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ABSTRACT

Schema validation is an integral part of reliable information exchange on the Web. However, implementing
an efficient schema validation tool is not easy. We highlight the use of parsing expression grammars
(PEGs), a recognition-based foundation for describing syntax, and apply it to the XML/DTD validation.
This paper shows that structural schema constraints in document type definitions (DTDs) can be validated
by the converted PEGs with the linear time and constant space consumption. We study the performance
of several existing PEG-based tools, and then confirm that the converted PEGs achieve a practical and
even competitive level of performance under existing standard XML/DTD validators.
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1 INTRODUCTION
Many applications today have accepted the XML standard Bray et al. (2006) for encoding their information.
Since XML is flexible enough to carry various types of information, application developers need to
validate whether an XML document contains their demanded content. XML schema languages such
as XML/DTDBray et al. (2006) and XML SchemaThompson et al. (2004) have been designed and are
readily available for the XML validation task.

Implementing an efficient XML schema validation tool is not easy and has not been solved yet. One
reason for this is that major XML schema languages including XML/DTD, XML Schema, and Relax NG,
are based on regular tree automata, in which the underlying tree construction generally requires linear
space the size of the XML. To make the memory consumption constant, we need another theoretical
sophistication, such as in Papakonstantinou and Vianu (2000); Segoufin and Vianu (2002); Green et al.
(2002); Kumar et al. (2007), but there remains a huge gap between the theory and the implementation.
In part due to this gap, many computing environments, such as JavaScript on Web browsers and C on
embedded systems, have no standard XML validators.

We address a translation approach to the implementation of a practical XML validator using parsing
expression grammars Ford (2004). PEGs are a relatively new and pragmatic grammar foundation,
formalized in 2004 by Ford. PEGs are expressive but can usually be implemented through simple
recursive descent parsing, which offers constant memory parsing. In addition, the deterministic features
of XML schema languagesBrüggemann-Klein and Wood (1998) allow us to restrict backtracking, which
may eliminate the potential exponential time.

In this paper, we chiefly focus on the DTD of the XML standardBray et al. (2006). There are several
reasons for our focus. First, the DTD is the first schema language of XML and has a rich history in
industry; many practical XML standards have been specified in DTDs. Second, a DTD is relatively
simple and fundamental, compared to other XML schema languages. Nevertheless, DTDs contain several
standard schema constraints, such as data types and unique keys, thus bringing good insight when the
readers apply our approach to other schema language.

In theory, a translation of DTDs into PEGs seems trivial, since DTDs can be regarded as a deterministic
regular expressionMedeiros et al. (2014). In practice, however, we have found several difficulties in
DTD-to-PEG conversion. Obviously, parsing expressions as well as regular expressions cannot express
non-structural constraints such as ID and IDREF, which are related to the key constraint and foreign key
constraint in relational schema. Accordingly, we focus on the structural constraints of DTDs.
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<article cite="Codd70">
<title>A Relational Model for Large Shared Data Banks</title>
<author>
<name> E. F. Codd </name>
<affiliation> IBM Research </affiliation>

</author>
</article>

Figure 1. An Example XML Document

<!ELEMENT article(title, author*)>
<!ATTLIST article cite CDATA>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author(name, affiliation)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>

Figure 2. An Example DTD

Even among the structural constraints, we have the attribute-element content problem, which is
derived from the unordered nature of XML attributes. Note that regular expressions cannot express
the attribute-element content. In parsing expressions, we can express the unordered attribute with a
permutation of attributes, but it requires a factorial (n!) time in n attributes. In this paper, we make an
approximation by allowing the repeated occurrence of optional attributes, and avoiding the factorial time
in practice. A rationale for this approximation has been examined by empirical studies on real-world
DTDs.

The advantage of our PEG-based translation approach is that many existing PEG tools are readily
available in various computing platforms, even where no standard XML validator exists. To study
its performance extensively, we have made several DTD converters to major PEG-dialects, such as
PEGTLHirsch and Frey (2014), Rats!Grimm (2006), Mouse Redziejowski (2007), LPegMedeiros and
Ierusalimschy (2008), and PEGjsMajda (2015). We confirm that many PEG-based tools achieve very
competitive performance, compared to standard XML/DTD validators. These results indicate that PEGs
can be a practical means of validating most structural constraints of DTDs and similar XML schema
languages.

