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Abstract 6 

Current genome-wide technologies allow interrogation and exploration of the human genome 7 

as never before. Next-generation sequencing (NGS) technologies, along with high resolution 8 

Single Nucleotide Polymorphisms (SNP) arrays and array Comparative Genomic Hybrization 9 

(aCGH) enable assessment of human genome variation at the finest resolution from base pair 10 

changes such as simple nucleotide variants (SNVs) to large copy-number variants (CNVs). The 11 

application of these genomic technologies in the clinical setting has also enabled the molecular 12 

characterization of genetic disorders and the understanding of the biological functions of more 13 

genes in human development, disease, and health. In this review, the current approaches and 14 

platforms available for high-throughput human genome analyses, the steps involved in these 15 

different methodologies from sample preparation to data analysis, their applications, and 16 

limitations are summarized and discussed. 17 

18 
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Next-generation massively parallel sequencing for high-throughput human genome analysis 19 

Since the beginning of the Human Genome Project, sequencing of the human genome has 20 

driven the development of technologies and methods to discover the variation within it. While 21 

the sequencing of the original human haploid consensus reference genome cost an estimated 22 

$2.7 billion US dollars [1], the subsequent development of better and more efficient sequencing 23 

machines and methodologies, and later the development of massively parallel sequencing and 24 

next-generation sequencing technologies, dramatically reduced both the cost and time to 25 

sequence personal human genomes. In addition, the development and refinement of targeted 26 

capture methods and reagents for exome sequencing has resulted in a rapid increase in the 27 

number of human exomes analyzed dramatically expanding our knowledge of human genetic 28 

variation. Concurrently, bioinformatic algorithms and tools have been developed to manage and 29 

analyze the tremendous amount of data generated. 30 

The process to sequence a human genome or exome is now relatively straightforward and the 31 

methodological differences arise mainly from the preferred capture, amplification, and 32 

sequencing platforms used. In summary, the process can be reduced to four different steps 33 

(Figure 1): 1) DNA preparation, 2) library construction, 3) sequencing, and 4) analysis.  34 

 35 

1) DNA preparation. Human genomic DNA can be isolated from different sources; generally 36 

peripheral blood is preferred as the starting biological material. However, available reagents to 37 

stabilize other biological fluids such as saliva have proven to be useful when a blood draw is not 38 

possible or insufficient, providing an adequate yield and quality of DNA for sequencing when 39 
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collection is done properly. Extraction of DNA from tissue biopsies, preferably fresh tissues, can 40 

be performed by first digesting the tissue using proteinase K. DNA extraction from formalin-41 

fixed, paraffin-embedded (FFPE) tissues is, although possible, often suboptimal in yield and 42 

molecular weight integrity. The DNA yield for tissue biopsies is lower due to the amount of 43 

starting available material and there is a risk of DNA degradation during extraction and 44 

purification.  Current next-generation technologies allow the preparation of sequencing libraries 45 

with as little as 1 ug of genomic DNA. 46 

 47 

2) Library Preparation. After extraction and purification, genomic DNA is fragmented by 48 

mechanical methods, such as nebulization or sonication, into fragments of ~200-400 bp. 49 

Sonication is usually preferred over nebulization because the amount of input DNA is less and 50 

the fragment size is more consistent. Fragment ends are enzymatically repaired and adaptors, 51 

which can be barcoded, are ligated to the ends.  For whole-genome sequencing, the whole-52 

genome shotgun library is amplified and subjected to next-generation sequencing. For exome 53 

sequencing, or other targeted approaches, target capture and enrichment is implemented prior 54 

to amplification. Prior to massively parallel sequencing,  human genomic sequencing already 55 

used target enrichment approaches, but these were laborious and not highly scalable methods 56 

such as PCR for specific segment amplification or cloning of discreet genomic segments using 57 

bacterial vectors and including fosmid and BAC library construction. The currently used targeted 58 

capture methodologies were originally developed using oligonucleotide probes covalently 59 

bound to a solid array glass slide designed to specifically bind target regions or the exons of the 60 

target genes [2-5]. Later, solution based capture was developed [6,7] in which target fragments  61 
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specifically hybridize to biotinylated probes that are then pulled down  using streptavidin coated 62 

magnetic beads. During exome capture hybridization, it is important to block repetitive DNA, 63 

using human Cot-I DNA which is added in excess in the hybridization solution, in order to avoid 64 

nonspecific cross-hybridization. The fragmented genomic DNA hybridizes to the complementary 65 

probes either on the array or to the biotinylated oligonucleotide probes in solution; any non-66 

target fragments that do not hybridize are later washed away and consequently not captured 67 

for subsequent sequencing. The capture efficiency is dependent on the target fragment length, 68 

