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PhilDB - The time series database with built-in change logging

Andrew MacDonald

PhilDB is an open-source time series database. It supports storage of time series datasets

that are dynamic, that is recording updates to existing values in a log as they occur.

Recent open-source systems, such as InfluxDB and OpenTSDB, have been developed to

indefinitely store long-period, high-resolution time series data. Unfortunately they require

a large initial installation investment before use because they are designed to operate

over a cluster of servers to achieve high-performance writing of static data in real time. In

essence, they have a �big data� approach to storage and access. Other open-source

projects for handling time series data that don�t take the �big data� approach are also

relatively new and are complex or incomplete. None of these systems gracefully handle

revision of existing data while tracking values that changed. Unlike �big data� solutions,

PhilDB has been designed for single machine deployment on commodity hardware,

reducing the barrier to deployment. PhilDB eases loading of data for the user by utilising

an intelligent data write method. It preserves existing values during updates and abstracts

the update complexity required to achieve logging of data value changes. PhilDB improves

accessing datasets by two methods. Firstly, it uses fast reads which make it practical to

select data for analysis. Secondly, it uses simple read methods to minimise effort required

to extract data. PhilDB takes a unique approach to meta-data tracking; optional attribute

attachment. This facilitates scaling the complexities of storing a wide variety of data. That

is, it allows time series data to be loaded as time series instances with minimal initial

meta-data, yet additional attributes can be created and attached to differentiate the time

series instances as a wider variety of data is needed. PhilDB was written in Python,

leveraging existing libraries. This paper describes the general approach, architecture, and

philosophy of the PhilDB software.
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ABSTRACT5

PhilDB is an open-source time series database. It supports storage of time series

datasets that are dynamic, that is recording updates to existing values in a log as they

occur.

Recent open-source systems, such as InfluxDB and OpenTSDB, have been developed

to indefinitely store long-period, high-resolution time series data. Unfortunately they

require a large initial installation investment before use because they are designed to

operate over a cluster of servers to achieve high-performance writing of static data

in real time. In essence, they have a ‘big data’ approach to storage and access.

Other open-source projects for handling time series data that don’t take the ‘big data’

approach are also relatively new and are complex or incomplete. None of these

systems gracefully handle revision of existing data while tracking values that changed.

Unlike ‘big data’ solutions, PhilDB has been designed for single machine deployment

on commodity hardware, reducing the barrier to deployment. PhilDB eases loading

of data for the user by utilising an intelligent data write method. It preserves existing

values during updates and abstracts the update complexity required to achieve logging

of data value changes. PhilDB improves accessing datasets by two methods. Firstly, it

uses fast reads which make it practical to select data for analysis. Secondly, it uses

simple read methods to minimise effort required to extract data.

PhilDB takes a unique approach to meta-data tracking; optional attribute attachment.

This facilitates scaling the complexities of storing a wide variety of data. That is,

it allows time series data to be loaded as time series instances with minimal initial

meta-data, yet additional attributes can be created and attached to differentiate the

time series instances as a wider variety of data is needed.

PhilDB was written in Python, leveraging existing libraries.

This paper describes the general approach, architecture, and philosophy of the PhilDB

software.
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1 INTRODUCTION8

This paper will explore existing time series database solutions. It will examine the need9

for a liberally licensed, open-source, easily deployed time series database, that is capable10

of tracking data changes, and look at why the existing systems that were surveyed11

failed to meet these requirements. Next, this paper will describe the architecture and12

features of the new system, PhilDB, that was designed to meet these outlined needs.13

Finally, a simple evaluation will be performed to compare PhilDB to the most promising14

alternative of the existing open-source systems.15

2 BACKGROUND: EXISTING SYSTEMS16

2.1 Proprietary systems17

There are a number of proprietary solutions for storage of time series data that have18

been around since the mid-nineties to the early 2000s. Castillejos (2006) identified19

three proprietary systems of note, FAME, TimeIQ, and DBank, which have references20

that range from 1995 to 2000. There are other proprietary systems, such as kdb+1,21

that are commercially available today. This shows that time series data storage is an22

existing problem. Ready access to open-source systems make them easier to evaluate23

and integrate with compared to proprietary systems and they are more fitting with the24

scientific Python ecosystem as described by Perez et al. (2011). Discussion on the need25

for an open-source system is further covered in Section 3. Therefore existing proprietary26

systems were not evaluated any further.27

2.2 Open-source systems28

In recent years the development of open-source time series databases has taken off, with29

most development beginning within the last five years. This can be seen by the number30

of projects discussed here along with noting the initial commit dates.31

2.2.1 ‘Big data’ time series databases32

Some of the most successful projects in the open-source time series database space are33

