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ABSTRACT5

PhilDB is an open-source time series database that supports storage of time series

datasets that are dynamic, that is it records updates to existing values in a log as

they occur. PhilDB eases loading of data for the user by utilising an intelligent data

write method. It preserves existing values during updates and abstracts the update

complexity required to achieve logging of data value changes. It implements fast reads

to make it practical to select data for analysis.

Recent open-source systems have been developed to indefinitely store long-period

high-resolution time series data without change logging. Unfortunately such systems

generally require a large initial installation investment before use because they are

designed to operate over a cluster of servers to achieve high-performance writing of

static data in real time. In essence, they have a ‘big data’ approach to storage and

access. Other open-source projects for handling time series data that avoid the ‘big

data’ approach are also relatively new and are complex or incomplete. None of these

systems gracefully handle revision of existing data while tracking values that changed.

Unlike ‘big data’ solutions, PhilDB has been designed for single machine deployment

on commodity hardware, reducing the barrier to deployment.

PhilDB takes a unique approach to meta-data tracking; optional attribute attachment.

This facilitates scaling the complexities of storing a wide variety of data. That is,

it allows time series data to be loaded as time series instances with minimal initial

meta-data, yet additional attributes can be created and attached to differentiate the

time series instances when a wider variety of data is needed. PhilDB was written

in Python, leveraging existing libraries. While some existing systems come close to

meeting the needs PhilDB addresses, none cover all the needs at once. PhilDB was

written to fill this gap in existing solutions.

This paper explores existing time series database solutions, discusses the motivation

for PhilDB, describes the architecture and philosophy of the PhilDB software, and

performs a simple evaluation between InfluxDB, PhilDB, and SciDB.
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1 INTRODUCTION8

This paper will explore existing time series database solutions. It will examine the need9

for a liberally licensed, open-source, easily deployed time series database, that is capable10

of tracking data changes, and look at why the existing systems that were surveyed11

failed to meet these requirements. This paper will then describe the architecture and12

features of the new system, PhilDB, that was designed to meet these outlined needs.13

Finally, a simple evaluation will be performed to compare PhilDB to the most promising14

alternatives of the existing open-source systems.15

2 BACKGROUND: EXISTING SYSTEMS16

2.1 Proprietary systems17

There are a number of proprietary solutions for storage of time series data that have18

been around since the mid-nineties to the early 2000s. Castillejos (2006) identified19

three proprietary systems of note, FAME, TimeIQ, and DBank, that have references that20

range from 1995 to 2000. There are other proprietary systems, such as kdb+1, that are21

commercially available today. This shows that time series data storage is an existing22

problem. Compared to proprietary systems, open-source systems can generally be used23

with the scientific Python ecosystem as described by Perez et al. (2011). Ready access24

to open-source systems also make them easier to evaluate and integrate with. Therefore25

existing proprietary systems were not evaluated any further. Discussion on the need for26

an open-source system is further covered in section 3.27

2.2 Open-source systems28

In recent years the development of open-source time series databases has taken off, with29

most development beginning within the last five years. This can be seen by the number30

of projects discussed here along with noting the initial commit dates.31

2.2.1 ‘Big data’ time series databases32

Some of the most successful projects in the open-source time series database space are33

OpenTSDB2, Druid3, Kairosdb4, and InfluxDB5. The earliest start to development on34

these systems was for OpenTSDB with an initial commit in April 2010. These systems35

are designed to operate over a cluster of servers to achieve high-performance writing36

of static data in real time. In essence, they have a ‘big data’ approach to storage and37

access. The architectural approach to address big data requirements means a large initial38

installation investment before use.39

2.2.2 Alternate time series databases40

In contrast to the ‘big data’ time series systems some small dedicated open-source41

code bases are attempting to address the need for local or single server time series data42

storage. These systems, however, have stalled in development, are poorly documented,43