sequence complexity, and GC content of the region. Solution-based capture is cheaper and 69 

more scalable than microarray-based capture; thus most commercially available exome capture 70 

reagents use solution based capture [8]. 71 

 72 

 Importantly, different targeted capture designs exist based upon the genome/gene 73 

annotation(s) used for design. Additionally, the above mentioned methodologies are well suited 74 

for enriching the “whole exome” with capture libraries of ~50 Mb. However if a more targeted 75 

approach is desired, such as those for gene panels or specific regions, approaches such as 76 

molecular inversion probes (MIPs) and other multiplex or modified PCR-based amplification of 77 

targets can be used to enrich for the desired regions on a reduced  scale [9]. Originally MIPs 78 

were developed, improved and applied for high-throughput multiplex SNP genotyping [10, 11]. 79 

The current MIPs technology relies on the specific design of ~70-mer capture probes. The MIP 80 

structure is composed of a common linker sequence flanked by homologous targeting arms that 81 

hybridize upstream and downstream to the genomic region of interest. A synthesis reaction 82 

follows in which a DNA polymerase copies the target sequence using the upstream targeting 83 
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arm as an extension primer. After extension, the 5’ end is then ligated to the downstream 84 

targeting arm and the probe is circularized. Further post-capture library amplification, barcoding 85 

and sequencing adaptor ligation can later be performed using the common MIP linker sequence 86 

[12-14]. Current MIPs designs and approaches have proven effective at capturing ~55,000 87 

targets or ~6 Mb [13, 14]. 88 

 89 

Most of the current sequencing technologies rely on the amplification of the template to be 90 

sequenced in order to form clusters of clonally amplified molecules termed “polonies”; which 91 

derives from PCR and colony referring to the original bacterial colonies needed to amplify DNA 92 

BACs for sequencing. There are currently two predominant approaches for pre-sequencing 93 

library amplification. Emulsion PCR amplification is performed in a water-oil emulsion that 94 

contains the captured fragment library, dNTPs, polymerase, and beads with oligonucleotide 95 

primers complementary to the adaptors initially ligated to the DNA fragments. In the test tube, 96 

each of the spheres formed by the water-oil emulsion will perform as an individual isolated PCR 97 

reaction in which the template fragments will be clonally amplified. These beads will then be 98 

washed and cross-linked or spread into a slide or solid platform in which the sequencing 99 

reaction will be performed. The second approach is a solid-phase amplification, in which pairs of 100 

oligonucleotide amplification primers are covalently bound to a solid phase and the template 101 

amplification takes place by bridge amplification of the target fragment using a pair of primers 102 

and generating clusters of clonally amplified target molecules. 103 

The efficiency of the targeted capture enrichment step can be easily assessed by qPCR, testing a 104 

few target loci in the initial non-amplified input DNA versus the amplified captured DNA and 105 
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comparing their CT values. However, this QC step does not provide information on the specificity 106 

and sensitivity of the capture method, just the efficiency of the enrichment [5]. 107 

 108 

3) Sequencing. Sequencing technologies can be divided into two main categories based on the 109 

enzyme that they use: i) sequencing by ligation, using a DNA ligase; and ii) sequencing by 110 

synthesis, using a DNA polymerase. Sequencing by synthesis is the most commonly used 111 

approach and includes Sanger dideoxy sequencing. For sequencing by synthesis next-generation 112 

technologies, the distinctions between methods relate to the output signal that is detected 113 

when the nucleotide incorporation occurs. We will review Sanger first generation DNA 114 

sequencing and the most common and widely used massively parallel next-generation 115 

sequencing technologies. Detailed reviews of additional next-generation sequencing 116 

technologies are available [15, 16]. 117 

 118 

Sanger dideoxy sequencing. Sanger dideoxy sequencing [17] remains the gold standard for DNA 119 

sequencing due to its high accuracy and read length of ~1 kb; however, the cost, time and 120 

scalability of Sanger sequencing make it unfeasible for large-scale sequencing. Originally, Sanger 121 

dideoxy sequencing was developed using radiolabeled chain terminating dideoxy nucleotides 122 