The remainder of the paper is structured as follows. Section 2 is a brief introduction to DTDs, and
Section 3 is a short introduction of PEGs. Section 4 presents a body of the conversion algorithm of DTDs
into PEGs. Section 5 demonstrates the experimental results. Section 6 reviews related work. Section 7
concludes the paper.

2 DOCUMENT TYPE DEFINITION
A DTD is a grammar for describing the structure of an XML document. A DTD constrains the structure
of an element by specifying a regular expression to which its subsequences have to conform. Figure 1
illustrates an example XML document, in which the root element (article) has two nested sub-elements
(title and author) and the author element, in turn, has two nested elements. Figure 2 illustrates a DTD
to which example XML document conforms to. More details on the XML specification can be found in
Bray et al. (2006).

In this section, we focus on three core DTD declarations: element type declaration <!ELEMENT>,
attribute lists <!ATTLIST>, and entity declarations <!ENTITY>. Note that notation declaration is
another declaration of DTDs, which is not focused on in this paper, as notation declarations are used for
describing references to external resources, which are usually treated as unparsed.
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e ::= EMPTY : no content
| ANY : any XML contents
| #PCDATA : parsed characters
| X : element name
| e, e : sequence
| e|e : alternation
| e? : option
| e∗ : repetition

Figure 3. Syntax definition of DTD elements

Table 1. XML Attribute Type

Type Description
CDATA The value is character data
(v1|v2|...) The value must be one from an enumerated list
NMTOKEN The value is a valid XML name
ID The value is a unique id
IDREF The value is the id of another element

2.1 Element Declaration and Content Model
An element type declaration defines an element and its content, whose syntax is formed as:

<!ELEMENT X (e)>

where an element X has a content model specified by e.
The content model e is a regular expression, inductively defined as in Figure 3. The uniqueness is

that the element name X plays roles in both terminals such as ’<X>’ and ’</X>’ and nonterminal
referencing in its content specification. Roughly, this relation corresponds to the definition of the CFG-
style production rule:

X 7→ <X> e </X>

Due to the pair of the opening ’<X>’ and the closing ’</X>’, XML elements are always regarded
as a tree, in which each node is labeled by an element name. In general, DTDs are viewed as a local
regular tree grammarMurata et al. (2005). The ”local” property is a restricted class in tree grammars,
in which two productions rules do not start with the same element name. In addition, DTDs disallow
non-deterministic regular expressions, such as (a|(a,b)) and (a∗,a). These properties are also called
one-unambiguous regular expressionsBrüggemann-Klein and Wood (1998). More importantly, these
restrictions are intended to avoid backtracking and the underlying exponential time cost.

2.2 Attribute Lists
In DTDs, the structure of attributes are specified differently from that of the elements. An attribute list
specifies the list of all possible attributes for a given element. The syntax of an attribute list (a1, ...,ai, ...)
of the element X is formed as:

<!ATTLIST X a1 t1 v1 ... ai ti vi... >.

where ai is the declared names of the attribute, ti is its data type, and vi is its default value. Table ?? shows
the summary of XML attribute types for ti. The attribute type CDATA/NMTOKEN represents a lexical
pattern for the attribute value, while the ID/IDREF type represents non structural constraints on XML
elements, similar to the key and foreign key constraints in relational schema. Table 2 shows a summary of
XML value types for vi.