OpenTSDB2, Druid3, Kairosdb4, and InfluxDB5. The earliest start to development on34

these systems was for OpenTSDB with an initial commit in April 2010. These systems35

are designed to operate over a cluster of servers to achieve high-performance writing36

of static data in real time. In essence, they have a ‘big data’ approach to storage and37

access. The architectural approach to address big data requirements means a large initial38

installation investment before use.39

2.2.2 Alternate time series databases40

In contrast to the ‘big data’ time series systems, some small dedicated open-source41

code bases are attempting to address the need for local or single server time series data42

storage. These systems, however, have stalled in development, are poorly documented,43

1http://kx.com/software.php
2OpenTSDB initial commit: 2010-04-11; https://github.com/OpenTSDB/opentsdb
3Druid initial commit: 2012-10-24; https://github.com/druid-io/druid/
4Kairosdb initial commit: 2013-02-06; https://github.com/kairosdb/kairosdb
5InfluxDB initial commit: 2013-04-12; https://github.com/influxdb/influxdb
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or require a moderate investment of time to operate. For example Timestore6 was, at44

the time of writing, last modified August 2013 with a total development history of 3645

commits. Some of the better progressed projects still only have minimal development46

before progress has ceased, for example tsdb7 with a development start in January 201347

and the most recent commit at time of writing in February 2013 for a total of 58 commits.48

Cube8 has a reasonable feature set and has had more development effort invested than49

the other systems discussed here, with a total of 169 commits, but it is no longer under50

active development according the Readme file. Searching GitHub for ‘tsdb’ reveals a51

large number of projects named ‘tsdb’ or similar. The most popular of these projects52

(when ranked by stars or number of forks) relate to the ‘big data’ systems described53

earlier (in particular, OpenTSDB, InfluxDB, and KairosDB). There are numerous small54

attempts at solving time series storage in simpler systems that fall short of a complete55

solutions. Of the systems discussed here only Cube had reasonable documentation,56

Timestore had usable documentation, and tsdb had no clear documentation.57

2.2.3 Scientific time series databases58

At present, the only open-source solution that addresses the scientific need to track59

changes to stored time series data as a central principle is SciDB (Stonebraker et al.60

2009 and Stonebraker et al. 2011). SciDB comes with comprehensive documentation9
61

which is required for such a complex system. Access to source code is via tarballs (there62

is no source control system with general access to investigate the history of the project63

in detail).64

3 WHY ANOTHER TIME SERIES DATABASE?65

An interest in the smaller time series database systems is likely derived from a need66

to handle data for exploratory purposes with the intention to later integrate with other67

systems, with minimal initial deployment overhead, as was needed by the author. Open-68

source ‘big data’ time series database offerings don’t support the ability to track any69

changed values out of the box (such support would have to be developed external to70

the system). Their design targets maximum efficiency of write-once and read-many71

operations. “Most scientists are adamant about not discarding any data” (Cudré-Mauroux72

et al. 2009) is a statement the author has found to be true. Therefore, both requirements73

of minimal deployment overhead and logging of any changed values rule out the current74

‘big data’ systems.75

While SciDB does address the data tracking need, it is complex to install and use,76

thus falling into the same installation category as the ‘big data’ systems in terms of set77

up. Installation difficulty isn’t enough to rule out the system being a suitable solution,78

but it does diminish its value as an exploratory tool. SciDB is also licensed under the79

GNU Affero General Public License (AGPL) which can be perceived as a problem in80

corporate or government development environments. In these environments integration81

