datasets we used the

Matthew�s Correlation Coefficient (MCC) to assess the stability and quality of

OTU assignments.

Results. The stability of OTU assignments did not reflect the quality of the

assignments. Depending on the dataset being analyzed, the average linkage and

the distance and abundance-based greedy clustering methods generated OTUs

that were more likely to represent the actual distances between sequences than

the open and closed-reference methods. We also demonstrated that for the

greedy algorithms VSEARCH produced assignments that were comparable to

those produced by USEARCH making VSEARCH a viable free and open source

alternative to USEARCH. Further interrogation of the reference-based methods

indicated that when USEARCH or VSEARCH were used to identify the closest

reference, the OTU assignments were sensitive to the order of the reference

sequences because the reference sequences can be identical over the region
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being considered. More troubling was the observation that while both USEARCH

and VSEARCH have a high level of sensitivity to detect reference sequences, the

specificity of those matches was poor relative to the true best match.

Discussion. Our analysis calls into question the quality and stability of OTU

assignments generated by the open and closed-reference methods as

implemented in current version of QIIME. This study demonstrates that de novo

methods are the optimal method of assigning sequences into OTUs and that the

quality of these assignments needs to be assessed for multiple methods to

identify the optimal clustering method for a particular dataset.
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Abstract1

Background. 16S rRNA gene sequences are routinely assigned to operational taxonomic units2

(OTUs) that are then used to analyze complex microbial communities. A number of methods3

have been employed to carry out the assignment of 16S rRNA gene sequences to OTUs leading4

to confusion over which method is optimal. A recent study suggested that a clustering method5

should be selected based on its ability to generate stable OTU assignments that do not change as6

additional sequences are added to the dataset. In contrast, we contend that the quality of the OTU7

assignments, the ability of the method to properly represent the distances between the sequences,8

is more important.9

Methods. Our analysis implemented six de novo clustering algorithms including the single linkage,10

complete linkage, average linkage, abundance-based greedy clustering, distance-based greedy11

clustering, and Swarm and the open and closed-reference methods. Using two previously published12

datasets we used the Matthew’s Correlation Coefficient (MCC) to assess the stability and quality of13

OTU assignments.14

Results. The stability of OTU assignments did not reflect the quality of the assignments. Depending15

on the dataset being analyzed, the average linkage and the distance and abundance-based greedy16

clustering methods generated OTUs that were more likely to represent the actual distances17

between sequences than the open and closed-reference methods. We also demonstrated that for18

the greedy algorithms VSEARCH produced assignments that were comparable to those produced19

by USEARCH making VSEARCH a viable free and open source alternative to USEARCH. Further20

interrogation of the reference-based methods indicated that when USEARCH or VSEARCH were21

used to identify the closest reference, the OTU assignments were sensitive to the order of the22

reference sequences because the reference sequences can be identical over the region being23

considered. More troubling was the observation that while both USEARCH and VSEARCH have a24

high level of sensitivity to detect reference sequences, the specificity of those matches was poor25

relative to the true best match.26
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Discussion. Our analysis calls into question the quality and stability of OTU assignments generated27

by the open and closed-reference methods as implemented in current version of QIIME. This study28

demonstrates that de novo methods are the optimal method of assigning sequences into OTUs29

and that the quality of these assignments needs to be assessed for multiple methods to identify the30

optimal clustering method for a particular dataset.31
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Introduction32

The ability to affordably generate millions of 16S rRNA gene sequences has allowed microbial33

ecologists to thoroughly characterize the microbial community composition of hundreds of samples.34

To simplify the complexity of these large datasets, it is helpful to cluster sequences into meaningful35

bins. These bins, commonly known as operational taxonomic units (OTUs), are used to compare36

the biodiversity contained within and between different samples (Schloss & Westcott, 2011). Such37

comparisons have enabled researchers to characterize the microbiota associated with the human38

body (e.g. Huttenhower et al., 2012), soil (e.g. Shade et al., 2013), aquatic ecosystems (e.g. Gilbert39

et al., 2011), and numerous other environments. Within the field of microbial ecology, a convention40

has emerged where sequences are clustered into OTUs using a threshold of 97% similarity or41

a distance of 3%. One advantage of the OTU-based approach is that the definition of the bins42

is operational and can be changed to suit the needs of the particular project. However, with the43

dissemination of clustering methods within software such as mothur (Schloss et al., 2009), QIIME44

(Caporaso et al., 2010), and other tools (Sun et al., 2009; Edgar, 2010, 2013; Cai & Sun, 2011;45

Mahé et al., 2014), it is important to understand how different clustering methods implement this46

conventional OTU threshold. Furthermore, it is necessary to understand how the selected method47

affects the precision and accuracy of assigning sequences to OTUs. Broadly speaking, three48

approaches have been developed to assign sequences to OTUs:49

The first approach has been referred to as phylotyping (Schloss & Westcott, 2011) or closed50

reference clustering (Navas-Molina et al., 2013). This approach involves comparing sequences51

to a curated database and then clustering sequences into the same OTU that are similar to the52

same reference sequence. Reference-based clustering methods suffer when the reference does53

not adequately reflect the biodiversity of the community. If a large fraction of sequences are54

novel, then they cannot be assigned to an OTU. In addition, the reference sequences are selected55

because they are less than 97% similar to each other over the full length of the gene; however, it is56

known that the commonly used variable regions within the 16S rRNA gene do not evolve at the57

same rate as the full-length gene (Schloss, 2010; Kim, Morrison & Yu, 2011). Thus, a sequence58

representing a fragment of the gene may be more than 97% similar to multiple reference sequences.59
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Defining OTUs in the closed-reference approach is problematic because two sequences might60

be 97% similar to the same reference sequence, but they may only be 94% similar to each other.61