It is important to note that attributes are unordered, and require membership validation in the set
semanticsHosoya and Murata (2003); Ghelli et al. (2008). That is, we allow ai a j as well as a j ai, and
disallow the repetition ai ai. Since regular expressions in general cannot recognize such unordered
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Table 2. XML Value Type

Value Description
#REQUIRED The attribute is required
#IMPLIED The attribute is optional
#FIXED value The attribute value is fixed as value

Table 3. PEG Operators

PEG Type Proc. Description
’ ’ Primary 5 Matches text
[] Primary 5 Matches character class
. Primary 5 Any character
A Primary 5 Non-terminal application
(p) Primary 5 Grouping
p? Unary suffix 4 Option
p∗ Unary suffix 4 Zero-or-more repetitions
p+ Unary suffix 4 One-or-more repetitions
&p Unary prefix 3 And-predicate
!p Unary prefix 3 Negation
p1 p2 Binary 2 Sequencing
p1/p2 Binary 1 Prioritized Choice

concatenation, the developers of the XML validator usually abandon formal validation of the membership
requirement. Instead, they rely on the two-stage implementation; that is, they count the attributes to
validate after the formal validation.

2.3 Entity declaration
The entity declaration is a macro that is assigned a value that is replaced throughout the XML document.
The syntax of the entity declaration is formed as:

<!ENTITY % a "v">

where a is a macro name and v is a replaced value. In XML documents, the defined macro a is used as
&a; by enclosing ”&” and ”;” characters. The predefined macro &lt; in the XML standard is a good
example of entity.

3 PARSING EXPRESSION GRAMMARS
Parsing expression grammars (PEGs, Ford (2004)) are a new and pragmatic grammar foundation that has
received much attention among the programming language communityFord (2014). This section is an
brief introduction to PEGs.

3.1 Grammars, Expressions and Operators
A parsing expression grammar G is formalized with a 4-tuple G = (N,Σ,P, ps), where N is a finite set
of nonterminals, Σ is a finite set of terminal characters, P is a finite set of expressions, and ps is a start
expression. We use the variables a,b, and c to represent terminals; A,B, and C for nonterminals, and p
for parsing expressions. Each production, specified by an EBNF-like form A = p, is a mapping from a
nonterminal A to a parsing expression p.

Table 3 shows a summary of PEG operators that comprise an expression. The string ’abc’ exactly
matches the same input, while [abc] matches one of these characters. The . operator matches any single
character. The lexical match consumes the matched size of characters and moves forward to a matching
position. The p?, p∗, and p+ expressions behave as in common regular expressions, except that they are
greedy and match until the longest position. The p1 p2 attempts two expressions, p1 and p2, sequentially,
backtracking to the starting position if either expression fails. The choice p1 / p2 first attempts p1 and then
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File = PROLOG? _* DTD? _* Element _*
PROLOG = ’<?xml’ (!’?>’ .)* ’?>’
DTD = ’<!’ (!’>’ .)* ’>’
Element = ’<’ Name (_+ Attribute)* (’/>’ / ’>’

Content ’</’ Name ’>’) _*
Name = [A-Za-z:] (’-’ / [A-Za-z0-9:._])*
Attribute = Name _* ’=’ _* String
String = ’"’ (!’"’ .)* ’"’
Content = (Element / CDataSec / CharData)*
CDataSec = ’<![CDATA[’ (!’]]>’ .)* ’]]>’ _*
COMMENT = ’<!--’ (!’-->’ .)* ’-->’ _*
CharData = (!’<’ .)+
_ = [ \t\r\n]

Figure 4. Syntax Definition of XML

attempts p2 if p1 fails. The expression &p attempts p without any character consuming. The expression
!p fails if p succeeds, but succeeds if p fails.

Figure 4 shows an example of a PEG grammar for the XML syntax. Although the grammar is fairly
simplified for readability, the readers will find that it is very simple and powerful, in such a way that at
most 11 productions can specify the XML syntax. Note that PEGs are scanner-less, so we specify both
lexical and syntax analysis in an integrated way. This means that no separated specification for lexical
patterns is required.

3.2 DTDs vs. PEGs
Since DTDs are tree-based regular expressions, it is important to understand the difference between
regular expressions and parsing expressions. Despite their syntactic similarity, parsing expressions and
regular expressions do not usually accept the same language defined by the expression. For example,
the regular expression (a|ab)c accepts {ac, abc}, but the parsing expression (a/ab)c does not accept the
string abc. This difference comes from PEGs’ deterministic behaviors in the ordered choice. Likewise, the
regular expression a∗a accepts the string aaa, but the parsing expression a∗a does not accept anything,
since the repetition a∗ greedily consumes all subsequent a characters.