1http://kx.com/software.php
2OpenTSDB initial commit: 2010-04-11; https://github.com/OpenTSDB/opentsdb
3Druid initial commit: 2012-10-24; https://github.com/druid-io/druid/
4Kairosdb initial commit: 2013-02-06; https://github.com/kairosdb/kairosdb
5InfluxDB initial commit: 2013-04-12; https://github.com/influxdb/influxdb
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or require a moderate investment of time to operate. For example Timestore6 was, at44

the time of writing, last modified August 2013 with a total development history of 3645

commits. Some of the better progressed projects still only had minimal development46

before progress had ceased, for example tsdb7 with a development start in January 201347

and the most recent commit at time of writing in February 2013 for a total of 58 commits.48

Cube8 has a reasonable feature set and has had more development effort invested than49

the other systems discussed here, with a total of 169 commits, but it is no longer under50

active development according the Readme file. Searching GitHub for ‘tsdb’ reveals a51

large number of projects named ‘tsdb’ or similar. The most popular of these projects52

(when ranked by stars or number of forks) relate to the ‘big data’ systems described53

earlier (in particular, OpenTSDB, InfluxDB, and KairosDB). There are numerous small54

attempts at solving time series storage in simpler systems that fall short of a complete55

solutions. Of the systems discussed here only Cube had reasonable documentation,56

Timestore had usable documentation, and tsdb had no clear documentation.57

2.2.3 Scientific time series databases58

At present, the only open-source solution that addresses the scientific need to track59

changes to stored time series data as a central principle is SciDB (Stonebraker et al. 200960

and Stonebraker et al. 2011). SciDB comes with comprehensive documentation9 that is61

required for such a feature rich system. The documentation is however lacking in clarity62

around loading data with most examples being based around the assumption that the63

data already exists within SciDB or is being generated by SciDB. While installation on64

a single server is relatively straight forward (for older versions with binaries supplied for65

supported platforms) the process is hard to identify as the community edition installation66

documentation is mixed in with the documentation on installation of the enterprise67

edition of SciDB. Access to source code is via tarballs; there is no source control system68

with general access to investigate the history of the project in detail.69

3 MOTIVATION70

The author’s interest is derived from a need to handle data for exploratory purposes with71

the intention to later integrate with other systems, with minimal initial deployment over-72

head. It is assumed that the smaller time series database systems discussed previously73

derive from similar needs. The author has found “[m]ost scientists are adamant about not74

discarding any data” (Cudré-Mauroux et al. 2009). In particular, the author’s experience75

in hydrology has found hydrological data requires the ability to track changes to it, since76

streamflow discharge can be regularly updated through quality control processes or77

updates to the rating curves used to convert from water level to discharge. Open-source78

‘big data’ time series database offerings don’t support the ability to track any changed79

values out of the box (such support would have to be developed external to the system).80

Their design targets maximum efficiency of write-once and read-many operations. When81

6Timestore http://www.mike-stirling.com/redmine/projects/timestore;

https://github.com/mikestir/timestore initial commit 2012-12-27
7tsdb initial commit: 2013-01-11; most recent commit at time of writing: 2013-02-17;

https://github.com/gar1t/tsdb
8Cube initial commit: 2011-09-13; https://github.com/square/cube
9http://www.paradigm4.com/HTMLmanual/15.7/scidb ug/
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streamflow data is used within forecasting systems, changes to the data can alter the82

forecast results. Being able to easily identify if a change in forecast results is due to83

data or code changes greatly simplifies resolving issues during development and testing.84

Therefore, both requirements of minimal deployment overhead and logging of any85

changed values rule out the current ‘big data’ systems.86

While SciDB does address the data tracking need, recent versions of the community87

edition are complex to install since they require building from source, a process more88

involved than the usual ‘./configure; make; make install’. Older versions are more89

readily installed on supported platforms, however the system is still complex to use,90

requires root access to install, a working installation of PostgreSQL and a dedicated user91

account for running. Installation difficulty isn’t enough to rule out the system being a92

suitable solution, but it does diminish its value as an exploratory tool. SciDB is also93

licensed under the GNU Affero General Public License (AGPL) that can be perceived as94

a problem in corporate or government development environments. In these environments95

integration with more liberally licensed (e.g. Apache License 2.0 or 3-clause BSD)96

libraries is generally preferred with many online discussions around the choice of liberal97

licences for software in the scientific computing space. For example, it can be argued98

that a simple liberal license like the BSD license encourages the most participation and99

reuse of code (Brown 2015, VanderPlas 2014, Hunter 2004).100

Finally, SciDB has a broader scope than just storage and retrieval of time series data,101

since “SciDB supports both a functional and a SQL-like query language” (Stonebraker102

et al. 2011). Having SQL-like query languanges does allow for SciDB to readily103

support many high performance operations directly when handling large already loaded104

data. These query languages do, however, add additional cognitive load (Sweller et al.105