6Timestore http://www.mike-stirling.com/redmine/projects/timestore;

https://github.com/mikestir/timestore initial commit 2012-12-27
7tsdb initial commit: 2013-01-11; most recent commit at time of writing: 2013-02-17;

https://github.com/gar1t/tsdb
8Cube initial commit: 2011-09-13; https://github.com/square/cube
9http://www.paradigm4.com/HTMLmanual/15.7/scidb ug/
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with more liberally licensed (e.g. Apache License 2.0 or 3-clause BSD) libraries is82

generally preferred with many online discussions around the choice of liberal licences83

for software in the scientific computing space. For example, it can be argued that a84

simple liberal license like the BSD license encourages the most participation and reuse85

of code (Brown 2015, VanderPlas 2014, Hunter 2004). Finally, SciDB has a broader86

scope than just storage and retrieval of time series data, since “SciDB supports both87

a functional and a SQL-like query language” (Stonebraker et al. 2011). These query88

languages add additional cognitive load for any developer interfacing with the system as89

the query languages are specific to SciDB.90

Of the other existing systems discussed here, none support logging of changed values.91

Limited documentation makes them difficult to evaluate, but from what can be seen and92

inferred from available information, the designs are targeting the ‘write once read many’93

style of the ‘big data’ time series systems at a smaller deployment scale. These systems94

were extremely early in development or yet to be started at time the author began work95

on PhilDB in October 2013.96

PhilDB has been created to provide a time series database system that is easily97

deployed and has logging features to track any new or changed values.98

4 ARCHITECTURE99

PhilDB uses a central ‘meta-data store’ to track the meta information about time series100

instances. Each time series instance is assigned a UUID (Leach et al. 2005) upon101

creation. Time series instances are associated with an identifier and attributes using the102

meta-data store. The identifier and attributes can then be used to distinguish between103

time series instances. Using the meta-data store a UUID can be looked up for a given104

combination of identifier and attributes. The UUID then maps to a file on disk containing105

the time series data or a file containing the related log of changes to the time series.106

4.1 Architecture Philosophy107

The reasoning behind this architectural design is so that a time series instance can be108

stored with minimal initial effort. Attaching a time series identifier as the initial minimal109

information allows for data from a basic dataset to be loaded and explored immediately.110

Additional attributes can then be attached to a time series instance to further differentiate111

datasets that share conceptual time series identifiers. By default these identifier and112

attribute combinations are then stored in a tightly linked relational database. This meta113

data store could optionally be replaced by alternative technology such as flat files. As114

the data is stored in individual structured files, the meta-data store acts as a minimal115

index with most of the work being delegated to the operating system.116

5 IMPLEMENTATION117

PhilDB is written in Python because it fits well with the scientific computing ecosystem118

(Perez et al. 2011). The core of the PhilDB package is the PhilDB database class10,119

which exposes high level methods for data operations. These high level functions are120

designed to be easily used interactively in the IPython interpreter (Perez and Granger121

10http://phildb.readthedocs.org/en/latest/api/phildb.html#module-phildb.database
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2007) yet still work well in scripts and applications. The goal of interactivity and122

scriptability are to enable exploratory work and the ability to automate repeated tasks123

(Shin et al. 2011). Utilising Pandas (McKinney 2012) to handle complex time series124

operations related to different frequencies simplifies the internal code that determines if125

values require creation or updating. Returning Pandas objects from the read methods126

allows for data analysis to be performed readily without further data munging. Lower127

level functions are broken up into separate modules for major components such as128

reading, writing, and logging, which can be easily tested as individual components.129

The PhilDB class pulls together the low level methods, allowing for the presentation130

of a stable interface that abstracts away the hard work of ensuring that new or changed131

values, and only those values, are logged.132

Installation of PhilDB is performed easily within the Python ecosystem using the133

standard Python setup.py process, including installation from PyPI using ‘pip’.134

5.1 Features135

Key features of PhilDB are:136

* A single method accepting a pandas.Series object, data frequency and attributes137

for writing or updating time series.138

* A read method for reading a single time series based on requested time series139

identifier, frequency and attributes.140

* Advanced read methods for reading collections of time series.141

* Support for storing regular and irregular time series.142

* Logging of any new or changed values.143

* Log read method to extract a time series as it appeared on a given date.144

5.2 Database Format145

The technical implementation of the database format, as implemented in version 0.6.1146

of PhilDB (MacDonald 2015), is described in this section. Due to the fact that PhilDB147

is still in the alpha stage of development the specifics here may change significantly in148

the future.149

The meta-data store is a relational database to track attributes with the current150

implementation using SQLite (Hipp et al. 2015). Actual time series data are stored as151

flat files on disk, indexed by the meta-data store to determine the path to a given series.152