As shown below, regular expressions and parsing expressions differ in choice and repetition behaviors.
Despite the differences, we can translate any regular expressions into an equivalent parsing expression
using tricks described in Medeiros et al. (2014). More importantly, DTDs, as described in Section 2,
disallow non-deterministic regular expressions such as (a|ab)c and a ∗ a, which behave differently in
PEGs. As a result, the DTDs’ restriction simply corresponds to the PEGs’ determinism.

3.3 Parsing Algorithm
PEGs are usually implemented by a top-down recursive descent parsing algorithm with backtracking.
The simplicity of recursive descent parsing is expected to yield good performance. Our preliminary
investigation on an XML parser generated from Figure 1 shows very competitive performance compared
to a standard XML parser, such as XercesXerces (2015). Likewise, we can expect that the PEG-based
XML validator can achieve similar performance. This expectation is confirmed in Section 5.3.

Backtracking is a major concern, since it causes the potentially exponential time, in the worst case.
However, DTDs, by nature, are designed to avoid backtracking at the specification level. This suggests that
DTD-converted PEG involves very limited backtracking, in such a way that a lookahead of element names
and attributes names enables the distinct determination of alternatives. As our experience reported in
Kuramitsu (2015) indicates, this will not lead to the exponential behavior without the packrat parsingFord
(2002) requiring a linear space consumption. We expect that the DTD-converted PEGs to achieve both
linear time validation and the constant space consumption. This expectation is also confirmed in Section
5.3.

Lastly, the simplicity of the recursive descent parsing makes it easier for parsers to be implemented in
many programming languages. Many implemented parser generators Ford (2014) are readily available
and have supporting evidence for their implementability. In addition, there are several efficient dynamic
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PCHAR = .
PSPACING = [ \t\r\n]
PPCDATA = ’&’ PENT ITY / (![<] PCHAR )*
PELEMENT = ’<’ PNAME (_+ PAT T R)* _* ( ’/>’ / ’>’ _*

PANY ’</’ PNAME ’>’ ) _*
PNAME = [A-Za-z:] (’-’ / [A-Za-z0-9:._])*
PATTR = PNAME ’=’ PCDATA
PCDATA = ’"’ ( !["<&] PCHAR )* ’"’
PCDATASEC = ’<![CDATA[’ (!’]]>’ .)* #cdata ’]]>’ _*
PCOMMENT = ’<!--’ (!’-->’ .)* ’-->’
PANY = PELEMENT /PCOMMENT /PCDATASEC/PPCDATA

Figure 5. Predefined Syntax for XML Values

parsers Medeiros and Ierusalimschy (2008); Kuramitsu (2016) that can load PEGs at runtime to parse.
Since the dynamic parsing can pass through the code generation and its compilation process, we can use
it as an existing XML validator.

4 CONVERTING DTDS TO PEGS
As shown in Section 2.1, the core part of a DTD is a regular language, although it is limited to the
structural constraints on element/sub-elements. To obtain the full benefits of DTDs, attribute and entity
declarations should be translated into PEGs. This section presents an algorithm for converting DTDs to
PEGs.

4.1 Predefined Syntax Production
The DTD standard has several predefined lexical patterns, referred to as #PCDATA and CDATA. To begin
with, we specify these patterns as predefined PEG productions. In this section, we use a large P prefix
to denote the production name,in order to distinguish it from element names. Figure 5 illustrates the
predefined PEG production rules that are commonly used in all conversions.

The XML standard Bray et al. (2006) uses an extended BNF specification to describe the full set of the
XML syntax. Roughly, the predefined productions are translated from these BNF rules. For readability,
this paper simplifies the definitions. PCHAR is defined as any (.), instead of the defined set of available
Unicode characters in the XML standard. PSPACING and PCOMMENT are omitted for readability in this
paper.

4.2 Converting Elements
We start by presenting a conversion of element-type declarations. For readability, this subsection proceeds
under the assumption of the absence of attributes.