2011) for any developer interfacing with the system as the query languages are specific106

to SciDB. If using SciDB for performing complex operations on very large multi-107

dimensional array datasets entirely within SciDB, learning these query languages would108

be well worth the time. The Python API does enable a certain level of abstraction109

between getting data out of SciDB and into the scientific Python ecosystem.110

Of the other existing systems discussed here, none support logging of changed values.111

Limited documentation makes them difficult to evaluate, but from what can be seen and112

inferred from available information, the designs are targeted at the ‘write once, read113

many’ style of the ‘big data’ time series systems at a smaller deployment scale. These114

systems were extremely early in development or yet to be started at time the author115

began work on PhilDB in October 2013.116

The need of the author is purely to store simple time series of floating point values117

and extract them again for processing with other systems.118

3.1 Use case119

To summarise, PhilDB has been created to provide a time series database system that is120

easily deployed, used, and has logging features to track any new or changed values. It121

has a simple API for writing both new and updated data with minimal user intervention.122

This is to allow for revising time series from external sources where the data can change123

over time, such as streamflow discharge data from water agencies. Furthermore, the124

simple API extends to reading, to enable easy retrieval of time series, including the125

ability to read time series as they appeared at a point in time from the logs.126
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4 ARCHITECTURE127

PhilDB uses a central ‘meta-data store’ to track the meta information about time series128

instances. Relational databases are a robust and reliable way to hold related facts. Since129

the meta data is simply a collection of related facts about a time series, a relational130

database is used for the meta-data store. Time series instances are associated with a user131

chosen identifier and attributes and each time series instance is assigned a UUID (Leach132

et al. 2005) upon creation, all of which is stored in the meta-data store. The actual time133

series data (and corresponding log) is stored on disk with filenames based on the UUID134

(details of the format are discussed in section 5.2). Information kept in the meta-data135

store can then be used to look up the UUID assigned to a given time series instance136

based on the requested identifier and attributes. Once the UUID has been retrieved,137

accessing the time series data is a simple matter of reading the file from disk based on138

the expected UUID derived filename.139

4.1 Architecture Philosophy140

The reasoning behind this architectural design is so that:141

* A simple to use write method can handle both new and updated data (at the same142

time if needed).143

* Read access is fast and easy for stored time series.144

* Time series are easily read as they appeared at a point in time.145

* Each time series instance can be stored with minimal initial effort.146

Ease of writing data can come at the expense of efficiency to ensure that create,147

update or append operations can be performed with confidence that any changes are148

logged without having to make decisions on which portions of the data are current or new.149

The expectation is that read performance has a greater impact on use as they are more150

frequent. Attaching a time series identifier as the initial minimal information allows for151

data from a basic dataset to be loaded and explored immediately. Additional attributes152

can be attached to a time series instance to further differentiate datasets that share153

conceptual time series identifiers. By default, these identifier and attribute combinations154

are then stored in a tightly linked relational database. Conceptually this meta data store155

could optionally be replaced by alternative technology, such as flat files. As the data is156

stored in individual structured files, the meta-data store acts as a minimal index with157

most of the work being delegated to the operating system and in turn the file system.158

5 IMPLEMENTATION159

PhilDB is written in Python because it fits well with the scientific computing ecosystem160

(Perez et al. 2011). The core of the PhilDB package is the PhilDB database class10, that161

exposes high level methods for data operations. These high level functions are designed162

to be easily used interactively in the IPython interpreter (Perez and Granger 2007) yet163

still work well in scripts and applications. The goal of interactivity and scriptability are164

10http://phildb.readthedocs.org/en/latest/api/phildb.html#module-phildb.database

5/18

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1488v2 | CC-BY 4.0 Open Access | rec: 12 Feb 2016, publ: 12 Feb 2016



to enable exploratory work and the ability to automate repeated tasks (Shin et al. 2011).165