(ddNTPs) that were individually included in four separate sequencing reactions along with 123 

normal unlabeled deoxynucleotides and when incorporated would stop the polymerization 124 

reaction; the dideoxy nucleotides competitively inhibit the synthesis reaction of DNA 125 

polymerase I. The four separate polymerization reactions were electrophoresed through 126 

polyacrylamide gels and the amplified template fragments migrate by molecular weight due to 127 
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differences in the number of nucleotides the primer was extended. The fragments that stopped 128 

first due to the addition of a given ddNTP would be shorter and migrate faster, while longer 129 

fragments would migrate more slowly; in this way the sequence of the DNA template could be 130 

deduced. Modifications of Sanger dideoxy sequencing came with the utilization of four-color 131 

fluorescently-labeled dideoxy nucleotides instead of radioactive ones. These allowed for all four 132 

chemistries and capillary electrophoreses to be run simultaneously in the same lane using laser 133 

detection to determine the interrogated base; when the truncated fragments pass through the 134 

sequencer, the laser excites the fluorophore and the signal of each of the four fluorophores is 135 

detected and recorded in a chromatogram. 136 

 137 

Sequencing by Oligonucleotide Ligation and Detection. Library amplified fragments are bound 138 

through adaptors to a sequencing flow cell slide.  Sequencing by ligation is initiated by the 139 

hybridization of a first of five universal primers and then by adding a pool of fluorescently 140 

labeled 8-mer oligonucleotides that are labeled depending on their two last base pairs. This 141 

produces sixteen different dinucleotide combinations labeled by four different fluorophores on 142 

their 5’ end. During the sequencing reaction, only the oligonucleotide that is complementary to 143 

the template strand will hybridize, bind and be ligated to the nascent strand by a DNA ligase. 144 

Four-color imaging is performed by exciting each of the fluorophores and detecting the 145 

fluorescent signal across all the spots in the flow cell slide. Silver ions are flushed in order to 146 

cleave the recently ligated oligonucleotides releasing the fluorophore and leaving the 5’-PO end 147 

of the oligonucleotide free to bind the next one. The cycle is repeated nine times, after which 148 

the universal primer with the extended strand is stripped. The next universal primer is used to 149 
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start the next cycle of sequencing, which again is repeated five times. There are five universal 150 

primers used.  The sequencing is said to be performed in color space, which for downstream 151 

analysis requires mapping to a color-space reference sequence in order to infer the nucleotide 152 

sequence [18, 19]. 153 

 154 

Pyrosequencing. After emulsion PCR library amplification, the beads are arrayed into a picotiter 155 

plate (PTP) that contains millions of micro wells large and deep enough (44 um x 55 um) only to 156 

hold a single bead containing a single amplified molecule per well. Smaller beads with 157 

sulphurylase and luciferase enzymes attached, necessary for the later pyrosequencing reactions, 158 

are flushed and allowed to diffuse into the wells and cover the target beads. Each of the dNTPs 159 

is individually flushed one at a time through the PTP and they diffuse through each of the 160 

sequencing wells.  When the DNA polymerase incorporates a nucleotide, a pyrophosphate 161 

group is released which will be converted by sulphurylase into ATP to phosphorylate luciferase 162 

into luciferin. The light produced by luciferin due to the specific incorporation of a nucleotide in 163 

that cycle will be recorded by the CCD camera in the machine, producing an output known as a 164 

flowgram or pyrogram. The height of the peak is proportional to the bioluminescence signal 165 

intensity which in turn is proportional to the number of incorporated nucleotides in that cycle. 166 

However, this is both an advantage and disadvantage of the system, as the specificity of the 167 

incorporated base is greater but the detector can be saturated by the signal if more than 6 168 

nucleotides are incorporated in the same cycle, making it inaccurate for sequencing 169 

homopolymer tracts. Between cycles, there is a wash with apyrase, an enzyme that degrades 170 

any remaining unincorporated nucleotides and ATP produced from the previous cycle [20-23].  171 
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 172 

Reversible terminators. Sequencing by synthesis using reversible terminators uses clusters 173 

generated by bridge amplification on an eight lane flow cell slide. The sequencing cycle starts 174 

with flushing a mixture of four fluorescently labeled 3’-modified nucleotide terminators and an 175 

engineered DNA polymerase that is able to incorporate these modified nucleotides. If the 176 

nucleotide is complementary to the next base in the primed template, it will be added by the 177 

polymerase; the extension will be blocked and the fluorescent signal derived by laser excitation 178 

of each of the fluorophores will be detected by a high resolution camera. After imaging, the 179 

terminating group of the modified nucleotides is cleaved along with the fluorophore allowing 180 

the regeneration of the 3’-OH for the addition of the next specific nucleotide and starting a new 181 

cycle. The presence of this terminator is key to this technology’s chemistry as it ensures that no 182 

additional or nonspecific nucleotides are added in the same cycle, allowing that just one 183 

nucleotide per template is imaged per cycle. All the four-color images are processed in order to 184 

derive the actual nucleotide sequence [24, 25]. 185 

 186 

Semiconductor Ion Sequencing. The most recent next-generation sequencing by synthesis 187 

technology is based on detecting the hydrogen ion that is released during the DNA synthesis 188 

reaction by a very sensitive pH meter – a microchip sensor. After template amplification by 189 

emulsion PCR, template bound acrylamide beads are loaded into the semiconductor chip’s 190 

