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Abstract
In the early days of the human genome project (HGP), during the late 1980s and early 
1990s, there was skepticism that the genome project would produce biologically 
meaningful information. The reality is that bioinformatics has allowed us to extract far 
more biology from sequenced genomes than any published predictions in the early 1990s. 
Thanks to the efforts of many researchers in several subfields of bioinformatics, we can 
now process a sequenced genome through a series of computations to produce a 
quantitative metabolic flux model. Thus, surprisingly, bioinformatics has achieved what 
might have been held up as a holy grail of the field, before the goal was even articulated.

In the early days of the human genome project (HGP), during the late 1980s and early 
1990s, there was skepticism that the genome project would produce biologically 
meaningful information (Cantor, 1990). Yes, the HGP would produce plenty of data, but 
how would we extract meaning from all those bytes? Back then, the sum of nucleotide 
sequences in GenBank was only 37 megabases (Watson, 1990). How would we convert 
billions upon billions of interleaved A, C, G, and T into biology? In 1990 it was 
suggested that the cost of finding genes in the human genome would be prohibitive 
because gene-finding would have to be performed experimentally (Weis, 1990), and even 
in a 1993 plan for the HGP, gene finding was listed in the experimental part of the plan, 
not the computational section (Collins and Galas, 1993). Finding genes within the 
genome and determining their functions were viewed as hard problems (Rowen, et al., 
1997).

In parallel, another discipline was emerging: ‘systems biology’, or the study of biological 
systems by modeling the interactions among their components to infer emergent 
properties of the systems (Ideker, et al., 2001). A new scientific community crystallized 
around systems biology and catalyzed the convergence of the fields of sequencing and 
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simulation based on the realization that the genome sequence would provide the blueprint 
upon which an entire organism could be ‘reconstructed’ and that this complexity could be 
captured in computational models (Claverie, 2000; Karp, 2001).

The reality is that bioinformatics has allowed us to extract far more biology from 
sequenced genomes than any published predictions in the early 1990s. Thanks to the 
efforts of many researchers in several subfields of bioinformatics, we can now process a 
sequenced genome through a series of computations to produce a quantitative metabolic 
flux model. Although this process is imperfect – the resulting models contain errors and 
omissions outlined below – the models have significant predictive value. Computational 
inference of the metabolic network of an entire organism from its genome sequence was 
inconceivable during the instigation of large-scale sequencing and the HGP. Thus, 
surprisingly, bioinformatics has achieved what might have been held up as a holy grail of 
the field, before the goal was even articulated!

Computational inference of a 
metabolic model from a genome 

sequence

Gene finders compute the 
locations of genes within the 

genome

Protein function prediction and 
reactome inference compute the 

set of biochemical reactions 
catalyzed by the enzymes of the 

organism

Metabolic model generation fills 
gaps in the reactome and 

computes steady-state metabolic 
fluxes for the network

Figure 1: Steps from a Genome Sequence to a Metabolic Flux ModelFigure 1: Steps from a Genome Sequence to a Metabolic Flux ModelFigure 1: Steps from a Genome Sequence to a Metabolic Flux ModelFigure 1: Steps from a Genome Sequence to a Metabolic Flux Model

Given the assembled genome sequence of an organism (Zerbino, et al., 2012), the steps 
required to convert that sequence to a metabolic flux model are as follows (Figure 1).

Step 1: Gene finding identifies the beginning and end of most genes within the 
genome. For an assembled genome sequence of any species, algorithms are available 
that detect translation start sites and internal features of genes from a combination of 
intrinsic properties of the sequence, plus experimental evidence such as expressed 
sequences (Haas, et al., 2008). This process is coupled to multiple iterative steps that 
validate initial predictions with additional information, for example comparative 
analysis (Yandell and Ence, 2012). The resulting sequence is typically fine-tuned to 
more accurately reflect eukaryotic intron boundaries and other complex features, such 
as untranslated regions (UTRs) (Yandell and Ence, 2012).

Step 2: Protein function prediction infers the biochemical activities of the protein 
products of genes identified in the preceding step on a genome-wide scale (Andrade, 
et al., 1999). The fundamental premise of function prediction for protein sequences 
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relies on the evolutionary connections within protein families. Bioinformatics 
methods infer the function of a protein by detecting the wider protein family to which 
the protein belongs. These connections are established through inexact string 
comparisons of the protein sequences, or by building computational models of the 
sequence patterns shared by multiple proteins within a family (Eddy, 2004). The 
methods infer that if the evolutionary distances between a query protein and a 
previously characterized protein or protein family are sufficiently small, they are 
likely to share a common function. Despite well-understood limitations, the process 
works well, especially for those protein families with high functional specificity 
(Schnoes, et al., 2009).

Step 3: Reactome inference (Karp, et al., 2011) uses the predicted protein functions to 
compute the reactome of the organism, the set of biochemical reactions catalyzed by 
the enzymes of the organism. Reactome inference translates protein functions to 
chemical reactions using associations stored within metabolic databases such as 
MetaCyc (Caspi, et al., 2012) and KEGG (Kanehisa, et al., 2012). Pathway prediction 
computes the metabolic pathways found in the reactome of the organism (Karp, et al., 
2011), again with the aid of databases of known pathways such as MetaCyc and 
KEGG.