Alternatively, a sequence may be equally similar to two or more reference sequences. A alternative62

to this approach is to use a classifier to assign a taxonomy to each sequence so that sequences can63

be clustered at a desired level within the Linnean taxonomic hierarchy (Schloss & Westcott, 2011).64

The strengths of the reference-based methods include their speed, potential for trivial parallelization,65

ability to compare OTU assignments across studies, and the hope that as databases improve, the66

OTU assignments will also improve.67

The second approach has been referred to as distance-based (Schloss & Westcott, 2011) or de68

novo clustering (Navas-Molina et al., 2013). In this approach, the distance between sequences is69

used to cluster sequences into OTUs rather than the distance to a reference database. In contrast70

to the efficiency of closed-reference clustering, the computational cost of hierarchical de novo71

clustering methods scales quadratically with the number of unique sequences. The expansion in72

sequencing throughput combined with sequencing errors inflates the number of unique sequences73

resulting in the need for large amounts of memory and time to cluster the sequences. If error74

rates can be reduced through stringent quality control measures, then these problems can be75

overcome (Kozich et al., 2013). As an alternative, heuristics have been developed to approximate76

the clustering of hierarchical methods (Sun et al., 2009; Edgar, 2010; Mahé et al., 2014). Two77

related heuristics implemented in USEARCH were recently described: distance-based greedy78

clustering (DGC) and abundance-based greedy clustering (AGC) (Edgar, 2010; He et al., 2015).79

These greedy methods cluster sequences within a defined similarity threshold of an index sequence80

or creates a new index sequence. If a sequence is more similar than the defined threshold, it81

is assigned to the closest centroid based (i.e. DGC) or the most abundant centroid (i.e. AGC).82

One critique of de novo approaches is that OTU assignments are sensitive to the input order of83

the sequences (Mahé et al., 2014; He et al., 2015). Whether the differences in assignments is84

meaningful is unclear and the variation in results could represent equally valid clustering of the data.85

The strength of de novo clustering is its independence of references for carrying out the clustering86

step. For this reason, de novo clustering has been preferred across the field. After clustering,87
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the classification of each sequence can be used to obtain a consensus classification for the OTU88

(Schloss & Westcott, 2011).89

The third approach, open-reference clustering, is a hybrid of the closed-reference and de novo90

approaches (Navas-Molina et al., 2013; Rideout et al., 2014). Open-reference clustering involves91

performing closed-reference clustering followed by de novo clustering on those sequences that92

are not sufficiently similar to the reference. In theory, this method should exploit the strengths of93

both closed-reference and de novo clustering; however, the different OTU definitions employed by94

commonly used closed-reference and de novo clustering implementations pose a possible problem95

when the methods are combined. An alternative to this approach has been to classify sequences96

to a bacterial family or genus and then assign those sequences to OTUs within those taxonomic97

groups using the average linkage method (Schloss & Westcott, 2011). For example, all sequences98

classified as belonging to the Porphyromonadaceae would then be assigned to OTUs using the99

average linkage method using a 3% distance threshold. Those sequences that did not classify to100

a known family would also be clustered using the average linkage method. An advantage of this101

approach is that it lends itself nicely to parallelization since each taxonomic group is seen as being102

independent and can be processed separately. Such an approach would overcome the difficulty of103

mixing OTU definitions between the closed-reference and de novo approaches; however, it would104

still suffer from the problems associated with database quality and classification error.105

The growth in options for assigning sequences using each of these three broad approaches has106

been considerable. It has been difficult to objectively assess the quality of OTU assignments. Some107

have focused on the time and memory required to process a dataset (Sun et al., 2009; Cai & Sun,108

2011; Mahé et al., 2014; Rideout et al., 2014). These are valid parameters to assess when judging109

a clustering method, but have little to say about the quality of the OTU assignments. Others have110

attempted to judge the quality of a method by its ability to generate data that parallels classification111

data (White et al., 2010; Sun et al., 2011; Cai & Sun, 2011). This approach is problematic because112

bacterial taxonomy often reflects historical biases amongst bacterial systematicists. Furthermore,113

it is well known that the rates of evolution across lineages are not the same (Wang et al., 2007;114

Schloss, 2010). A related approach has used clustering of mock community data to evaluate115

methods (Huse et al., 2010; Barriuso, Valverde & Mellado, 2011; Bonder et al., 2012; Chen et al.,116
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2013; Edgar, 2013; Mahé et al., 2014; May et al., 2014). Yet these approaches ignore the effects of117

sequencing errors that tend to accumulate with sequencing depth and represent highly idealized118

communities that lack the phylogenetic diversity of real microbial communities (Schloss, Gevers119

& Westcott, 2011; Kozich et al., 2013). Others have assessed the quality of clustering based on120

their ability to generate the same OTUs generated by other methods (Rideout et al., 2014; Schmidt,121

Rodrigues & Mering, 2014b). This is problematic because it does not solve the fundamental122

question of which method is optimal. The concept of ecological consistency as a metric of quality123

asserts that sequences that cluster into the same OTU should share similar ecological affiliations124

(Koeppel & Wu, 2013; Preheim et al., 2013; Schmidt, Rodrigues & Mering, 2014a). Although125

this is an intriguing approach and is a quantitative metric, it is unclear how the metric would be126

objectively validated. We recently proposed an approach for evaluating OTU assignments using the127

distances between pairs of sequences (Schloss & Westcott, 2011). We were able to synthesize the128

relationship between OTU assignments and the distances between sequences using the Matthew’s129

correlation coefficient (MCC; Matthews, 1975). MCC is can be interpreted as representing the130

correlation between the observed and expected classifications and can vary between -1.0 and131