wells. Nucleotides are allowed to flow through the chip one at a time. When the DNA 191 

polymerase incorporates the next complementary dNTP, the reaction produces pyrophosphate 192 

and hydrogen due to the hydrolysis of the triphosphate of the incorporating nucleotide. The 193 
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hydrogen ion released produces a change in pH proportional to the number of dNTPs 194 

incorporated in that given nucleotide flow cycle that can be detected by a tantalum oxide 195 

coated sensor, which provides increased proton sensitivity. The 0.02 pH change per nucleotide 196 

that is incorporated is registered by the sensor, then converted into a voltage signal that is 197 

finally digitalized to a sequence output [26, 27]. 198 

 199 

Single molecule sequencing. The next-next-generation of sequencing technologies involves 200 

single-molecule sequencing. The first of these technologies performs real-time single-molecule 201 

sequencing, in which individual DNA polymerases are attached to the bottom of nanophotonic 202 

platforms (zero-mode waveguide, ZMW detectors) that can sensitively detect the binding of 203 

fluorescently phospho-linked dNTPs to the nascent strand in real time. The template DNA is 204 

diluted so that only one molecule will be sequenced by one polymerase in each of the wells. 205 

When the nucleotide is in the active site of the polymerase, a pulse of fluorescence in the 206 

specific wavelength is detected by the ZMW detector. Once the new correct nucleotide is 207 

covalently bound by the DNA polymerase, the fluorophore is released, the pulse ends and the 208 

recently incorporated nucleotide is left free for the next dNTP incorporation. The processivity of 209 

the DNA polymerase allows the sequencing of several hundreds of base pairs using this 210 

technology [28, 29]. 211 

 212 

2) Analysis. Although none of the next-generation sequencing technologies has reached 213 

the accuracy of classic Sanger dideoxy sequencing, they compensate by several fold redundancy 214 

of sequencing and essentially oversampling of the same genomic region thereby reducing the 215 
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noise and error background. However, these massive amounts of data generated by the next-216 

generation sequencing technologies pose different analytical challenges as current algorithms 217 

must process information from millions of short sequence reads and deduce variant information 218 

contained in these in the context of a complex genome.  219 

After the chemistries and ‘wet bench’ sequencing process, the data generated by the different 220 

technologies is exported into sequence files which generally contain the sequence of each of the 221 

reads generated plus some encoded quality information for that read. These sequence files are 222 

assembled into contiguous genomic sequence and mapped to the reference genome sequence. 223 

Through the use of current next-generation sequencing technologies, most of the human 224 

genome sequencing projects are in fact re-sequencing projects, meaning that they rely on a 225 

haploid reference genome sequence assembly to map and align the sequence reads produced 226 

from any individual personal genome and identify variants determined by differences from the 227 

haploid human genome reference. Because of the inability to assemble an entire genome from 228 

short read sequences without a reference scaffold, all the individual sequencing read data 229 

points that do not map to the reference genome used are generally discarded along with 230 

duplicate and low quality reads.  231 

There are different alignment algorithms which can be used for mapping sequence reads to the 232 

reference genome. Mapping algorithms vary in their approaches and how exhaustive their 233 

mapping is, which reflects both the accuracy and computational speed with which they can be 234 

implemented. Alignment algorithms can be broadly divided into those that build a ‘hash’ or 235 

associative array of either the reference genome or the sequence reads to use as seeds or 236 

anchors for the alignment, once the seeds have been aligned to the reference genome, a 237 
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smaller local Blast–like alignment is performed in order to extend the alignment and ensure 238 

more accurate mapping. The second group of algorithms is formed by those that utilize the 239 

Burrows-Wheeler transform (BWT) algorithm in which the reference genome is sorted, 240 

reordered, and indexed for more efficient access and read alignment, which makes these 241 

algorithms faster [30, 31].  The output of these algorithms is generally a sequence 242 

alignment/map (SAM) file. This file is generally very large as it contains the mapping of each 243 

read to the reference and its quality. Therefore, for better and more efficient handling of this 244 

information, SAM files are converted into binary alignment files (BAM) which can be more 245 

readily accessed, read and handled by the computer [32]. From the BAM file, information about 246 

each base in the genome can be extracted and this is deposited into a Pileup file. This file 247 

reports for every position in the genome the base observed by the pilling up of all the reads at 248 

that specific position (Figure 2). However, the majority of the bases in the genome will be 249 

identical to the reference, therefore of main interest are those positions that are different. After 250 

obtaining the pileup for the whole genome, the variable positions are extracted into another file 251 

in a process known as variant calling. It is important to evaluate these variant calls for their 252 

quality, number of reads across the position and number of reads that called the variant, strand 253 

bias, and likelihood of being a true variant, in order to ensure that the majority are true 254 

positives. The quality of a variant call can be generally assessed by its pileup information. 255 

