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Abstract

Background: Computational models in biology encode molecular and cell
biological processes. These models often can be represented as biochemical
reaction networks. Studying such networks, one is mostly interested in systems
that share similar reactions and mechanisms. Typical goals of an investigation
include understanding of the parts of a model, identification of reoccurring
patterns, and recognition of biologically relevant motifs. The large number and
size of available models, however, require automated methods to support
researchers in achieving their goals. Specifically for the problem of finding
patterns in large networks only partial solutions exist.

Results: We propose a workflow that identifies frequent structural patterns in
biochemical reaction networks encoded in the Systems Biology Markup
Language. The workflow utilises a subgraph mining algorithm to detect frequent
network patterns. Once patterns are identified, the textual pattern description
can automatically be converted into a graphical representation. Furthermore,
information about the distribution of patterns among the selected set of models
can be retrieved. The workflow was validated with 575 models from the curated
branch of BioModels. In this paper, we highlight interesting and frequent
structural patterns. Further, we provide exemplary patterns that incorporate terms
from the Systems Biology Ontology. Our workflow can be applied to a custom set
of models or to models already existing in our graph database MaSyMoS.

Conclusions: The occurrences of frequent patterns may give insight into the
encoding of central biological processes, evaluate postulated biological motifs, or
serve as a similarity measure for models that share common structures.

Availability: https://github.com/FabienneL/BioNet-Mining
Contact: fabienne.lambusch@uni-rostock.de
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Background
Modeling is an integral part of computational biology [1]. Its increasing impact is

reflected in the rapidly growing number and complexity of computational models

[2, 3]. Such models encode a wide range of biological processes (including cell cy-

cle processes, apoptosis, mitogen-activated protein kinase and many more [4]) and

thereby enable computer-based analysis of complex biological systems. We observe

that many models reassemble large biochemical reaction networks. They may have

been semi-automatically generated using data driven approaches, for example, to

construct models from metabolic networks [5, 6]. Models may also prove a theory or
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concept, for example to mathematically describe interactions between biological en-

tities [7] or generic oscillatory networks of transcriptional regulators [8]. Published

models are often provided in standard formats such as the Systems Biology Markup

Language (SBML) [9]. A resource of curated SBML models is BioModels [10]. Re-

lease 29 of this open repository contains 575 curated SBML models.

In order to reuse an SBML model, scientists require computational tools for model

exploration, coupling, merging, or combination. Support is also needed during model

curation, i. e., for validation and semantic annotation of models [3]. As models evolve

over time, management strategies must be implemented to ensure model exchange-

ability, stability and result validity; and to foster communication between project

partners [11, 12, 13, 14]. All these tasks require means to compare the character-

istics of different models to answer questions such as: “What are frequently used

structures to represent biochemical processes?”; “What are characteristic patterns

in the class of cell cycle models?”; “Do frequent patterns reflect well-known motifs

in Systems Biology, such as the ones proposed by Tyson [15]?”; “Does the network

contain cycles and how many?”. An automated retrieval of reoccurring patterns

will enable new kinds of analysis. Current approaches for network analysis, how-

ever, provide key figure values for the network topology [16, 17, 18], but they do

not detect actual patterns.

We present a five-step workflow for the discovery of structural patterns in biolog-

ical networks: (1) import models, (2) export networks, (3) create labeled graphs

from networks, (4) execute graph mining, (5) visualise and distribute pattern.

The workflow implementation imports a set of SBML-encoded models in graph-

representation. It then extracts all reaction networks belonging to these models.

Based on the network structures converted into a standard graph format, a mining

algorithm identifies frequently occurring patterns. Finally, the patterns are visu-

alised, and their distribution among the model set is computed. We show exem-

plary patterns, purely structural and also incorporating SBO-annotations, which

were detected in curated SBML-models by means of the proposed workflow.