1.0. The strength of the MCC, as implemented by Schloss et al. (2011), is that it is an objective132

approach to assessing the quality of the OTU assignments that can be calculated for any set of133

OTU assignments where there is a distance matrix and a specific threshold without relying on an134

external reference.135

A recent analysis by He and colleagues (2015) characterized the three general clustering136

approaches by focusing on what they called stability. They defined stability as the ability of a137

method to provide the same clustering on a subset of the data as was found in the full dataset.138

Their concept of stability did not account for the quality of the OTU assignments and instead139

focused on the precision of the assignments. A method may be very stable, but of poor quality.140

In the current analysis, we assessed the quality and stability of the various clustering methods.141

Building on our previous analysis of clustering methods, our hypothesis was that the methods142

praised by the He study for their stability actually suffered a lack of quality. In addition, we assess143

these parameters in light of sequence quality using the original 454 dataset and a larger and more144

modern dataset generated using the MiSeq platform.145
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Methods146

454 FLX-generated Roesch Canadian soil dataset. After obtaining the 16S rRNA gene147

fragments from GenBank (accessions EF308591-EF361836), we followed the methods outlined by148

the He study by removing any sequence that contained an ambiguous base, was identified as149

being a chimera, and fell outside a defined sequence length. Although they reported observing a150

total of 50,542 sequences that were represented by 13,293 unique sequences, we obtained a total151

of 50,946 sequences that were represented by 13,393 unique sequences. Similar to the He study,152

we randomly sampled, without replacement, 20, 40, 60, and 80% of the sequences from the full153

data set. The random sampling was repeated 30 times. The order of the sequences in the full154

dataset was randomly permuted without replacement to generate an additional 30 datasets. To155

perform the hierarchical clustering methods and to generate a distance matrix we followed the156

approach of the He study by calculating distances based on pairwise global alignments using157

the pairwise.dist command in mothur using the default Needleman-Wunsch alignment method158

and parameters. It should be noted that this approach has been strongly discouraged (Schloss,159

2012). Execution of the hierarchical clustering methods was performed as described in the original160

He study using mothur (v.1.37) and using the QIIME (v.1.9.1) parameter profiles provided in the161

supplementary material from the He study for the greedy and reference-based clustering methods.162

MiSeq-generated Murine gut microbiota dataset. The murine 16S rRNA gene sequence data163

generated from the V4 region using an Illumina MiSeq was obtained from http:/www.mothur.org/164

MiSeqDevelopmentData/StabilityNoMetaG.tar and was processed as outlined in the original study165

(Kozich et al., 2013). Briefly, 250-nt read pairs were assembled into contigs by aligning the reads166

and correcting discordant base calls by requiring one of the base calls to have a Phred quality167

score at least 6 points higher than the other. Sequences where it was not possible to resolve the168

disagreement were culled from the dataset. The sequences were then aligned to a SILVA reference169

alignment (Pruesse et al., 2007) and any reads that aligned outside of the V4 region were removed170

from the dataset. Sequences were pre-clustered by combining the abundances of sequences that171

differed by 2 or fewer nucleotides of a more abundant sequence. Each of the samples was then172

screened for chimeric sequences using the default parameters in UCHIME (Edgar et al., 2011).173
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The resulting sequences were processed in the same manner as the Canadian soil dataset with174

the exception that the distance matrices were calculated based on the SILVA-based alignment.175

Analysis of reference database. We utilized the 97% OTUs greengenes reference sequence176

and taxonomy data (v.13.8) that accompanies the QIIME installation. Because the greengenes177

reference alignment does a poor job of representing the secondary structure of the 16S rRNA gene178

(Schloss, 2010), we realigned the FASTA sequences to a SILVA reference alignment to identify the179

V4 region of the sequences.180

Calculation of Matthew’s Correlation Coefficient (MCC). The MCC was calculated by two181

approaches in this study using only the dereplicated sequence lists. First, we calculated the182

MCC to determine the stability of OTU assignments following the approach of the He study. We183

assumed that the clusters obtained from the 30 randomized full datasets were correct. We counted184

the number of sequence pairs that were in the same OTU for the subsetted dataset and the full185

dataset (i.e. true positives; TP), that were in different OTUs for the subsetted dataset and the full186

dataset (i.e. true negatives; TN), that were in the same OTU for the subsetted dataset and different187

OTUs in the full dataset (i.e. false positives; FP), and that were in different OTUs for the subsetted188

dataset and the same OTU in the full dataset (i.e. false negatives; FN). For each set of 30 random189

subsamplings of the dataset, we counted these parameters against the 30 randomizations of the190

full dataset. This gave 900 comparisons for each fraction of sequences being used in the analysis.191

The Matthew’s correlation coefficient was then calculated as:192

MCC =
TP × TN − FP × FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Second, we calculated the MCC to determine the quality of the clusterings as previously described193

(Schloss & Westcott, 2011). Briefly, we compared the OTU assignments for pairs of sequences to194

the distance matrix that was calculated between all pairs of aligned sequences. For each dataset195

that was clustered, those pairs of sequences that were in the same OTU and had a distance less196

than 3% were TPs, those that were in different OTUs and had a distance greater than 3% were197

TNs, those that were in the same OTU and had a distance greater than 3% were FPs, and those198
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that were in different OTUs and had a distance less than 3% were FNs. The MCC was counted for199

each dataset using the formula above as implemented in the sens.spec command in mothur. To200

judge the quality of the Swarm-generated OTU assignments we calculated the MCC value using201

thresholds incremented by 1% between 0 and 5% and selected the threshold that provided the202

optimal MCC value.203

Software availability. A reproducible workflow including all scripts and this manuscript as a literate204

programming document are available at https://github.com/SchlossLab/Schloss_Cluster_PeerJ_205