Utilising Pandas (McKinney 2012) to handle complex time series operations simplifies166

the internal code that determines if values require creation or updating. Returning Pandas167

objects from the read methods allows for data analysis to be performed readily without168

further data munging. Lower level functions are broken up into separate modules for169

major components such as reading, writing, and logging, that can be easily tested as170

individual components. The PhilDB class pulls together the low level methods, allowing171

for the presentation of a stable interface that abstracts away the hard work of ensuring172

that new or changed values, and only those values, are logged.173

Installation of PhilDB is performed easily within the Python ecosystem using the174

standard Python setup.py process, including installation from PyPI using ‘pip’.175

5.1 Features176

Key features of PhilDB are:177

* A single write method accepting a pandas.Series object, data frequency and178

attributes for writing or updating a time series.179

* A read method for reading a single time series based on requested time series180

identifier, frequency and attributes.181

* Advanced read methods for reading collections of time series.182

* Support for storing regular and irregular time series.183

* Logging of any new or changed values.184

* Log read method to extract a time series as it appeared on a given date.185

5.2 Database Format186

The technical implementation of the database format, as implemented in version 0.6.1187

of PhilDB (MacDonald 2015), is described in this section. Due to the fact that PhilDB188

is still in the alpha stage of development the specifics here may change significantly in189

the future.190

The meta-data store tracks attributes using a relational database, with the current191

implementation using SQLite (Hipp et al. 2015). Actual time series data are stored192

as flat files on disk, indexed by the meta-data store to determine the path to a given193

series. The flat files are implemented as plain binary files that store a ‘long’, ‘double’,194

and ‘int’ for each record. The ‘long’ is the datetime stored as a ‘proleptic Gregorian195

ordinal’ as determined by the Python datetime.datetime.toordinal method11 (van Rossum196

2015). The ‘double’ stores the actual value corresponding to the datetime stored in the197

preceding ‘long’. Finally, the ‘int’ is a meta value for marking additional information198

about the record. In this version of PhilDB the meta value is only used to flag missing199

data values. Individual changes to time series values are logged to HDF5 files (The HDF200

Group 1997) that are kept alongside the main time series data file with every new value201

written as a row in a table, each row having a column to store the date, value, and meta202

value as per the file format. In addition, a final column is included to record the date and203

time the record was written.204

11https://docs.python.org/2/library/datetime.html#datetime.date.toordinal
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6 EVALUATION205

Of the open-source systems evaluated (as identified in section 2.2), InfluxDB came the206

closest in terms of minimal initial installation requirements and feature completeness,207

however, it doesn’t support the key feature of update logging. Contrasting with InfluxDB,208

SciDB met the requirement of time series storage with update logging but didn’t meet209

the requirement for simplicity to deploy and use. Both these systems were evaluated in210

comparison to PhilDB.211

To simplify the evaluation process and make it easily repeatable, the SciDB 14.3212

virtual appliance image12 was used to enable easy use of the SciDB database. This213

virtual appliance was based on a CentOS Linux 6.5 install. The PhilDB and InfluxDB214

databases were installed into the same virtual machine to enable comparison between215

systems. The virtual machine host was a Mid-2013 Apple Macbook Air, with a 1.7 GHz216

Intel Core i7 CPU, 8GB of DDR3 RAM and a 500GB SSD hard drive. VirtualBox 4.3.6217

r91406 was used on the host machine for running the virtual appliance image with the218

guest virtual machine being allocated 2 processors and 4GB of RAM.219

Write performance was evaluated by writing all time series from the evaluation220

dataset (described in section 6.1) into the time series databases being evaluated. This first221

write will be referred to as the initial write for each database. To track the performance222

of subsequent updates and reading the corresponding logged time series a further four223

writes were performed. These writes will be referred to as ‘first update’ through to224