First, we consider whether the content model is EMPTY or otherwise, since the XML standard allows
for a different syntax that is specialized for the empty element. Let PX be a production name to specify
the element X in PEGs. Without loss of the generality, we assume that all production names are distinct
from the predefined productions in Section 4.1.

• PX = ’<X>’ τ(e) ’<X>’, if <!ELEMENT X(e) >

• PX = ’<X></X>’/’<X/>’, if <!ELEMENT X EMPTY>

The function τ(e) is a inductive conversion function that takes a DTD sub-element (e) and then returns
its corresponding parsing expression. For all elements defined in Figure 3, the function τ(e) is defined as:

• τ(ANY) = PANY

• τ(#PCDATA) = PPCDATA

• τ(X) = PX

• τ(e1,e2) = τ(e1)τ(e2)
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Figure 6. Performance cost of permutation

• τ(e1|e2) = τ(e1) / τ(e2)

• τ(e?) = τ(e)?

• τ(e∗) = τ(e)∗

Notably, the interpretation of e1|e2 (in regular languages) is different from that of p1/p2 (in PEGs).
Since e1 and e2 are disjoint in DTDs, we can treat the inductive one-to-one mapping. The repetition e? is
similar.

4.3 Converting Attribute Lists
We will turn to the presence of attributes. The element product must include the additional nonterminal
to recognize the declared attribute. For simplicity, we first assume that a single attribute a is declared.
Let PXa be a generated production specifying the attribute a of the element X . The included nonterminal
differs depending on the attribute type, as follows:

• PX = ’<X’ PXa ’>’ ..., if a is #REQUIRED

• PX = ’<X’ PXa? ’>’ ..., if a is either #IMPLIED or #FIXED

The production PXa is defined depending on attribute types and attribute values, as specified in Tables
?? and ??. Let n be a specified attribute name.

PXa =

• n ’=’ PCDATA, if the attribute type is CDATA

• n ’=’ PNAME , if the attribute type is NMTOKEN

• n ’=’ PCDATA, if the attribute type is either ID or IDREF

• n ’=’ ’v1’/’v2’, if the attribute value is (v1|v2)

Note that we simply treat the ID/IDREF attributes as CDATA and abandon specifying the uniqueness
of ID/IDREF in PEGs. This is because the uniqueness specification is far beyond the expressive power
of pure PEGs, and requires a class of context-dependent grammars. Many PEG-dialects, on the other
hand, support ad hoc context-sensitive extensions, called semantic actions, which enable us to check the
uniqueness and references with a small embedded code.

4.3.1 Encoding Unordered Sequence
We will turn to the multiple attribute a,b,c, which must be treated as an unordered sequence {a,b,c}. Since
PEGs, as well as CFGs, cannot directly express such an unordered sequence, we need to encode it with the
choice of all possible attribute sequence, or a permutation of attributes – say, abc/acb/bac/bca/cab/cba.
However, the permutation method obviously fails if the number of attributes grows; n attributes needs
n! alternatives. Figure 6 shows our preliminary investigation on the time cost of n permutations with
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Validation DTDs PEGs
Missing elements o o
Undefined elements o o
Unique element (ID) o x
Element reference (IDREF) o x
Missing attributes o o
Undefined attributes o o
Duplicated attributes o # REQUIRED only
Attribute datatypes o o
Undefined entities o o

o: available, x: not available

Table 4. Comparison of DTDs and converted PEGs

1000-time iterations. Having more than 7 attributes shows an explosive behavior in time and is considered
to be impractical.

To decrease the number of attributes in the permutation, we assume that the #REQUIRED attribute is
strong in practice and not used as much in real DTDs. This assumption will be confirmed in Section 5.2.
Based on the assumption, we make a permutation with only #REQUIRED attributes. Non-#REQUIRED
attributes are optionally checked before and after #REQUIRED attributes. To summarize, the attribute list
consisting of the following four attributes:

<!ATTLIST X
a CDATA #REQUIRED
b CDATA #REQUIRED
c CDATA #IMPLIED
d CDATA #IMPLIED >

is transformed to the permutation of a and b, mixed within other optional attributes.