2015. The workflow utilized QIIME (v.1.9.1; Caporaso et al., 2010), mothur (v.1.37.0; Schloss et al.,206

2009), USEARCH (v.6.1; Edgar, 2010), VSEARCH (v.1.5.0; Rognes et al., 2015), Swarm (v.2.1.1;207

Mahé et al., 2014), and R (v.3.2.0; R Core Team, 2015). The SL, AL, and CL methods are called208

nearest neighbor (NN), average neighbor (AN), and furthest neighbor (FN) in mothur; we have209

used the terminology from the He study to minimize confusion. The knitr (v.1.10.5; Xie, 2013), Rcpp210

(v. 0.11.6; Eddelbuettel, 2013), rentrez (v. 1.0.0; Winter, Chamberlain & Guangchun, 2015), and211

jsonlite (v. 0.9.16; Ooms, 2014) packages were used within R.212

Results and Discussion213

Summary and replication of He study. We obtained the Canadian soil dataset from Roesch et214

al. (2007) and processed the sequences as described by He and colleagues. Using these data, we215

reconsidered three of the more critical analyses performed in the He study.216

First, we sought to quantify whether the OTU assignments observed for a subset of the data217

represented the same assignments that were found with the full dataset. The He study used the218

MCC to quantify the degree to which pairs of sequences were in the same OTUs in subsampled219

and full datasets. A more robust approach would utilize metrics that quantify the mutual information220

held between two sets of clusterings and has been applied to assess inter-method variation in221

OTU composition (Schmidt, Rodrigues & Mering, 2014b). To maintain consistency with the original222

He study, we also calculated the MCC value as they described. The He study found that when223

they used the open and closed-reference methods the OTUs formed using the subsetted data224
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most closely resembled those of the full dataset. Among the de novo methods they observed225

that the AGC method generated the most stable OTUs followed by the single linkage (SL), DGC,226

complete linkage (CL), and average linkage (AL) methods. We first calculated the MCC for the227

OTU assignments generated by each of the clustering methods using 20, 40, 60, and 80% of the228

sequences relative to the OTU composition formed by the methods using the full dataset (see229

Methods for description; Figure 1A). Similar to the He study, we replicated each method and230

subsampled to the desired fraction of the dataset 30 times. Multiple subsamplings were necessary231

because a random number generator is used in some of the methods to break ties where pairs of232

sequences have the same distance between them. Across these sequencing depths, we observed233

that the stability of the OTUs generated by the SL and CL methods were highly sensitive to sampling234

effort relative to the OTUs generated by the AL, AGC, and DGC methods (Figure 1A). Our results235

(Figure 1B) largely confirmed those of Figure 4C in the He study with one notable exception. The236

He study observed a broad range of MCC values among their AL replicates when analyzing OTUs237

generated using 60% of the data. This result appeared out of character and was not explained by238

the authors. They observed a mean MCC value of approximately 0.63 (95% confidence interval239

between approximately 0.15 and 0.75). In contrast, we observed a mean value of 0.93 (95%240

confidence interval between 0.91 and 0.95). This result indicates that the AL assignments were241

far more stable than indicated in the He study. Regardless, although the assignments are quite242

stable, it does support the assertion that the OTU assignments observed for the subset of the data243

do not perfectly match the assignments that were found with the full dataset as they did with the244

reference-based methods; however, the significance of these differences is unclear.245

Second, the He study and the original Roesch study showed that rarefaction curves calculated246

using CL-generated OTU assignments obtained using a subsample of the sequencing data did247

not overlap with rarefaction curves generated using OTU assignments generated from the full248

dataset. The He and Roesch studies both found that the CL method produced fewer OTUs in the249

subset than in the rarefied data. In addition, the He study found that the SL method produced250

more OTUs, the AGC produced fewer, and the other methods produced similar numbers of OTUs251

than expected when comparing the subsetted data to the rarefied data. Our results support those252

of these previous studies (Figure 2). It was clear that inter-method differences were generally253
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more pronounced than the differences observed between rarefying from the full dataset and from254

clustering the subsetted data. The number of OTUs observed was largest using the CL method,255

followed by the open-reference method. The AL, AGC, and DGC methods all provided comparable256

numbers of OTUs. Finally, the closed-reference and SL methods generated the fewest number of257

OTUs.258

Third, the authors attempted to describe the effects of the OTU assignment instability on259

comparisons of communities. They used Adonis to test whether the community structure260

represented in subsetted communities resembled that of the full dataset when only using the261

unstable OTUs (Anderson, 2001). Although they were able to detect significant p-values, they262

appeared to be of marginal biological significance. Adonis R statistics close to zero indicate263

the community structures from the full and subsetted datasets overlapped while values of one264

indicate the communities are completely different. The He study observed adonis R statistics265

of 0.02 (closed-reference), 0.03 (open-reference), 0.07 (CL, AGC, DGC), and 0.16 (SL and266

AL). Regardless of the statistical or biological significance of these results, the analysis was267

tautological since, by definition, representing communities based on their unstable OTUs would268

yield differences. Furthermore, the de novo and open-reference approaches do not consistently269

label the OTUs that sequences belong to when the clustering methods are run multiple times with270

different random number seeds. To overcome this, the authors selected representative sequences271

from each OTU and used those representative sequences to link OTU assignments between the272

different sized sequence sets. It was not surprising that the only analysis that did not provide a273

significant p-value was for the closed-reference analysis, which is the only analysis that provides274

consistent OTU labels. Finally, the authors built off of this analysis to count the number of OTUs275

that were differentially represented between the subsetted and full datasets by each method. This276

entire analysis assumed that the OTUs generated using the full dataset were correct, which was an277

unsubstantiated assumption since the authors did not assess the quality of the OTU assignments.278