The flat files are implemented as plain binary files that store a ‘long’, ‘double’, and ‘int’153

for each record. The ‘long’ is the datetime stored as a ‘proleptic Gregorian ordinal’ as154

determined by the Python datetime.datetime.toordinal method11 (van Rossum 2015).155

The ‘double’ stores the actual value corresponding to the date stored in the preceding156

‘long’. Finally, the ‘int’ is a meta value for marking additional information about the157

record. In this version of PhilDB the meta value is only used to flag missing data values.158

Individual changes to time series values are logged to HDF5 files (The HDF Group159

11https://docs.python.org/2/library/datetime.html#datetime.date.toordinal
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1997) that are kept alongside the main time series data file with every new value written160

as a row in a table, each row having a column to store the date, value, and meta value as161

per the file format. In addition, a final column is included to record the date and time the162

record was written.163

6 EVALUATION164

Of the open-source systems evaluated (as identified in section 2.2), InfluxDB came the165

closest in terms of minimal initial installation requirements and feature completeness,166

however, it doesn’t support the key feature of update logging. Paul Dix (CEO of167

InfluxDB) found that performance and ease of installation were the main concerns of168

users of existing open-source time series database systems (Dix 2014). InfluxDB was169

built to alleviate both those concerns. An illustrative comparison between InfluxDB and170

PhilDB was performed by loading a sample dataset — consisting of daily data for 221171

time series — into both systems, noting configuration requirements and performance172

along the way. Reading the data back out from both systems was also measured for173

performance. The sample dataset of 221 time series had a mean length of 16310 days,174

with the breakdown of the series lengths in Table 1.175

mean 16310 days

std 2945 days

min 10196 days

25% 14120 days

50% 15604 days

75% 18256 days

max 22631 days

Table 1. Breakdown of length of time series in sample dataset (all values rounded to

nearest day)

While InfluxDB is designed for high performance data collection, it is poorly de-176

signed for bulk loading of data. Two complications arose while trying to load the sample177

dataset. First, the number of files created by InfluxDB while writing data points resulted178

in overloading the Ext4 file system of the test machine, with journal writes causing179

performance degradation, to the point that InfluxDB failed to respond to the client180

loading the data with an HTTP 500 error. This was worked around by reducing the181

amount of data loaded by for each time series in the dataset to 5 years (1825 days) along182

with specifying a batch size of 100 to the write point method of the InfluxDB Python183

client. While file system tuning or using alternate file systems could solve this, this184

was not attempted because the idea behind PhilDB is that it should be easily used with185

default system configuration. Second, the failure to write any data with a date prior to186

1970-01-01. This may be a bug in the InfluxDB Python client rather than a limitation187

of InfluxDB itself, as there is no documentation that specifies dates must be from 1970188

onwards. To work around this problem the data being loaded was restricted to data after189

1970-01-01.190
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6.1 Installation191

InfluxDB is easily installed compared to the other open-source systems evaluated as192

demonstrated by the short install process shown below. Installation of pre-built packages193

on Linux requires root access12 . Installation of InfluxDB was performed on a 64-bit194

Fedora 19 Linux desktop machine using the pre-built RPM of InfluxDB version 0.9.3 as195

follows:196

wget h t t p : / / i n f l u x d b . s3 . amazonaws . com / i n f l u x d b −0.9.3 −1. x86 64 . rpm197

sudo yum l o c a l i n s t a l l i n f l u x d b −0.9.3 −1. x86 64 . rpm198

Starting the InfluxDB service with:199

sudo / e t c / i n i t . d / i n f l u x d b s t a r t200

Installation of PhilDB is readily performed using pip:201

p i p i n s t a l l p h i l d b202

Using a Python virtualenv removes the need to have root privileges to install PhilDB.203

6.2 Performance204

Due to the limitations of loading data into InfluxDB the dataset was restricted to 5 years205

worth of each time series from 1970 (which will be referred to as the ‘partial dataset’).206

Performance tests were also done for PhilDB with the entire time series dataset loaded207