‘fourth update’. The update data was created by multiplying some or all of the original225

time series by 1.1 as follows:226

* First update: multiplied the last 10 values in the time series by 1.1 leaving the rest227

of the record the same.228

* Second update: multiplied the first 10 values by 1.1, resulting in reverting the229

previously modified 10 values.230

* Third update: multiplied the entire original series by 1.1 resulting in an update to231

all values aside from the first 10.232

* Fourth update: the original series multiplied by 1.1 again, which should result in233

zero updates.234

The SciDB load method used in this experiment did not support updating individual235

values. The entire time series needed to be passed or the resulting array would consist236

of only the supplied values. Due to this only full updates were tested and not individual237

record updates or appends.238

Performance reading the data back out of each database system was measured by239

recording the time taken to read each individual time series, after each update, and240

analysing those results.241

As can be seen by figure 1, InfluxDB performance was a long way behind SciDB and242

PhilDB. Given the performance difference and that InfluxDB doesn’t support change243

logging only the initial load and first read were performed for InfluxDB.244

12https://downloads.paradigm4.com/QuickStart/14.3/SciDB14.3-CentOS6-VirtualBox-4.2.10.ova
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Figure 1. Mean write/read time for 221 daily time series

Disk usage was measured by recording the size of the data directories as reported by245

the ‘du’ Unix command. The size of the data directory was measured before loading246

any data and subtracted from subsequent sizes. Between each data write (initial load247

and four updates) the disk size was measured to note the incremental changes.248

For both PhilDB and SciDB the evaluation process described in this section was249

performed four times and the mean of the results analysed. Results between the four250

runs were quite similar so taking the mean gave results similar to the individual runs.251

Analysing and visualising an individual run rather than the mean would result in the252

same conclusions.253

6.1 Evaluation dataset254

The Hydrological Reference Stations (Zhang et al. 2014) dataset from the Australian255

Bureau of Meteorology13 was used for the evaluation. This dataset consists of daily256

streamflow data for 221 time series with a mean length of 16,310 days, the breakdown257

of the series lengths are in table 1 and visualised in figure 2.258

6.2 InfluxDB259

Paul Dix (CEO of InfluxDB) found that performance and ease of installation were the260

main concerns of users of existing open-source time series database systems (Dix 2014).261

InfluxDB was built to alleviate both those concerns.262

13http://www.bom.gov.au/water/hrs/
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Figure 2. Distribution of time series length for the 221 time series in the evaluation

dataset

mean 16310 days

std 2945 days

min 10196 days

25% 14120 days

50% 15604 days

75% 18256 days

max 22631 days

Table 1. Breakdown of length of time series in sample dataset (all values rounded to

nearest day)

While InfluxDB is designed for high performance data collection, it is not designed263

for bulk loading of data. Searching the InfluxDB issue tracker on github14, it can be264

seen that bulk loading has been a recurring problem with improvement over time. Bulk265

loading performance is, however, still poor compared to SciDB and PhilDB, as seen266

later in the performance results (section 6.5). A key feature of interest with InfluxDB267

was the ability to identify time series with tags. This feature is in line with the attributes268

concept used by PhilDB, thereby allowing multiple time series to be grouped by a single269

key identifier but separated by additional attributes or tags.270

6.2.1 Installation271

InfluxDB is easily installed compared to the other open-source systems reviewed, as272

demonstrated by the short install process shown below. Installation of pre-built packages273

on Linux requires root access15. Installation of InfluxDB was performed in the CentOS274

Linux 6.5 based virtual machine containing the pre-installed SciDB instance.275

wget http://influxdb.s3.amazonaws.com/influxdb-0.9.6.1-1.x86_64.rpm276

sudo yum localinstall influxdb-0.9.6.1-1.x86_64.rpm277

Starting the InfluxDB service with:278

sudo /etc/init.d/influxdb start279

6.2.2 Usage280

Loading of data into the InfluxDB instance was performed using the InfluxDB Python281

API that was straight forward to use. However, poor performance of bulk loads lead to a282

14https://github.com/influxdata/influxdb/issues
15https://influxdb.com/docs/v0.9/introduction/installation.html
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lot of experimentation on how to most effectively load large amounts of data quickly,283

including trying curl and the Influx line protocol format directly. The final solution284

used was to chunk the data into batches of 10 points using the Pandas groupby func-285

tionality before writing into InfluxDB using the InfluxDB Python API DataFrameClient286

write points method, for example:287

streamflow = pandas.read_csv(filename, parse_dates=True, index_col=0, header = None)288

for k, g in streamflow.groupby(np.arange(len(streamflow))//100):289

influx_client.write_points(g, station_id)290

In addition to experimenting with various API calls, configuration changes were at-291

tempted resulting in performance gains by lowering values related to the WAL options292