There are several algorithms that perform variant calling from next-generation sequencing data, 256 

they provide genotype data and can be used for quality filtering [33-35]. Once variants are 257 

“called’, these can be analyzed and filtered through different approaches and using different 258 

criteria depending on the purpose of the study. In general, whether the variants detected map 259 
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to genic or intergenic regions, if they are coding or non-coding, as well as whether they 260 

represent previously observed polymorphisms or novel variants, as well as the allele frequency 261 

spectrum in populations are all important parameters to consider. This is achieved through a 262 

process known as variant annotation. When annotating variants, several available databases are 263 

queried in order to gather as much information as possible regarding that specific genomic 264 

position or coordinate in order to assess the functional impact of the identified variant. Some of 265 

the most widely used databases included in several annotation pipelines are: 266 

 267 

Population Polymorphism Databases: The database of single nucleotide polymorphisms 268 

(dbSNP) was established in 1998 by the National Center for Biotechnology Information (NCBI) in 269 

order to store and catalogue single nucleotide polymorphisms (SNPs) as the most common form 270 

of genetic variation between individuals [36, 37]. Since its creation, the database has been 271 

greatly expanded to include simple nucleotide variants (SNVs) both SNPs and Indels.  Initially the 272 

database was populated by the SNPs discovered during the HGP, later by the additional variants 273 

discovered during the HapMap Project, and most recently by variants of the Thousand Genomes 274 

Project and the myriad of whole genome and exome sequencing projects of the last lustrum. 275 

The 1000 (Thousand) Genomes Project (TGP) was initiated with the purpose of cataloguing 276 

most of the polymorphic and low-frequency variation amongst human genomes, including SNVs 277 

and copy-number variants, by sequencing >1000 genomes and exomes of different populations 278 

around the world using NGS technologies [38-40]. The most recent data release of the NHLBI 279 

Exome Sequencing Project (ESP6500) contains SNP variants identified through whole exome 280 

sequencing of 6503 samples from multiple NHLBI ESP cohorts [41]. In addition, most large-scale 281 
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sequencing groups use their own internal variant databases to annotate for in-house variant 282 

frequencies and genotypes observed, which helps to control for technical replicate errors and 283 

specific population variation. 284 

 285 

Conservation scores: PhyloP computes p-values of nucleotide conservation based on a 286 

tree model of neutral evolution and multi-species alignments [42, 43]. The likelihood ratio test 287 

(LRT) considers all possible ancestral sequences to estimate the ‘deleteriousness’ of a particular 288 

substitution based  on a comparative genomic approach across 32 vertebrate species and 289 

assuming neutrality from synonymous changes and treating all nucleotide substitutions equally 290 

[44]. The Genomic Evolutionary Rate Profiling (GERP) approach aims to identify evolutionary 291 

constrained regions that have lower nucleotide substitution rates, which may reflect past 292 

purifying selection, through the sequence analysis and alignments of 29 mammalian species 293 

[45]. PhastCons attempts to identify evolutionarily conserved regions through multiple species 294 

alignments (46 placental mammals) based on a phylogenetic Hidden Markov Model (phylo-295 

HMM) that uses statistical models for unequal nucleotide substitution rates [46]. 296 

 297 

Functional prediction algorithms: The ‘Sorting Tolerant From Intolerant’ (SIFT) algorithm 298 

predicts the functional effect of an amino acid substitution based on the conservation of that 299 

amino acid residue in the protein through multiple sequence alignment of closely related 300 

proteins from PSI-BLAST [47]. The scores and predictions given by SIFT range from (1 = tolerated 301 

to 0 = damaging); the amino acid change is predicted to be damaging if the score <= 0.05, and 302 

tolerated if the score > 0.05.  303 
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The ‘Polymorphism Phenotyping’ (PolyPhen) algorithm predicts the possible functional impact 304 

of an amino acid substitution based on the protein structure, phylogenetic conservation and 305 

sequence information calculating a naive Bayes posterior probability that the mutation might be 306 

damaging [48]. The score reported by PolyPhen reports the probability of the mutation being 307 

damaging when it is not damaging over the probability of the mutation being damaging when it 308 

is actually damaging; therefore, the scores range from ‘problably damaging’ (score=0) to 309 

‘benign’ (score=1). 310 

MutationTaster utilizes a Bayes probabilistic algorithm to predict the functional impact of a 311 

given nucleotide change, either SNPs or small indels, based on a training set of known disease 312 

causing mutations and common polymorphisms. This algorithm calculates the probability of the 313 

change being a polymorphism or a damaging mutation and reports back p-values (not scores) of 314 

the prediction being correct [49]. 315 

 316 

 Disease/phenotype related databases: The Online Mendelian Inheritance in Man 317 

(OMIM) database is a compendium of human diseases and phenotypes of genetic or suspected 318 

genetic etiology [50]. To date there are  about 3,700 genetic phenotypes or diseases for which 319 

the molecular cause is  known; however there are still at least ~4,000 phenotypes with 320 

suspected genetic basis for which the responsible gene(s) remain unknown. The Human Gene 321 