Methods
Data mining is a common technique for the extraction of implicit, non-obvious

information from huge data sets [19]. The mining of frequent patterns has its roots

in the early 90’s, when it had been used to examine the customers’ buying behavior.

Sales could be increased by detecting patterns in frequent combinations of bought

products [20]. We focus on graph-based approaches in data mining, because our

models are represented by reaction networks. Approaches for identifying patterns

in graphs are, for example, based on set-similarity [21], hypergraph analysis [22]

or require specific types of edges and vertices, e. g., the existence of taxonomic

relationships [23, 24]. For this work, we chose frequent subgraph mining (FSM)

[25], which addresses the problem: Given a set of graphs, find those subgraphs

within the graphs that pass a given frequency threshold [26]. To decide whether

a graph is embedded in another, FSM algorithms require subgraph isomorphism

testing [25]. This is known as an NP-complete task. Thus, FSM techniques rely on

prior knowledge, heuristics and further domain-dependent strategies to improve the

performance. A variety of FSM algorithms have already been implemented [27]. It
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should be noted that most FSM algorithms are used in a domain-specific manner.

For example, an FSM algorithm exists specifically for molecular databases with

structures of atoms and bonds [28].

For our application domain, we decided to use gSpan [29]. GSpan takes a set of

graphs as input, in this case a set of reaction networks, and produces all frequent

connected subgraphs according to a given frequency threshold, i. e., gSpan searches

for structures that occur in at least a certain number of graphs within the set. While

other algorithms supply only approximate results, gSpan fulfills our requirement for

exact results. [30] evaluate and compare the performance of the subgraph miners

MoFa, gSpan, FFSM and Gaston. For this purpose, [30] developed a tool called

the “Parallel and Sequential Mining Suite” (ParSeMiS). ParSeMiS is based on Java

and implements algorithms such as gSpan, Gaston, and Dagma. In addition, [31]

described a detailed approach to graph mining using the gSpan algorithm.

Current network analysis mostly focuses on network diameter and network effi-

ciency [16], on the topological and dynamical properties that control the behavior of

the network [17], or on the degree of tolerance against errors in scale-free networks

[18]. These approaches provide key figure values for the network topology, but they

do not detect actual patterns. On the other hand, biologists have an interest in clas-

sifying models by their function. While analysing the function of patterns requires

knowledge of a domain expert, frequently occurring patterns can be determined au-

tomatically. [32] discuss the biological significance of network patterns and present

several algorithms to identify such patterns. These algorithms are compared and

classified. Searches for frequent patterns were already performed in the Kyoto En-

cyclopedia of Genes and Genomes (KEGG, [33]). [34] describe a method to compare

chemical structures of the KEGG LIGAND database by identifying their common

patterns. The considered chemical structures are mostly metabolic compounds. The

atoms and covalent bonds are represented as graphs, where the maximum common

subgraph is searched for all possible pairs of compounds. The procedure is applied

to detect frequent patterns in 9383 compounds and to cluster these compounds

according to their similarity. [35] propose an algorithm to discover frequent pat-

terns within a set of metabolic pathways in the KEGG PATHWAY database. The

algorithm performs frequent subgraph mining on the metabolic pathways that are

represented as directed graphs. The authors show exemplary results for detected

patterns. As subgraph isomorphism testing is NP-complete, the computational cost

for the algorithm is reduced by utilising the sparse nature of metabolic pathways

and unique node labelling.

In the field of business informatics, [36] propose a method to extract occurring

subgraphs in a repository of business process graphs, compute the distance between

the user’s process model and the extracted patterns, and recommend a ranked list

of patterns. By remodelling the process graphs to be represented uniformly, they

can even find large patterns or rather the ones only contained in a few networks.