(the idea was based on an older GitHub issue discussing batch loading16 and WAL293

tuning to improve performance). Despite all this effort, bulk data loading with InfluxDB294

was impractically slow with a run time generally in excess of one hour to load the 221295

time series (compared to the less than 2 minutes for SciDB and PhilDB). Reading was296

performed using the Python API InfluxDBClient query method:297

streamflow = influx_client.query(’SELECT * FROM Q{0}’.format(’410730’))298

6.3 PhilDB299

PhilDB has been designed with a particular use case in mind as described in section300

3.1. Installation of PhilDB is quite easy where a compatible Python environment exists.301

Using a Python virtualenv removes the need to have root privileges to install PhilDB302

and no dedicated user accounts are required to run or use PhilDB. A PhilDB database303

can be written to any location the user has write access, allowing for experimentation304

without having to request a database be created or needing to share a centralised install.305

6.3.1 Installation306

Installation of PhilDB is readily performed using pip:307

pip install phildb308

6.3.2 Usage309

The experimental dataset was loaded into a PhilDB instance using a Python script. Using310

PhilDB to load data can be broken into three key steps.311

First, initialise basic meta information:312

db.add_measurand(’Q’, ’STREAMFLOW’, ’Streamflow’)313

db.add_source(’BOM_HRS’, ’Bureau of Meteorology; Hydrological Reference Stations314

dataset.’)315

This step only need to be performed once, when configuring attributes for the PhilDB316

instance for the first time, noting additional attributes can be added later.317

Second, add an identifier for a time series and a time series instance record based on318

the identifier and meta information:319

db.add_timeseries(station_id)320

db.add_timeseries_instance(station_id, ’D’, ’’, measurand = ’Q’, source = ’BOM_HRS’)321

Multiple time series instances, based on different combinations of attributes, can be322

associated with an existing time series identifier. Once a time series instance has been323

created it can be written to and read from.324

Third, load the data from a Pandas time series:325

16https://github.com/influxdata/influxdb/issues/3282
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streamflow = pandas.read_csv(filename, parse_dates=True, index_col=0, header = None)326

db.write(station_id, ’D’, streamflow, measurand = ’Q’, source = ’BOM_HRS’)327

In this example the Pandas time series is acquired by reading a CSV file using the Pandas328

read csv method, but any data acquisition method that forms a Pandas.Series object329

could be used. Reading a time series instance back out is easily performed with the read330

method:331

streamflow = db.read(station_id, ’D’, measurand = ’Q’, source = ’BOM_HRS’)332

The keyword arguments are optional provided the time series instance can be uniquely333

identified.334

6.4 SciDB335

SciDB, as implied by the name, was designed with scientific data in mind. As a result336

SciDB has the feature of change logging, allowing past versions of series to be retrieved.337

Unfortunately SciDB only identifies time series by a single string identifier, therefore338

storing multiple related time series would require externally managed details about what339

time series are stored and with what identifier. Due to the sophistication of the SciDB340

system it is relatively complex to use with two built in languages, AFL and AQL, that341

allow for two different approaches to performing database operations. This, in turn,342

increases the amount of documentation that needs to be read to identify which method343

to use for a given task (such as writing a time series into the database). While the344

documentation is comprehensive in detailing the available operations, it is largely based345

on the assumption that the data is already within SciDB and will only be operated on346

within SciDB, with limited examples on how to load or extract data via external systems.347

6.4.1 Installation348

SciDB does not come with binary installers for newer versions and the build process is349

quite involved. Instructions for the build proccess are only available from the SciDB350

forums using a registered account17. Installation of older versions is comparable to351

InfluxDB with the following steps listed in the user guide:352

yum install -y https://downloads.paradigm4.com/scidb-14.12-repository.rpm353

yum install -y scidb-14.12-installer354

Same as InfluxDB, SciDB requires root access to install and a dedicated user account355

for running the database. A PostgreSQL installation is also required by SciDB for356

storing information about the time series data that SciDB stores. Unlike InfluxDB,357