(c/d)? a (c/d)? b (c/d)?
/ (c/d)? b (c/d)? a (c/d)?

In other words, the conversion of non-#REQUIRED multiple attributes is approximate, in that dupli-
cated optional attributes are acceptable. We consider that this approximation to be reasonable enough
because duplicated optional attributes will not cause significant errors, in practice.

4.4 Converting Entities
The entity declaration (<!ENTITY % a "v">) can be regarded as an additional lexical pattern for
PPCCDATA and PCDATA. For example, PPCDATA that accepts an entity &a; is generated:

PPCCDATA = ’&’ ’a’ ’;’ / !’&’ PCHAR

The not-predicate !’&’ checks undefined entities as unacceptable. If you do not want to check
entities for several reasons, you may remove the not-predicate.

Finally, Table 4 is a summary of validation capabilities by comparing DTDs and converted PEGs.

5 EVALUATION
We have developed a DTD-to-PEG converter tool based on the conversion algorithm described in Section
4. In this section, we evaluate the converted DTDs and their performance.

5.1 PEG Tools
Nez is a PEG-based grammar tool that provides a parser development framework, including grammar
converters, grammar optimizers, parser generators, and parser interpreters. Our DTD-to-PEG converter is
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RootElement = Element_article
Element_article = ’<article’ S* Attribute0 S* (’/>’

/ ’>’ S* Content0 S* ’</article>’) S*
Attribute0 = AttDef0_0 S* ENDTAG
AttDef0_0 = ’cite’ S* ’=’ S* STRING S*
Content0 = Element_title Element_author*
Element_title = ’<title’ S* (’/>’

/ ’>’ S* Content1 S* ’</title>’) S*
Content1 = PCDATA*
Element_author = ’<author’ S* (’/>’

/ ’>’ S* Content2 S* ’</author>’) S*
Content2 = Element_name Element_affiliation
Element_name = ’<name’ S* (’/>’

/ ’>’ S* Content3 S* ’</name>’) S*
Content3 = PCDATA*
Element_affiliation = ’<affiliation’ S* (’/>’

/ ’>’ S* Content4 S* ’</affiliation>’) S*
Content4 = PCDATA*

Figure 7. A Nez version of converted DTDs

developed as a part of the Nez grammar converter. Figure 7 shows an Nez version of the converted DTD
from Figure 2.

Nez can generate parsers for multiple platforms, including C, Java, and JavaScript. In this experiment,
we tested three kinds of parsers, respectively referred to as CNez (for C), Nez (for Java), and MiniNez (for
a small virtual machine on embedded systemsHonda and Kuramitsu (2016)). In addition to these parsers,
we translate Nez grammars to major PEG-dialects supported by existing PEG tools. The translated
PEG-dialects include:

• PEGTLHirsch and Frey (2014) – The PEG Template Library for C++0x expresses grammars via
C++ templates

• LPegMedeiros and Ierusalimschy (2008) – LPeg pattern-matching library for Lua (written in C)

• Rats!Grimm (2006) – a part of the eXTensible C project that builds packrat parsers supporting
modular, extensible syntax

• MouseRedziejowski (2007) – a backtracking recursive-descent parser generator

• PEGjsMajda (2015) – a parser generator that produces fast parsers for JavaScript

Many of the PEG parsers above can be integrated with the packrat parsing Ford (2002) to avoid
exponential time cost, in the worst case. However, as we expected in Section 3.3, the backtracking
activity is very limited in the converted DTDs, and no exponential behavior was observed throughout the
experiment. As a result, all of the reported tests were run without any packrat parsing memoization.

5.2 Empirical Study
To begin with, we investigate the characteristics of real-world DTDs. Table 5 shows a summary of the
investigated DTD files. The DTD files are randomly collected from the Web in a such way that we can
investigate a variety of XML formats, ranging from documents to application data. The columns labeled
”ELE” and ”ATT”, respectively, indicate the number of element declarations and attribute lists in DTDs.
The column ”#REQ” stands for the maximum occurrence of #REQUIRED attributes in a single element.
The column ”PEG” is the number of productions in the converted PEGs.