(the ‘complete dataset’). It should be noted that PhilDB supports local write, which208

is advantageous for performance, compared to InfluxDB which only supports network209

access. InfluxDB was hosted locally, which prevents network lag, but the protocol210

design still reduced performance compared to the direct write as done by PhilDB. Write211

performance was measured by writing each of the 221 time series into the database212

under test, recording the time spent per time series and calculating the average (Figure213

1 and Table 2). InfluxDB write performance was two orders of magnitude slower than214

PhilDB with the equivalent dataset and four times slower compared to PhilDB with the215

complete dataset, as can be seen in Figure 1 and Table 2. This shows PhilDB has a216

significant performance advantage over InfluxDB for bulk loading of time series data.217

0 1 2 3 4 5
Seconds

PhilDB (partial dataset)

PhilDB (complete dataset)

InfluxDB (partial dataset)

Figure 1. Mean write time

PhilDB direct access is capable of reading a (partial) time series two orders of218

magnitude faster than InfluxDB as seen in Figure 2. A fairer comparison of read access219

is using the experimental PhilDB server and client, which provides the same API as220

PhilDB with a JSON over HTTP data transfer. Read performance was measured using221

12https://influxdb.com/docs/v0.9/introduction/installation.html
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the Python timeit module to perform 10 iterations of a read using InfluxDB, PhilDB222

(partial and complete dataset), and the PhilDB server/client combo (partial and complete223

dataset) for a sample of ten time series. The mean of the ten runs yielded the results224

given in Figure 2 and Table 2.225

0.0 0.5 1.0 1.5 2.0
Seconds

PhilDB (partial dataset)

PhilDB server/client (partial dataset)

PhilDB (complete dataset)

PhilDB server/client (complete dataset)

InfluxDB (partial dataset)

Figure 2. Mean read time

PhilDB out-performs InfluxDB in read speed. Even the server/client model, which226

has yet to be optimised for performance, out-performed InfluxDB even in the case where227

InfluxDB contained a smaller dataset than PhilDB did.228

Write Read

InfluxDB (partial dataset) 4.63 seconds 1.83 seconds

PhilDB (partial dataset) 0.06 seconds 0.09 seconds

PhilDB (complete dataset) 1.14 seconds 0.13 seconds

PhilDB server/client (partial dataset) N/A 0.36 seconds

PhilDB server/client (complete dataset) N/A 1.37 seconds

Table 2. Read and write performance results

Finally, the resulting PhilDB database containing the partial test dataset is 13229

megabytes while InfluxDB required 69 megabytes. It is worth noting at this point230

that PhilDB does have full duplication of the initial data due to the current implementa-231

tion of the logging mechanism. Therefore PhilDB takes significantly less space than232

InfluxDB to store an equivalent (small) quantity of data.233

6.3 Summary234

While InfluxDB was the most promising of the evaluated open-source systems, it fell235

short in terms of performance, ease of use, and ease of deployment. InfluxDB appears236

well suited for the data and usage patterns it was designed for, but ill suited for the use237

case PhilDB is aimed at. The lack of support for change logging means that such a238

feature would need to be developed alongside the deployment. It also suggests that any239

attempt to integrate such a feature would result in further performance losses. PhilDB’s240

design has yielded good performance in terms of speed and space requirements, while at241

the same time being simple to install and use. This makes it a suitable tool for handling242

time series data in the scientific context.243
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7 FUTURE WORK244

PhilDB is still in its alpha stage. Before reaching the beta stage, the author shall245

investigate:246

* Complete attribute management to support true arbitrary attribute creation and247

attachment.248

* Possible alternative back ends, using alternative data formats, disk paths, and249

relational databases.250

* More sophisticated handling of time zone meta-data.251

* Storage of quality codes or other row level attributes.252

* Formalisation of UUID usage for sharing of data.253

8 CONCLUSION254

In conclusion, PhilDB provides for an accessible time series database that can be255

deployed quickly so that curious minds, such as those in our scientific community, can256

easily analyse time series data and elucidate world-changing information. For scientific257

computing, it is important that any solution is capable of tracking subsequent data258

changes. PhilDB addresses this gap in existing solutions, as well as surpassing them259

for efficiency and usability. Finally, PhilDB’s source code has been released on GitHub260

under the 3-clause BSD open-source license to help others easily extract wisdom from261

their data.262
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