SciDB has authentication systems turned on by default that requires using dedicated358

accounts even for basic testing and evaluation.359

Only Ubuntu and CentOS/RHEL Linux variants are listed as supported platforms in360

the install guide.361

6.4.2 Usage362

It took a considerable amount of time to identify the best way to load data into a SciDB363

instance, however once that was worked out, the actual load was quick and effective364

consisting of two main steps.365

First, a time series needs to be created:366

17http://paradigm4.com/forum/viewtopic.php?f=14&t=1672&sid=6e15284d9785558d5590d335fed0b059

11/18

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1488v2 | CC-BY 4.0 Open Access | rec: 12 Feb 2016, publ: 12 Feb 2016



iquery -q "CREATE ARRAY Q${station} <date:datetime, streamflow:double> [i367

=0:*,10000,0];"368

It is worth noting that datetime and double need to be specified for time series storage,369

since SciDB can hold many different array types aside from a simple time series.370

Additionally, SciDB identifiers can not start with a numeric character so all time series371

identifiers were prefixed with a ‘Q’ (where ‘Q’ was chosen in this case because it is372

conventionally used in the hydrological context to represent streamflow discharge).373

Second, the data is written using the iquery LOAD method as follows:374

iquery -n -q "LOAD Q${station} FROM ’/home/scidb/${station}.scidb’;"375

This method required creating data files in a specific SciDB text format before hand376

using the csv2scidb command that ships with SciDB.377

Identifying the correct code to read data back out required extensive review of378

the documentation, but was quick and effective once the correct code to execute was379

identified. The SciDB Python code to read a time series back as a Pandas.DataFrame380

object is as follows:381

streamflow = sdb.wrap_array(’Q’ + station_id).todataframe()382

A contributing factor to the difficulty of identifying the correct code is that syntax errors383

with the AQL based queries (using the SciDB iquery command or via the Python API)384

are at times uninformative about the exact portion of the query that is in error.385

6.5 Performance386

It should be noted that PhilDB currently only supports local write, which is advantageous387

for performance, compared to InfluxDB that only supports network access. InfluxDB388

was hosted locally, which prevents network lag, but the protocol design still reduced389

performance compared to the direct write as done by PhilDB. Although SciDB has390

network access, only local write performance (using the SciDB iquery command) and391

network based read access (using the Python API) were evaluated. SciDB was also392

accessed locally to avoid network lag when testing the network based API. For a393

comparable network read access comparison the experimental PhilDB Client/Server394

software was also used.395

6.5.1 Write performance396

Write performance was measured by writing each of the 221 time series into the database397

under test and recording the time spent per time series.398

As can be seen in figure 1, SciDB and PhilDB have a significant performance399

advantage over InfluxDB for bulk loading of time series data. SciDB write performance400

is comparable to PhilDB, so a closer comparison between just SciDB and PhilDB write401

performance is shown in figure 3.402

It can be seen that while PhilDB has at times slightly better write performance,403

SciDB has more reliable write performance with a tighter distribution of write times.404

It can also be seen from figure 3 that write performance for SciDB does marginally405

decrease as more updates are written. PhilDB write performance while more variable406

across the dataset is also variable in performance based on how much of the series407

required updating. Where the fourth update writes the same data as the third update it408

can be seen that the performance distribution is closer to that of the initial load than the409

third load, since the data has actually remained unchanged.410
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Figure 3. Distribution of write times for 221 time series

Both SciDB and PhilDB perform well at loading datasets of this size with good write411

performance.412

6.5.2 Read performance413

InfluxDB read performance is adequate and SciDB read speed is quite good, however414

PhilDB significantly out-performs both InfluxDB and SciDB in read speed, as can be415

seen in figure 1. Even the PhilDB server/client model, which has yet to be optimised for416

performance, out-performed both InfluxDB and SciDB. Read performance with PhilDB417

is consistent as the time series are updated, as shown in figure 4, due to the architecture418

keeping the latest version of time series in a single file. Reading from the log with419