According to our empirical investigation, #REQUIRED attributes appear at most five times in a single
element. This suggests that the use of #REQUIRED attributes is relatively rare, compared to #IMPLIED
attributes. Even in the case of 5 #REQUIRED attributes, we need only 120(= 5!) alternations that are
still acceptable in size for the generated parsing expressions.
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Table 5. Real-world DTDs

DTD files ELE ATT #REQ PEG DTD files ELE ATT #REQ PEG
AddressBook.dtd 4 0 0 35 nitf-3-1.dtd 132 132 2 2114
ant141.dtd 214 214 2 2854 ops.dtd 12 1 1 60
ant151.dtd 323 323 1 4226 PCs.dtd 14 0 0 28
anzmeta-1.1.dtd 73 2 0 334 people.dtd 4 1 0 41
ASIX.dtd 18 7 1 142 platform.dtd 3 3 4 53
atributes.dtd 3 4 1 84 plugin.dtd 13 13 5 122
books.dtd 8 8 1 68 render.dtd 17 17 5 139
BrainData.dtd 61 0 0 151 replay.dtd 17 12 0 86
calstblx.dtd 10 10 3 116 retxml doc.dtd 103 35 3 234
children.dtd 14 0 0 55 schematron.dtd 19 16 2 146
CIM DTD.dtd 30 12 2 154 structures.dtd 30 23 2 227
client.dtd 18 2 1 72 supp2015.dtd 12 2 1 58
CommonMark.dtd 18 9 2 94 svg11-flat.dtd 80 80 2 1001
content.dtd 6 0 0 40 teiana2.dtd 10 10 2 96
dblp.dtd 37 16 1 234 tsung-1.0.dtd 65 54 4 555
faq.dtd 24 4 1 100 tvschedule.dtd 10 4 1 61
html5.dtd 109 109 0 8471 xhtml1-frameset.dtd 91 91 2 641
JATS.dtd 7 4 0 92 xhtml1-strict.dtd 77 77 2 596
OpenOffice.dtd 40 35 0 187 xmark.dtd
LMPLCurriculo.dtd 284 242 5 2288 XMLSchema.dtd 26 26 2 220
log4j.dtd 27 17 2 144 xmlspec.dtd 220 192 3 2881
masterdb.html.dtd 7 7 1 57 xslt.dtd 35 34 3 261
metaadms.dtd 10 6 3 82 xv.dtd 16 16 5 131
mondial.dtd 41 21 2 198 Zeerex-2.0.dtd 44 25 2 217

5.3 Performance Study
We will turn to our performance study. We compare the following longstanding and highly-optimized
XML validation tools, written in Java or C.

• Xerces-JXerces (2015) – an standard XML parser with DTD validation for Java. We run SAX-based
parsing without any DOM generations

• Xerces-C – a C/C++ version of Xerces. We also run an SAX-based parsing without any DOM
generations

• Libxml2Libxml2 (2015) – a well-established XML parser library for C/C++. We use the xmllint
command for DTD validation.

We study synthetic and real-world data sets. For the synthetic data sets, we examine the XMark
datasetsSchmidt et al. (2002), a standard benchmark of XML data. Figure 8 shows the performance
comparison when we validate the generated 10MB XMark file with xmark.dtd. To compare the same
condition, we modify xmark.dtd in a way that the ID/IDREF constraints are unchecked in Xerces and
Libxml2. The performance is measured in milliseconds and displayed as their throughputs (KiB/s). Rats!
and Mouse shows very poor performance, compared to the XML validators. This is perhaps because
these PEG tools are highly optimized for programming language syntax, but perhaps for a large volume
of simple data syntaxes. On the contrary, other PEG tools show competitive or even better performance,
compared to Xerces and Libxml2.