This re-analysis of the He study raised five complementary questions. First, how do the various279

methods vary in the quality of their OTU assignments? Second, how generalizable are these results280

to modern datasets generated using a large number of sequences that were deeply sequenced?281

Third, how does the stability and quality of OTU assignments generated by new methods compare282
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to those analyzed in the He study? Fourth, are there open-source alternatives to USEARCH that283

perform just as well? Finally, although the stability of reference-based methods did not appear284

to be impacted by the input order of the sequences to be assigned to OTUs, is the stability of285

reference-based methods impacted by the order of the reference sequences? In the remainder of286

the Results and Discussion section we address each of these questions.287

How do the various methods vary in the quality of their OTU assignments? More important288

than the stability of OTUs is whether sequences are assigned to the correct OTUs. A method289

can generate highly stable OTUs, but the OTU assignments may be meaningless if they poorly290

represent the specified cutoff and the actual distance between the sequences. To assess the quality291

of OTU assignments by the various methods, we made use of the pairwise distance between the292

unique sequences to count the number of true positives and negatives and the number of false293

positives and negatives for each method and sampling depth. Counting the frequency of these294

different classes allowed us to judge how each method balanced the ratio of true positives and295

negatives to false positives and negatives using the MCC. We used the average MCC value as a296

measure of a method’s quality and its variation as a measure of its consistency. We made three297

important observations. First, each of the de novo methods varied in how sensitive their MCC298

values were to additional sequences (Figure 1C). The SL and CL methods were the most sensitive;299

however, the quality of the OTU assignments did not meaningfully differ when 80 or 100% of the300

data were assigned to OTUs using the de novo methods. Second, the AL method had higher MCC301

values than the other methods followed by DGC, AGC, CL, open-reference, and closed-reference,302

and SL (Figure 1D). Third, with the possible exception of the CL method, the MCC values for each303

of the methods only demonstrated a small amount of variation between runs of the method with304

a different ordering of the input sequences. This indicates that although there may be variation305

between executions of the same method, they produced OTU assignments that were of equal306

quality. Revisiting the concept of stability, we question the value of obtaining stable OTUs when the307

full dataset is not optimally assigned to OTUs. Our analysis indicates that the most optimal method308

for assigning the Canadian soils sequences to OTUs using a 97% threshold was the AL method.309

How generalizable are these results to modern datasets generated using a large number of310

sequences that were deeply sequenced? Three factors make the Canadian soil dataset less311
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than desirable to evaluate clustering methods. First, it was one of the earliest 16S rRNA gene312

sequence datasets published using the 454 FLX platform. Developments in sequencing technology313

now permit the sequencing of millions of sequences for a study. In addition, because the original314

Phred quality scores and flowgram data are not available, it was not possible for us to adequately315

remove sequencing errors (Schloss, Gevers & Westcott, 2011). The large number of sequencing316

errors that one would expect to remain in the dataset are likely to negatively affect the performance317

of all of the clustering methods. Second, the dataset used in the He study covered the V9 region318

of the 16S rRNA gene. For a variety of reasons, this region is not well represented in databases,319

including the reference database used by the closed and open-reference methods. Of the 99,322320

sequences in the default QIIME database, only 48,824 fully cover the V9 region. In contrast,321

99,310 of the sequences fully covered the V4 region. Inadequate coverage of the V9 region would322

adversely affect the ability of the reference-based methods to assign sequences to OTUs. Third,323

our previous analysis has shown that the V9 region evolves at a rate much slower than the rest324

of the gene (Schloss, 2010). With these points in mind, we compared the clustering assignment325

for each of these methods using a time series experiment that was obtained using mouse feces326

(Schloss et al., 2012; Kozich et al., 2013). The MiSeq platform was used to generate 2,825,000327

sequences from the V4 region of the 16S rRNA gene of 360 samples. Parallel sequencing of a328

mock community indicated that the sequencing error rate was approximately 0.02% (Kozich et329

al., 2013). Although no dataset is perfect for exhaustively testing these clustering methods, this330

dataset was useful for demonstrating several points. First, when using 60% of the data, the stability331

relationships amongst the different methods were similar to what we observed using the Canadian332

soil dataset (Figure 3AB). With the exception for the clusters generated using CL, the methods all333

performed very well with stabilities greater than 0.91. Second, the MCC values calculated relative334

to the distances between sequences were generally higher than was observed for the Canadian335

soil dataset for all of the methods except the CL and SL methods. Surprisingly, the MCC values for336

the DGC (0.77) and AGC (0.76) methods were comparable to the AL method (0.76; Figure 3CD).337

This result suggests that the optimal method is likely to be database-dependent.338

Finally, as was observed with the Canadian soil dataset, there was little variation in MCC values339

observed among the 30 randomizations. Therefore, although the methods have a stochastic340
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component, the OTU assignments did not vary meaningfully between runs. The results from341

both the Canadian soil and murine microbiota datasets demonstrate that the de novo methods342

can generate stable OTU assignments and that the the overall quality of the assignments were343

consistent. Most importantly, these analyses demonstrate that the OTU assignments using the344

AL, AGC, and DGC de novo methods were consistently better than either of the reference-based345

methods.346

How does the stability and quality of OTU assignments generated by new methods compare347

to those analyzed in the He study? The Swarm algorithm is a recently proposed de novo method348

for assigning sequences to OTUs that uses user-defined parameters to break up chains generated349

by SL clustering (Mahé et al., 2014). Swarm was originally validated by comparing the results350

against the expected clusters formed based on the taxonomic composition of a mock community.351