Mutation Database (HGMD) is a catalogue of known specific mutations reported to be 322 

associated with particular genetic diseases or phenotypes [51]. Currently, HGMD includes more 323 

than 134,000 single mutations associated to genetic diseases. Unfortunately, some of these 324 

mutations are based on single case reports with insufficient support for pathogenicity of the 325 
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mutation; new exome data in thousands of individuals support the contention that such variants 326 

are not damaging or causing the disease they were reported to be associated with as they reach 327 

a certain frequency (>2 – 5%) within normal populations. 328 

The Pharmacogenomics Knowledge database (PharmGKB) documents reported, well 329 

characterized variants and polymorphisms related to the metabolism of a wide variety of drugs 330 

and compounds. It is a valuable resource to inform analysis of potential medically actionable 331 

variants associated with drug metabolism and suggested dosage and guidelines for the 332 

utilization of common medications depending on an individual’s genotype [52]. 333 

 334 

Other databases and resources: Other useful information resources to interpret variants 335 

in novel genes can be provided by pathway and protein-protein interaction network databases, 336 

such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [53, 54] for biological pathways, 337 

and the Human Integrated Protein-Protein Interaction rEference (HIPPIE) [55] or the Search Tool 338 

for the Retrieval of Interacting Genes/Proteins (STRING) [56] databases for protein-protein 339 

interactions data. These databases can provide information on which gene products directly 340 

interact with each other or function upstream or downstream of other known disease 341 

associated genes and help elucidate possible functions and roles of novel genes. Additionally, 342 

one would like to be informed of expression profiles of the genes of interest across different 343 

tissues or throughout development [57, 58]; and phenotypes of mutant model organisms for the 344 

genes of interest [59]. 345 

 346 
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Array Comparative Genomic Hybridization (aCGH) as the gold standard for Copy-Number 347 

Variant detection 348 

Next-generation sequencing is allowing the identification of the vast majority of simple 349 

nucleotide variants (SNVs) in personal genomes, from single nucleotide changes to small 350 

insertion/deletion variants. However, one additional, larger in scale and highly important source 351 

of variation in genomes, both polymorphic and rare is structural and copy number variation 352 

(CNV). Structural variation refers to segments of the genome that differ in copy-number, 353 

architecture and/or orientation between genomes; within this, copy-number variants (CNVs) are 354 

regions in the genome that are present in more or less copies than the expected diploid state. It 355 

is now widely recognized that structural variation and CNVs contribute largely to human 356 

genomic variation, both benign polymorphic and pathogenic [60]. 357 

Array Comparative Genomic Hybridization (aCGH) remains the gold standard to identify CNVs in 358 

the genome. It is based on the competitive hybridization between a test or proband’s DNA and a 359 

control DNA. First, the samples can be digested (or not, depending on the protocol) using an 360 

AluI/RsaI enzyme mix in order to digest the DNA into fragments of ~500 bp in size. Labeling is 361 

performed by priming with random nonamers and then adding fluorescent cyanine dyes, either 362 

Cy3 or Cy5, to the test DNA and the control DNA, respectively, that are incorporated by a nick-363 

translation reaction using a Klenow fragment polymerase. Competitive hybridization is then 364 

performed on an array platform which contains probes to interrogate the whole genome or 365 

specific regions for several hours depending on the protocol. After extended hybridization, the 366 

array is washed and scanned using lasers that excite each of the fluorophores and the signal 367 

intensity of each probe in the array is measured. The images obtained can then be processed, 368 
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merged, and analyzed. If the signal intensity for a particular probe is greater when exciting the 369 

fluorophore of the test DNA, it indicates that more test DNA was bound and there is a copy-370 

number gain of that probe in the test DNA. Conversely, if the signal intensity for a different 371 

probe is greater when exciting the flourophore of the control DNA, then this indicates a copy-372 

number loss of that region in the test DNA. If the signal intensity for both fluorophores is about 373 

the same for a given probe, then it is assumed that there is no copy-number change between 374 

the test and control DNAs for the region being interrogated by the oligonucleotide probe [61, 375 