We will now turn to the scalability. Figure 9 shows the throughput of the DTD validation (KiB/s) by
scaling the XMark files from 1MB up to 1000MB. We confirm that PEG-based tools provide both linear
time and constant memory consumption, as well as XML validation tools. In addition, this experiment
implies that backtracking does not cause any super-linear costs. Indeed, all occurrences of backtracking
are localized with a range of XML element names. This creates supporting evidence for the claim that
DTD-converted PEGs are safe without any packrat parsing support.

Finally, we examine the validation performance of real-world XML files. The examined XML files
are collected from open data repositories. If there is no given DTD, we use a DTD generatorKay (2001) to
obtain the DTDs. In this experiment, we only focus on comparing C-implemented PEG tools to Xeares-C,
the fastest XML validator in the XMark experiment. Figure 10 shows the performance comparisons in
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proportion to the validation time of Xerces-C. As with in the XMark experiment, the PEG tools have
competitive performance compared to Xerces-C and Libxml2. These results obtained from synthetic and
real-world data suggest that DTD-to-PEG conversion is a practical method for implementing an efficient
DTD validator.

6 RELATED WORK
Many intensive efforts on XML schema validation have intensively been made in the 2000s since the
emergence of the XML standard. Enhanced DTDs and new XML schema languages such as XML
Schema and Relax NG have been designed with a regular tree automataMurata et al. (2005). However,
implementing tree automata usually requires tree constructions as their input, resulting in linear memory
consumption in the size of the XML document. This is not desirable in many XML applications, especially
in streaming XML processingMartens et al. (2005); Segoufin and Sirangelo (2006). Accordingly, tackling
a constant memory algorithm has become a common research goal. For this purpose, pushdown automata,
not tree automata, are generally used to argue about theoretical foundationsPapakonstantinou and Vianu
(2000); Segoufin and Vianu (2002); Green et al. (2002); Schwentick (2007). Finally, visibly pushdown
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automata Kumar et al. (2007); Thomo et al. (2008) are newly developed in this context as a robust,
traceable class of languages. However, the lack of readily available tools makes it hard to apply these
techniques to a validator implementation.

There are many parser generator tools based on a restricted class of context-free grammars. Among
them, lex/yacc is longstanding and can produce very efficient parsers. Several researchers have attempted
to make use of lex/yacc for XML parsing and validation. As with PEG tools, lex/yacc can also achieve
high performance Kostoulas et al. (2006). Unlike PEG tools, however, lex/yacc requires both C code
generation and compilation before XML validation. Some of our tested PEG tools, such as Nez and LPeg,
run as dynamic parsing, in the same way that Xerces loads DTDs for validation.

To our knowledge, this paper is the first experimental report on the application of PEGs for XML
schema validation. PEGs were originally developed to describe programming syntaxes Ford (2004), and
are mostly used in the contexts of programming languages Grimm (2006). An interesting exception is
LPeg, which was designed for pattern matching tasks, as an alternative to regular expressions Ierusalimschy
(2009). This work is largely inspired by LPeg, but we address more nested and complicated patterns such
as XML/DTDs.

In this paper, we only focus on the expressiveness of pure PEGs without any consideration on extended
parsing expressions. Although the pure PEGs are broadly available, they are clearly insufficient for the set
membership constraint that appears in XML attributes. We abandon the complete validation of optional
attributes to express DTDs with pure PEGs. As with PEGs, the set membership problem appears in
contexts of regular expressions, and the shuffle operatorGhelli et al. (2008) has successfully been extended.
Likewise, the extended PEGs are necessary for complete XML validation but remain an open challenge.

7 CONCLUSION
This paper presents the conversion of document type declaration into parsing expression grammars.
Since DTDs are fundamentally restricted to being deterministic regular expressions, PEGs has sufficient
capability to recognize all syntactic and structural constraints of DTDs. A major limitation is the unique-
ness constraint of ID/IDREF attributes, which is beyond the expressive power of PEGs. In addition, an
unordered sequence of attributes requires a approximated conversion, at the cost of allowing duplicated
optional attributes. We demonstrate that DTD-converted PEGs achieve competitive performances, com-
pared to standard XML validators. In future work, we will investigate include an extension of PEGs to
apply other schema validation tasks.
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