Similar to the authors of the He study, the Swarm developers suggest that methods are needed352

that are insensitive to input order. Use of Swarm on the Canadian soil and murine datasets353

demonstrated that similar to the other de novo methods, Swarm’s OTU assignments changed354

as sequences were added (Figures 1A and 3A). When we compared the OTU assignments for355

both datasets when using all of the sequence data, the variation in MCC values across the 30356

randomizations were not meaningfully different (Figures 1D and 3D). Most importantly, when we357

selected the distance threshold that optimized the MCC value, the quality of the OTU assignments358

was close to that of the AL assignments when using the Canadian soil dataset and considerably359

worse than that of the murine dataset (Figures 1D and 3D). Interestingly, the distance thresholds360

that resulted in the largest MCC values were 3 and 2% for the Canadian soil and murine datasets,361

respectively. This suggests that distance-based OTU definitions are not consistent across datasets362

when using the Swarm algorithm, although they do appear to be within the neighborhood of 3%.363

Finally, the Swarm developers indicated that hierarchical de novo algorithms were too impractical to364

use on large MiSeq-generated datasets. Our ability to apply AL to the large mouse dataset and365

even larger datasets suggests that it is not necessary to sacrifice OTU assignment quality for speed366

(e.g. Schubert, Sinani & Schloss, 2015; Zackular et al., 2015).367

Are there open-source alternatives to USEARCH that perform just as well? For some368

datasets the AGC and DGC methods appear to perform as well or better than the hierarchical369
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clustering methods. As originally described in the He study, the AGC and DGC methods utilized370

the USEARCH program and the DGC method is used for clustering in UPARSE (Edgar, 2010,371

2013). The source code for USEARCH is not publicly available and only the 32-bit executables are372

available for free to academic users. Access for non-academic users and those needing the 64-bit373

version is available commercially from the developer. An alternative to USEARCH is VSEARCH,374

which is being developed in parallel to USEARCH as an open-source alternative. One subtle375

difference between the two programs is that USEARCH employs a heuristic to generate candidate376

alignments whereas VSEARCH generates the actual global alignments. The VSEARCH developers377

claim that this difference enhances the sensitivity of VSEARCH relative to USEARCH. Using the378

two datasets, we determined whether the AGC and DGC methods, as implemented by the two379

programs, yielded OTU assignments of similar quality. In general the overall trends that we observed380

with the USEARCH-version of AGC and DGC were also observed with the VSEARCH-version381

of the methods (Figure 4). When we compared the two implementations of the AGC and DGC382

methods, the OTUs generated by the VSEARCH-version of the methods were as stable or more383

stable than the USEARCH-version when using 60% of the datasets. In addition, the MCC values384

for the entire datasets, calculated relative to the distance matrix, were virtually indistinguishable.385

These results are a strong indication that VSEARCH is a suitable and possibly better option for386

executing the AGC and DGC methods.387

Is the stability of reference-based methods impacted by the order of the reference388

sequences? The He study and our replication attempt validated that the closed-reference method389

generated perfectly stable OTUs. This was unsurprising since, by definition, the method is designed390

to return one-to-one mapping of reads to a reference. Furthermore, because it treats the input391

sequences independently the input order or use of a random number generator is not an issue. An392

important test that was not performed in the He study was to determine whether the clustering393

was sensitive to the order of the sequences in the database. The default database used in QIIME,394

which was also used in the He study, contains full-length sequences that are at most 97% similar395

to each other. We randomized the order of the reference sequences 30 times and used them to396

carry out the closed-reference method with the full murine dataset, which contained 32,106 unique397

sequences (Figure 5). Surprisingly, we observed that the number of OTUs generated was not the398
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same in each of the randomizations. On average there were 28,059 sequences that mapped to399

a reference OTU per randomization (range from 28,007 to 28,111). The original ordering of the400

reference resulted in 27,876 sequences being mapped, less than the minimum observed number401

of mapped sequences when the references were randomized. This surprising result was likely due402

to the performance of the USEARCH heuristic. To test this further, we substituted VSEARCH for403

USEARCH in the closed-reference method. When we used VSEARCH the original ordering of the404

reference sequences and all randomizations were able to map 27,737 sequences to reference405

OTUs. When we calculated the true distance between each of the murine sequences and the406

references, we were able to map 28,238 of the murine sequences to the reference sequences407

when using a 97% similarity threshold without the use of a heuristic. This result indicates that the408

closed reference approach, whether using USEARCH or VSEARCH, does not exhaustively or409

accurately map reads to the closest reference. To quantify this further, we calculated the MCC for410

the USEARCH and VSEARCH assignments relative to the assignments using the non-heuristic411

approach. Using USEARCH the average MCC was 0.78 (range: 0.75 to 0.80) and using VSEARCH412

the average MCC was 0.65 (range: 0.64 to 0.66). The two methods had similar sensitivities413

(USEARCH: 0.98 and VSEARCH: 0.97), but the USEARCH specificity (0.73) was considerably414

higher than VSEARCH (0.60). Overall, these results indicate that although heuristic approaches415

may be fast, they do a poor job of mapping reads to the correct reference sequence relative to416

non-heuristic approaches.417

We also observed that regardless of whether we used USEARCH or VSEARCH, the reference418

OTU labels that were assigned to each OTU differed between randomizations. When we used419

USEARCH to perform closed-reference clustering, an average of 57.38% of the labels were420

shared between pairs of the 30 randomizations (range=56.14 to 59.55%). If we instead used421

VSEARCH an average of 56.23% of the labels were shared between pairs of the 30 randomizations422