Results
We designed a five-step workflow to retrieve frequent patterns within reaction

networks of SBML-models (see Figure 1). To store and access models, our worklow

utilises a graph database. Network structures are extracted to detect occurring
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Figure 1 Pattern identification workflow. Numbered, oval boxes describe workflow steps.
Rectangular boxes describe data produced by each step and taken as an input for the following
step. Starting at multiple entry points is possible depending on the available data and format. The
first step is to import models into the MaSyMoS graph database. From there the reaction
networks are extracted and converted to a uniform structure. The converted reaction networks are
used as an input for the subgraph mining step to identify patterns. Subsequently, two options to
further process the pattern descriptions are available. On the one hand, images representing the
patterns can be generated (output on the bottom left). On the other hand, patterns can be fed
back to the database to create a feature matrix showing the distribution of identified patterns
among the models (output on the bottom right).

patterns by means of the frequent subgraph mining algorithm gSpan. The generated

patterns can be visualised using SBGN-compliant glyphs. Furthermore, the pattern

distribution among all models can be computed. The workflow has different entry

points, which can be chosen depending on the available data. Below, we explain the

single steps in detail.

Step 1: Import SBML-models

The workflow may either be applied to models already existing in the graph database

MaSyMoS [14] or to a custom set of models. The published instance of MaSyMos

is shipped together with a database[1] containing all curated models of BioModels

Release 29[2]. Additional SBML-models can be imported into a local MaSyMoS in-

stance. In MaSyMos, the SBML-structure is mapped onto a custom graph structure

which preserves network information: the species and reactions are represented by

nodes and their relations are represented as edges between them. A species can take

[1]https://github.com/FabienneL/BioNet-Mining/tree/master/data
[2]ftp://ftp.ebi.ac.uk/pub/databases/biomodels/releases/2015-04-16/
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the role of a reactant, modifier, or product. Relations between species and reactions

are bidirectional. Of particular importance are the relations “a reaction HAS partic-

ipants” and “a species IS participant” in a reaction. When applying the workflow

to a custom set of models, the representation of networks must be graph-based and

comply to the structure available in MaSyMoS.

Step 2: Export network edges

Using a query interface for MaSyMoS and the query language Cypher[3], our script

retrieves all reaction networks of the SBML-models that are present in the database.

The corresponding Cypher-query is shown in Listing 1. By adapting the script, a

custom model set can be used.

Listing 1 Cypher-query to export the reaction networks of SBML-models stored in the MaSyMoS
database. All structures connecting reactions and species are exported. The output is a set of 3-tuples
consisting of the reaction’s identifier the role type and the species’ identifier.

MATCH (reaction:SBML_REACTION )-[edge]->(species:SBML_SPECIES)

RETURN ID(reaction),TYPE(edge),ID(species)

We only query the nodes with their edges and do not incorporate further informa-

tion, such as the associated model, publication, etc. For this reason, unconnected

reaction networks belonging to the same model will not further be associated with

each other. The query result is a set of typed directed edges with a reaction as start

node and a species as end node. Each result entry is a 3-tuple containing a reaction

ID, role type (reactant, modifier, product), and a species ID. The resulting set of

tuples is provided as JSON output. An example is shown in Listing 2.

Listing 2 Exemplary output (JSON) for the query in Listing 1. It contains a table with columns
defining a reaction’s identifier an edge type and a species’ identifier. Consequently the table entries
are 3-tuples each representing an edge with start node end node and role type. In this example the
IDs 100233 and 100229 represents reactions cdc2k dephosphorylation and cdc2k phosphorylation. ID
100186 is the species cdc2k.

{

‘columns ’ : [ ‘ID(reaction)’, ‘TYPE(edge)’, ‘ID(species)’ ],

‘data’ :

[

[ 100233 , ‘HAS_PRODUCT ’, 100186 ],

[ 100229 , ‘HAS_REACTANT ’, 100186 ],

...

]

}

Step 3: Create labeled graphs

For later analysis, the JSON-file must first be converted into a graph representation

format. We provide this information in the graph description language DOT [4]. The

associated framework Graphviz [5] offers manifold opportunities to process graphs

[3]https://neo4j.com/developer/cypher-query-language/
[4]http://www.graphviz.org/content/DOT-language
[5]http://www.graphviz.org/
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by providing a collection of tools using DOT-files as input. We use a few of the tools

in later steps of the workflow.