PhilDB does show a decrease in performance as the size of the log grows, but not as420

quickly as SciDB. While PhilDB maintains consistent read performance and decreasing421

log read performance, SciDB consistently decreases in performance with each update422

for reading both current and logged time series.423

6.5.3 Disk usage424

After the initial load InfluxDB was using 357.21 megabytes of space. This may be425

due to the indexing across multiple attributes to allow for querying and aggregating426

multiple time series based on specified attributes. This is quite a lot of disk space being427

used compared to SciDB (93.64 megabytes) and PhilDB (160.77 megabytes) after the428

initial load. As can be seen in figure 5, SciDB disk usage increases linearly with each429

update when writing the entire series each time. In contrast, updates with PhilDB only430

result in moderate increases and depends on how many values are changed. If the time431
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Figure 4. Distribution of read durations for the 221 time series from the evaluation

dataset

series passed to PhilDB for writing is the same as the already stored time series then432

no changes are made and the database size remains the same, as can be seen between433

update 3 and 4 in figure 5.434

6.5.4 Performance summary435

Each database has different design goals that results in different performance profiles.436

InfluxDB is not well suited to this use case with a design focusing on high performance437

writing of few values across many time series for metric collection, leading to poor438

performance for bulk loading of individual time series.439

SciDB fares much better with consistent read and write performance, with slight440

performance decreases as time series are updated, likely due to design decisions that441

focus on handling large multi-dimensional array data for high performance operations.442

Design decisions for SciDB that lead to consistent read and write performance appear to443

also give the same read performance when accessing historical versions of time series.444

Achieving consistent read and write performance (including reading historical time445

series) seems to have come at the expense of disk space with SciDB consuming more446

space than PhilDB and increasing linearly as time series are updated.447

PhilDB performs quite well for this particular use case, with consistently fast reads448

of the latest time series. This consistent read performance does come at the expense of449

reading historical time series from the logs, which does degrade as the logs grow. Write450

performance for PhilDB, while variable, varies due to the volume of data changing.451
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Initial Update 1 Update 2 Update 3 Update 4
InfluxDB disk usage 357.21 nan nan nan nan
PhilDB disk usage 93.64 96.26 96.28 119.12 119.12
SciDB disk usage 160.77 415.05 667.91 920.79 1173.74
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Figure 5. Disk usage after initial data load and each subsequent data update

The performance of PhilDB (particularly the excellent read performance) compared452

to SciDB for this use case was unexpected since the design aimed for a simple API at453

the expense of efficiency.454

7 FUTURE WORK455

PhilDB is still in its alpha stage. Before reaching the beta stage, the author shall456

investigate:457

* Complete attribute management to support true arbitrary attribute creation and458

attachment.459

* Possible alternative back ends, using alternative data formats, disk paths, and460

relational databases.461

* More sophisticated handling of time zone meta-data.462

* Storage of quality codes or other row level attributes.463

* Formalisation of UUID usage for sharing of data.464

15/18

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1488v2 | CC-BY 4.0 Open Access | rec: 12 Feb 2016, publ: 12 Feb 2016



8 CONCLUSION465

In conclusion, there is a need for an accessible time series database that can be deployed466

quickly so that curious minds, such as those in our scientific community, can easily467

analyse time series data and elucidate world-changing information. For scientific468

computing, it is important that any solution is capable of tracking subsequent data469

changes.470

Although InfluxDB comes close with features like tagging of attributes and a clear471

API, it lacks the needed change logging feature and presently suffers poor performance472

for bulk loading of historical data. InfluxDB has clearly been designed with real-time473

metrics based time series in mind and as such doesn’t quite fit the requirements outlined474

in this paper.475

While SciDB has the important feature of change logging and performs quite well,476

it doesn’t have a simple mechanism for tracking time series by attributes. SciDB is477

well suited for handing very large multi-dimensional arrays, which can justify the steep478

learning curve for such work, but for simple input/output of plain time series such479

complexity is a little unnecessary.480

PhilDB addresses this gap in existing solutions, as well as surpassing them for481

efficiency and usability. Finally, PhilDB’s source code has been released on GitHub18
482

under the permissive 3-clause BSD open-source license to help others easily extract483

wisdom from their data.484
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