(range=53.48 to 59.12%). To better understand this result, we further analyzed QIIME’s reference423

database. We hypothesized that within a given region there would be sequences that were more424

than 97% similar and possibly identical to each other. When a sequence was used to search the425

randomized databases, it would encounter a different reference sequence as the first match with426

each randomization. Among the 99,310 reference sequences that fully overlap the V4 region,427
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there were 7,785 pairs of sequences that were more than 97% similar to each other over the full428

length of the 16S rRNA gene. When the extracted V4 sequences were dereplicated, we identified429

88,347 unique sequences. Among these dereplicated V4 sequences there were 311,430 pairs of430

sequences that were more than 97% similar to each other. The presence of duplicate and highly431

similar V4 reference sequences explains the lack of labeling stability when using either USEARCH432

or VSEARCH to carry out the closed-reference method. We suspect that the reference database433

was designed to only include sequences that were at most 97% similar to each other as a way to434

overcome the limitations of the USEARCH search heuristic.435

Beyond comparing the abundance of specific OTUs across samples, the reference database is436

used in the open and closed-reference methods to generate OTU labels that can be used in several437

downstream applications. It is commonly used to extract information from a reference phylogenetic438

tree to carrying out UniFrac-based analyses (Hamady, Lozupone & Knight, 2009) and to identify439

reference genomes for performing analyses such as PICRUSt (Langille et al., 2013). Because440

these downstream applications depend on the correct and unique labeling of the OTUs, the lack of441

label stability is problematic. As one illustration of the effects that incorrect labels would have on an442

analysis, we asked whether the duplicate sequences had the same taxonomies. Among the 3,132443

V4 reference sequences that had one duplicate, 443 had discordant taxonomies. Furthermore,444

among those 1,699 V4 reference sequences with two or more duplicates, 698 had discordant445

taxonomies. Two V4 reference sequences mapped to 30 and 10 duplicate sequences and both446

contained 7 different taxonomies. Among the V4 sequences within the database, there was also a447

sequence that had 131 duplicates and represented 5 different taxonomies. When we analyzed the448

28,238 sequences that mapped to the V4 reference sequences using a non-heuristic approach,449

we observed that 18,315 of the sequences mapped to more than one reference sequence. Of450

these sequences, 13,378 (73.04%) mapped to references that were identical over the V4 region451

and 4,937 (26.96%) mapped equally well to two or more references that were not identical over the452

V4 region. Among the combined 18,315 sequences that mapped to multiple reference sequences,453

the taxonomy of the multiple reference sequences conflicted for 3,637 (19.86%). Together, these454

results demonstrate some of the considerable problems with the reference-based clustering of455

sequences.456
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Conclusions457

It is worth noting that the analysis from the Roesch study that motivated the He study is not typical458

of microbial ecology studies. First, their analysis was based on a single soil sample. Researchers459

generally have dozens or hundreds of samples that are pooled and clustered together to enable460

comparison across samples. Second, all of the sequence data from these datasets is pooled for461

a single analysis. Rarely would a researcher rarefy their data prior to clustering since it can be462

more efficiently done after all of the data are assigned to OTUs. Third, the CL method used in the463

original Roesch study has since been shown to not generate optimal OTUs (Schloss & Westcott,464

2011). As for the approach used in the He study, the value of identifying stable OTUs is unclear.465

Although there is concern that running the methods multiple times yields different clusterings, we466

have shown that there is little variation in their quality. This suggests that the different clusterings by467

the same method are equally good. Greater emphasis should be placed on obtaining an optimal468

balance between splitting similar sequences into separate OTUs and merging disparate sequences469

into the same OTU.470

The approach of the current study quantified the effects of merging and splitting by using an471

objective metric. Through the use of the pairwise distances between sequences, we were able to472

use the MCC to demonstrate that, in general, the AL method was consistently the optimal method473

for each dataset, but that Swarm, AGC, and DGC sometimes perform as well as AL. At least for the474

murine dataset, Swarm also could be among the methods that performed poorly. It is impossible to475

obtain a clustering with no false positives or false negatives and the optimal method may vary by476

dataset. With this in mind, researchers are encouraged to calculate and report their MCC values477

and to use these values to justify using methods other than the AL. As an alternative to the He478

study’s method of measuring stability, we propose using the variation in the quality of the clustering479

of the full dataset. Given the tight 95% confidence intervals shown in Figures 1D and 3D, with the480

exception of CL, it is clear that this variation is quite small. This indicates that although the order481

of the sequences being clustered can affect the actual cluster assignments, the quality of those482

different clusterings is not meaningfully different.483
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Our analysis of those methods that implemented USEARCH as a method for clustering sequences484

revealed that its heuristic limited its specificity. When we replaced USEARCH with VSEARCH, the485

clustering quality was as good or better. Although there may be parameters in USEARCH that can486

be tuned to improve the heuristic, these parameters are likely dataset dependent. Based on the487

data presented in this study, its availability as an open source, and free program, VSEARCH should488

replace USEARCH in the de novo clustering methods; however, USEARCH performed better489

than VSEARCH for closed-reference clustering. Furthermore, although not tested in our study,490

VSEARCH can be parallelized leading to potentially significant improvements in speed. Although491

USEARCH and VSEARCH do not utilize aligned sequences, it is important to note that a sequence492

curation pipeline including denoising, alignment, trimming to a consistent region of the 16S rRNA493

gene, and chimera checking are critical to making proper inferences (Schloss, Gevers & Westcott,494

2011; Schloss, 2012; Kozich et al., 2013).495

We have assessed the ability of reference-based clustering methods to capture the actual distance496

between the sequences in a dataset in parallel with de novo methods. Several studies have497

lauded both the open and closed-reference approaches for generating reproducible clusterings498