To translate the JSON-file into DOT-format, we convert each 3-tuple into a graph

with a start node, an end node and an edge between them. The start and end node

are characterised by their unique identifier and their node type (species or reaction,

stored in a DOT-label). An edge is defined by the identifiers of its start and end

node, its direction and its type (representing the role, stored in a DOT-label). As it

is more natural for the order of nodes in the visualisation that reactants and mod-

ifiers are ingoing for a reaction and products outgoing, the edge directions are ad-

justed. Thus, possible edge labels are IS REACTANT, IS MODIFIER, or HAS PRODUCT.

An example for the entries resulting from the two edges of the exemplary JSON-file

converted into DOT-format is shown in Listing 3.

Listing 3 Exemplary DOT-format after converting the output (JSON) shown in Listing 2. This
transitory format defines one digraph (directed graph) containing all exported nodes and edges. For
each 3-tuple from Listing 2 two nodes and one edge is defined. Consequently the created digraph
may contain nodes multiple times (shown here the node with ID 100186) because one node can be
part of several edges. In this example the IDs 100233 and 100229 represents reactions cdc2k
dephosphorylation and cdc2k phosphorylation. ID 100186 is the species cdc2k.

digraph {

100233 [label=SBML_Reaction ];

100186 [label=SBML_Species ];

100233 -> 100186 [label=HAS_PRODUCT]

100229 [label=SBML_Reaction ];

100186 [label=SBML_Species ];

100186 -> 100229 [label=IS_REACTANT ];

...

}

The resulting DOT-file defines one graph with nodes and edges from all reaction

networks. It should be noted that the file my contain nodes multiple times, because

we create one entry for a node each time it occurs as a start or end node in an edge.

Consequently, we bundle all connected nodes with their corresponding edges as one

graph each and eliminate redundant nodes. This is possible by means of a Graphviz

tool to split a graph into its connected components. Then, each connected reaction

network represents its own graph in the new DOT-file and has no redundant nodes

anymore. As an SBML-model can contain entities that are not explictly connected

(e.g. only connected by rules), it is possible to have more graphs defined in the DOT-

file than models used as input for the workflow. As mentioned before, unconnected

reaction networks belonging to the same model will not further be associated with

each other. Listing 4 shows the final DOT-format for our example.

Listing 4 Exemplary DOT-format neccessary for the subgraph mining process created by splitting the
digraph from Listing 3. Here each connected reaction network is represented by one digraph and has
no redundant nodes. In this example the IDs 100233 and 100229 represents reactions cdc2k
dephosphorylation and cdc2k phosphorylation. ID 100186 is the species cdc2k.

digraph {
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100233 [label=SBML_Reaction ];

100186 [label=SBML_Species ];

100233 -> 100186 [label=HAS_PRODUCT ];

100229 [label=SBML_Reaction ];

100186 -> 100229 [label=IS_REACTANT ];

...

}

digraph {

...

}

...

Step 4: Perform graph mining

The created DOT-file is the input for the graph mining and the basis for finding

frequent patterns in the set of reaction networks. The frequency of patterns is equal

to the number of reaction networks, in which a pattern occurs. Each pattern is thus

counted only once for each network, even if it occurs multiple times in a model’s re-

action network. We use the implementation of the gSpan algorithm in the software

tool ParSeMiS to calculate frequencies: Given the user-specified values min (min-

imum frequency) and max (maximum frequency), the mining finds all subgraphs

that occur in at least min and at most max of the graphs. We call these subgraphs

frequent patterns. It does not matter for the algorithm, how often a pattern oc-

curs within one graph, only the number of graphs is relevant. Consequently, the

frequencies are values between one and the total number of graphs in the DOT-file.

As already mentioned, one model may have several unconnected reaction graphs.