Step 4: Metabolic model generation produces a steady-state metabolic flux model 
(Durot, et al., 2009; Henry, et al., 2010; Latendresse, et al., 2012; Orth, et al., 2010). 
Because the model is at steady state, the concentrations of all metabolites are defined 
to be unchanging: thus, the fluxes of the reactions that produce each metabolite are 
balanced by the fluxes of the reactions that consume each metabolite. Those balance 
relations can be expressed as a set of constraint equations that are generated 
computationally from the reactome of the organism. The equations are submitted to a 
linear optimization package, along with the instruction to maximize the amount of 
biomass produced by the biosynthetic component of the metabolic network. The 
optimization package computes assignments of fluxes to each reaction in the 
metabolic network that optimizes the output of the network subject to the steady-state 
constraint.

An important component of the model generation step is gap filling (Latendresse, et 
al., 2012; Satish Kumar, et al., 2007). Genome-based metabolic network 
reconstructions are usually missing reactions because of incompleteness and 
inaccuracy in all of the preceding steps; a single missing reaction can prevent the 
network from producing one or more components of the organism’s biomass. Gap-
filling programs identify those missing reactions to produce a metabolic network that 
is sufficiently connected to produce a functional model (Agren, et al., 2013; Benedict, 
et al., 2014; Latendresse, et al., 2012).

Steady-state models do not have the large parameter requirements of kinetic models, 
which require hundreds or thousands of quantitative constants defining the properties of 
metabolic enzymes for accurate operation. Measuring those constants experimentally at a 
genome scale is currently intractable. In contrast, flux-balance analysis requires just four 
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inputs: the reaction network of the organism, a list of nutrient compounds for the 
organism, a list of compounds secreted by the organism, and a list of the compounds that 
compose the organism's biomass. Accurate recording of reactions and metabolites as well 
as their mapping and reconciliation to popular metabolic resources is also essential 
(Bernard, et al., 2014).

Applications of steady-state metabolic flux models range from anti-microbial drug 
discovery to metabolic engineering (Saha, et al., 2014). They can be used to predict the 
phenotypes of gene knock-out mutants by iteratively removing every reaction from the 
metabolic network, and determining whether all biomass components can still be 
produced (McCloskey, et al., 2013). One reason these models have limited accuracy is 
that they assume every metabolic reaction in the organism is potentially active at a given 
time, but that is not the case because regulatory processes shut down significant numbers 
of reactions under a given growth condition. Including regulation within these models is 
an active area of investigation (Machado and Herrgard, 2014). These models can also 
predict the ability of the organism to grow under different collections of substrates, 
growth rate and nutrient uptake rate of an organism. Automatically generated models 
were shown to predict microbial growth on various substrates, and gene essentiality, with 
an overall accuracy of 66% (Henry, et al., 2010).

The processing steps from genome to metabolic model form a computational pipeline, yet 
they represent more than a matter of programming. This achievement required significant 
conceptual advances. Computational gene finding resulted from the development of 
algorithms trained on species-specific statistical features of coding sequences, by gene 
detection based on gene-expression information, and by cross-species comparisons. 
Protein function prediction was enabled by the development of statistically rigorous 
sequence-matching algorithms, by the ability to computationally model protein families, 
and by large sequence databases. Reactome inference was enabled by the development of 
metabolic databases cataloging large numbers of reactions and enzymes. Metabolic 
model generation was enabled by the development of a steady-state modeling paradigm 
in which linear optimization is used to infer the flux distribution through a metabolic 
network; gap filling of reactions, nutrients, and secretions is used to automatically 
compute minimal-cost completions of models that would otherwise be incomplete and 
nonfunctional.

Note that development of new algorithms was not sufficient: databases play a key role in 
these (and many other) areas of bioinformatics. Bioinformatics problem-solving power 
comes from combining databases and algorithms: larger and more accurate sequence 
databases increase the power of sequence-comparison algorithms; larger and more 
accurate metabolic databases increase the power of reactome-inference algorithms.

To be sure, medical advances resulting from the human genome might have fallen short 
of expectations. And we must keep in mind that metabolic models describe only a 
fraction of the workings of a microbial cell, and an even smaller fraction of the 
machinery of multicellular organisms – such as developmental or signaling processes. 
Furthermore, steady-state models cannot readily describe dynamic behavior. Yet, the 

authors PDK & CAO	

 	

 	

 	

 	

 	

 	

 	

 ms version v. 31

date 2015|03|20	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 page 4/6

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1501v1 | CC-BY 4.0 Open Access | rec: 12 Nov 2015, publ: 12 Nov 2015



general contribution of computation to interpreting genome data (Zerbino, et al., 2012) 
was underestimated at the dawn of the genomic era. Indeed, the costs saved by replacing 
experimental gene identification by computation in the human genome project probably 
paid for a significant fraction of all bioinformatics research. Despite its limitations, 
bioinformatics has more than fulfilled its promise. The interplay of bioinformatics with 
experimental molecular biology has turned into a rich dialogue (Ouzounis, 2012). 
Computation complements, suggests, and ideally obviates the need for experimentation.
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