(Navas-Molina et al., 2013; Rideout et al., 2014; He et al., 2015), yet we have shown that both499

reference-based approaches did a poor job of representing the distance between the sequences500

compared to the de novo approaches. Although the OTU assignments are reproducible and stable501

across a range of library sizes, the reference-based OTU assignments are a poor representation of502

the data. We also observed that the assignments were not actually reproducible when the order503

of the reference sequences was randomized. When USEARCH was used, the actual number504

of sequences that mapped to the reference changed depended on the order of the reference.505

Perhaps most alarming was that the default order of the database provided the worst MCC of any506

of the randomizations we attempted. This has the potential to introduce systematic a bias rather507

than a random error. Even when we used VSEARCH to perform closed-reference clustering and508

were able to obtain a consistent clusterings, we observed that the labels on the OTUs differed509

between randomizations. Because the OTU labels are frequently used to identify representative510

sequences for those OTUs, variation in labels, often representing different taxonomic groups, will511

have a detrimental effect on the interpretation of downstream analyses.512
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Because the open-reference method is a hybrid of the closed-reference and DGC methods, it is513

also negatively affected by the various problems using USEARCH. An added problem with the514

open-reference method is that the two phases of the method employ different thresholds to define515

its OTUs. In the closed-reference step, sequences must be within a threshold of a reference to be in516

the same OTU. This means that in the worst case scenario two sequences that are 97% similar to517

a reference and are joined into the same OTU, may only be 94% similar to each other. In the DGC518

step, the goal is to approximate the AL method which requires that, on average, the sequences519

within an OTU are, on average, 97% similar to each other. The end result of the open-reference520

approach is that sequences that are similar to previously observed sequences are clustered with521

one threshold while those that are not similar to previously observed sequences are clustered with522

a different threshold.523

As the throughput of sequencing technologies have improved, development of clustering algorithms524

must continue to keep pace. De novo clustering methods are considerably slower and more525

computationally intensive than reference-based methods and the greedy de novo methods are faster526

than the hierarchical methods. In our experience (Kozich et al., 2013), the most significant detriment527

to execution speed of the de novo methods has been the inadequate removal of sequencing error528

and chimeras. As the rate of sequencing error increases so do the number of unique sequences529

that must be clustered. The speed of the de novo methods scales approximately quadratically, so530

that doubling the number of sequences results in a four-fold increase in the time required to execute531

the method. The rapid expansion in sequencing throughput has been likened to the Red Queen532

in Lewis Carroll’s, Through the Looking-Glass who must run in place to keep up to her changing533

surroundings (Schloss et al., 2009). Microbial ecologists must continue to refine clustering methods534

to better handle the size of the datasets, but they must also take steps to improve the quality of the535

underlying data. Ultimately, objective standards must be applied to assess the quality of the data536

and the quality of OTU clustering.537
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Figures538

Figure 1. Comparison of the stability (A, B) and quality (C, D) of de novo and539

reference-based clustering methods using the Canadian soil dataset. The average540

stability of the OTUs was determined by calculating the MCC with respect to the OTU assignments541

for the full dataset using varying sized subsamples. The quality of the OTUs was determined by542

calculating the MCC with respect to the distances between the sequences using varying sized543

subsamples. Thirty randomizations were performed for each fraction of the dataset and the average544

and 95% confidence interval are presented when using 60% of the data. The vertical gray lines in545

A and C indicates the fraction of the dataset represented in B and D, respectively. The color and546

shape of the plotting symbol is the same between the different panels and is described along the547

x-axis of panel D. The optimum threshold for the Swarm-generated assignments was 3%.548

Figure 2. The clustering methods varied in their ability to generate the same number of549

OTUs using a subset of the data as were observed when the full dataset was rarefied. The550

subsetted data are depicted by closed circles and the data from the rarefied full dataset is depicted551

by the open circles.552

Figure 3. Comparison of the stability (A, B) and quality (C, D) of de novo and553

reference-based clustering methods using the murine dataset. The average stability of554

the OTUs was determined by calculating the MCC with respect to the OTU assignments for the full555

dataset using varying sized subsamples. The quality of the OTUs was determined by calculating556

the MCC with respect to the distances between the sequences using varying sized subsamples.557

Thirty randomizations were performed for each fraction of the dataset and the average and 95%558

confidence interval are presented when using 60% of the data. The vertical gray lines in A and C559

indicates the fraction of the dataset represented in B and D, respectively. The color and shape of560

the plotting symbol is the same between the different panels and is described along the x-axis of561

panel D. The optimum threshold for the Swarm-generated assignments was 2%.562

Figure 4. The stability and quality of USEARCH and VSEARCH OTUs generated by the AGC563

and DGC methods were similar. The stability of the OTUs was determined by calculating the564
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MCC for OTUs calculated using 60% of the data relative to the OTU assignments for the full dataset.565

The quality of the OTUs was determined by calculating the MCC of the OTUs calculated using the566

full dataset with respect to the distances between the sequences. The error bars represent the 95%567

confidence interval across the 30 randomizations.568

Figure 5. The number of closed-reference OTUs observed in the murine dataset when569

using USEARCH, VSEARCH, and without a heuristic. In addition to the default ordering of570

the references provided with the QIIME package, the reference sequences were randomized 30571

times; the order of the murine dataset was not randomized. Regardless of whether the default or572

randomized ordering was used, the number of OTUs generated using VSEARCH did not differ. The573

non-heuristic approach calculated the exact distance between the murine sequences and the the574

reference sequences and assigned the sequences to the reference with the smallest distance.575
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