62]. 376 

Initially, the grid array platforms used BACs to tile the genome and interrogate for CNVs, 377 

however this made the estimation of CNV size and boundaries difficult, inaccurate and 378 

overestimated. With the development of the aCGH platforms, and a reference human genome 379 

sequence to design probes, came the tiling of the genome using covalently bound 380 

oligonucleotide (~60mers) probes that could be chosen to tile the whole genome or specific 381 

regions at higher resolution; the major constraint in genome resolution afforded being the 382 

number of probes utilized per array design; i.e. the number of ‘pixels’ used for genome 383 

resolution. These currently range from as few as 60,000 probes to as many as 4.2 million probes 384 

depending on the platform used. The performance of the oligonucleotide probes can vary 385 

depending on their GC content and therefore it is usually necessary to have a change in the 386 

same direction in the signal of at least five continuous probes in order to be able to detect a 387 

signal representing a true CNV by aCGH. 388 

aCGH has proven to be very accurate and successful at identifying large CNVs, however it has its 389 

limitations including: i) not being able to resolve CNVs of less than 5kb genome-wide, ii) relying 390 
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on a “control” DNA, which by itself will have CNVs of its own of unknown significance, iii) not 391 

being able to detect copy-number changes of more than 4 due to the signal’s dynamic range, iv) 392 

relying on a reference sequence on which the array design is based and not being able to detect 393 

other types of structural variation such as insertions, inversions and balanced translocations. 394 

Currently, copy number variation can be deduced from NGS data based on the coverage 395 

distribution of single reads across the genome or target regions and the difference between the 396 

number of reads across (i.e. read-depth-of-coverage) a given region and the genome-wide 397 

average. Alternatively, CNVs and some structural variants can be inferred from NGS data 398 

through the library preparation, sequencing and analysis of paired-end reads. Paired-end 399 

sequencing (PE) reads are generated from both ends of a fragment. Because the distance 400 

between the two ends is known based on the reference genome assembly, it is possible to use 401 

this information to estimate the presence of insertion, deletions, or copy number variants in the 402 

region [63]. As it is also the case for aCGH, inference of deletions is in general more robust than 403 

the identification of copy-number gains. In addition, sequencing data can potentially provide 404 

CNV breakpoint data that can help in further understanding the mechanisms of CNV formation 405 

in the human genome [64]. 406 

It is anticipated that eventually genomic sequencing using next-generation technologies will 407 

provide accurate information on smaller CNVs, in addition to the larger CNVs readily detected 408 

by aCGH, and potentially other structural variants like inversions and novel sequence insertions. 409 

However for that to occur, current and novel algorithms for alignment mapping and de novo 410 

assembly need to be improved and developed. The interpretation of mechanisms for generating 411 

complex rearrangements and deducing their structure from short read sequences, and de novo 412 
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assembly algorithms for larger genomic segments and entire genomes, will have to await further 413 

developments and refinements. 414 

 415 

Single Nucleotide Polymorphism (SNP) detection for genome-wide genotyping and CNV 416 

detection 417 

One of the initial types of genomic variation that was attainable for genome-wide testing were 418 

Single Nucleotide Polymorphisms (SNPs), which by definition are, in most cases, bi-allelic 419 

positions in the genome that differ in one nucleotide among individuals and are present in at 420 

least 1% of the general population. SNP genotyping has been widely used for genome-wide 421 

association studies (GWAS) with the intention to find common SNP associations to common 422 

complex diseases. SNP detection platforms perform allelic discrimination to interrogate the 423 

polymorphic position through different approaches, which can be primer extension by single 424 

base incorporation, mismatch hybridization, ligation, and enzymatic cleavage [65].  The primer 425 

extension approach can utilize a common primer that can detect either allele or allele-specific 426 

primers; primer anneals to the contiguous region next to the interrogated SNP and the 427 

nucleotide corresponding to the SNP is incorporated in an allele-specific PCR reaction and 428 

identified by either mass spectrometry or fluorescence. In the mismatch hybridization approach, 429 

allele-specific oligonucleotide probes are printed and arrayed in a solid support. Genomic DNA is 430 

digested, PCR amplified, fragmented, labeled and hybridized to the array. Each SNP is 431 

independently tested by several probes that differ just at the SNP position and can discriminate 432 

between each of the two alleles by fluorescence detection. Another mismatch based approach 433 
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utilizes allele-specific primers that have a fluorophore and a quencher and a common primer for 434 

PCR amplification. During the primer extension step, the polymerase with 5’ exonuclease 435 

activity can cleave the perfectly matched primer freeing the reporter fluorophore from the 436 

quencher’s proximity and genotype is detected by the flourescent signal emitted. Other 437 

mismatch based approaches using allele-specific primers tagged differently have also been 438 

developed in order to detect SNP genotypes by other methods besides fluorescence, such as 439 

mass spectrometry or flow cytometry. For ligation-based methods, two allele-specific 440 

oligonucleotide probes are used in addition to a common oligonucleotide that binds adjacently 441 

to the SNP site. When one of the allele-specific probes binds to the SNP site perfectly, a DNA 442 

ligase will ligate the specific probe with the common oligonucleotide. The ligated allele-specific 443 

products can then be detected depending on what was used to tag the different probes, most 444 

commonly fluorescent dyes. A variation of this approach is using longer linear oligonucleotide 445 

probes whose ends are equivalent to the allele-specific and the common probes. The approach 446 

is the same, but when allele-specific binding and ligation occurs the probe gets circularized. This 447 

circular probe can then be amplified by rolling circle DNA replication or  PCR; the genotype can 448 

be ‘called’ using fluorescently labeled primers or by fluorescent labeling during the amplification 449 

step with subsequent array hybridization. Enzymatic cleavage methods rely on the specificity of 450 

DNA endonucleases to recognize specific (which for SNP genotyping are allele-specific) 451 

sequences and cleave the DNA evidencing the genotype. Region of interest PCR amplified 452 

products can be incubated with specific restriction enzymes and genotypes can be detected by 453 

differences in fragment sizes. However, this method is generally low-throughput and limited by 454 

the nucleases sequence recognition repertoire. A variation of the enzymatic cleavage approach 455 
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uses two fluorescently labeled allele-specific probes with an additional common “invader” 456 

probe that is complementary to the 3’ end of the SNP region. When hybridization to the SNP 457 

site occurs, the presence of the invader probe creates an overhang of the allele-specific 458 

oligonucleotide that is recognized by a nuclease, which cleaves it and releases the fluorophore 459 

for genotype detection. 460 

Currently, SNP detection platforms are mostly array based and aimed for high-throughput, 461 

genomewide genotyping with varying number of SNP test probes depending on the design of 462 

preference. These methodologies also use a combination of two or more of the previously 463 

described allele discrimination approaches. Additionally, current SNP arrays designs also include 464 

CNV detection probes or inversely, aCGH designs include SNP array probes which allow for the 465 

detection of both CNVs and absence of heterozygosity (AOH) in the test sample [66].  466 

SNP arrays genotype data can be analyzed based on the B-allele frequency (BAF), which in a 467 

diploid state presents three possible states namely AA=0, AB=0.5, and BB= 1. These data can 468 

also be visualized in a B-allele frequency plot. When the BAF deviates from the tri-modal 469 

expected distribution, this can indicate allelic imbalance that can relate to genomic events such 470 

as copy number variants, regions of absence of heterozygosity, or uniparental disomy, in the 471 

same assay [67, 68]. 472 

473 
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Conclusions  474 

No current genome-wide technology or platform provides information about all types of 475 

variation, from SNVs to structural variation including small CNV in the 100bp to 5kb range, at 476 

high resolution with high specificity [63]. However, continued developments in sequencing 477 

technologies and analysis promise to deliver better, faster and more high-throughput 478 

sequencing technologies to assess the complete picture of human genomic variation, 479 

spearheading the development of improved and new methods for data analysis, not only to 480 

process the peta (10^15 ) amounts of data produced, but also to make biological sense of this 481 

information. The experimental and technical approaches for human genomic variation discovery 482 

will most probably not be the main limiting factor in assessing it, but instead our understanding 483 

and our ability to derive biologically relevant lessons and conclusions from such massive data 484 

will remain the premier challenge. 485 
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Figure 1. Overview of the methods used for whole-genome/exome sequencing for human 688 

genome variation analyses. 1) DNA extraction from sources such as blood, saliva or tissues is 689 

performed. 2) DNA is fragmented and samples are prepared for whole-genome sequencing or 690 

target enrichment by a capture method that can be on a solid surface (array) or in solution. 691 

Alternatively, for more targeted approaches, PCR or molecular inversion probes (MIPs) can be 692 

used for target enrichment. 3) A variety of sequencing technologies are available. These can be 693 

subdivided according to the enzyme they use to amplify the target sequences and by the output 694 

signal that is detected for sequencing. 4) After sequencing, data generated is mapped and 695 

aligned to the human genome reference sequence. A pileup of every base and the nucleotide 696 

detected at that position is generated and from the file generated, variants that differ from the 697 

reference are extracted and annotated using an extensive variety of databases in order to aid 698 

with variant interpretation. 699 

700 
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Figure 2. 701 

 702 
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Figure 2. Schematic representation of the mapping, pileup and variant calling process. Once 703 

individual reads are mapped to the reference human genome sequence, a pileup of these reads 704 

is generated and every base reported at each aligned position in the genome is reported. In 705 

order to facilitate the processing of these data and the files generated, symbols have been 706 

assigned to represent a reference base reported in the forward strand (●), a reference base in 707 

the reverse strand (٫) and capital and small letters to represent specific variant calls either in the 708 

forward or reverse strand respectively.. 709 
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