Therefore, the number of defined graphs can be higher than the number of models

used as input.

The result of the subgraph mining is one DOT-file containing all subgraphs having

a frequency within the given interval. For each pattern in the DOT-file the frequency

of its occurrence and the names of the corresponding models are attached as a

comment. An exemplary output is shown in Listing 5.

Listing 5 Exemplary pattern mining results (DOT-format). The output contains for each detected
pattern one directed graph. The digraph numbering denoted by ‘...’ can be discarted. First all nodes
are defined starting with ‘Node 0’. Second the edges are defined. Following a digraph’s definition a
comment (introduced by #) contains the number of graphs in which the described pattern occurs.
The following square brackets can also be discarted.

digraph ‘560’ {

Node_0 [label=‘SBML_REACTION ’];

Node_1 [label=‘SBML_SPECIES ’];

Node_2 [label=‘SBML_REACTION ’];

Node_3 [label=‘SBML_REACTION ’];

Node_4 [label=‘SBML_SPECIES ’];

Node_0 -> Node_1 [label=‘HAS_PRODUCT ’];

Node_1 -> Node_2 [label=‘IS_REACTANT ’];

Node_1 -> Node_3 [label=‘IS_REACTANT ’];

Node_4 -> Node_0 [label=‘IS_REACTANT ’];

}# => 398[ , , ... ,]

digraph ‘560’ {

...

}# => 436[ , , ... ,]

...
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To find those subgraphs within the graphs that pass a given frequency threshold re-

quires subgraph isomorphism testing [25]. Because this is known as an NP-complete

task [26], the minimum frequency must be chosen carefully to obtain results. If the

minimum frequency is set too low, the computation will not succeed due to capacity

limitations (memory or time).

Step 5: Pattern post-processing

The generated patterns may be used in various ways. Here, we illustrate two possible

options to further process them: the first option is the visualisation; the second

option is the computation of frequencies for each pattern per model. In both cases,

the DOT-file is split into multiple DOT-files each containing one pattern. The name

of a DOT-file comprises the pattern’s frequency and an identifier. The identifier is

used to distinguish between several patterns occurring with the same frequency.

Step 5A: Visualisation

The visualisation follows the standardized Systems Biology Graphical Notation

(SBGN) [37]. Node and edge labels are expressed by the visualised shape suggested

by SBGN. Furthermore, the contour, fill color and size of nodes, and the stroke

width, direction, arrowhead and size of edges are set. Consequently, textual display

of node and edge labels is disregarded. For each DOT-file an image-file is rendered.

The standard image-format is PNG, but other formats such as PDF are supported

by the DOT framework.

Step 5B: Pattern Distribution

To compute the frequencies of patterns per model, a Cypher query is generated for

each DOT-file. An example is shown in Listing 6. The query describes the graph

representing the pattern. Further, a restriction is added that nodes are not allowed

to be equal. The output is a JSON-file that lists all distinct model IDs, the model

names that contain the pattern, and how often a pattern is present in each of those

models. Subsequently, the queries are executed on the MaSyMoS database and the

results stored as JSON-files. All JSON-files are then processed to create a CSV-file

representing a frequency matrix. Here, the first two columns specify the model. The

following columns define the patterns. Each row contains a model ID in the first

column, a model name in the second column, and the frequency of each pattern

in the following columns. Thus, each row can be seen as a feature vector for one

model.

Listing 6 Exemplary Cypher-code to query MaSyMoS for the distribution of a certain pattern. The
examplary pattern here represents a chain with two reaction nodes and one species node. The species
takes a role as product in the first reaction and a role as reactant in the second reaction. Furthermore
it is defined that nodes are not allowed to be equal. The result is a set of 3-tuples each containing a
model identifier a model name (stored as attribute in the associated document) and the number of
occurences of the pattern.

{

‘query ’:

‘MATCH (m:SBML_MODEL)-->(d:DOCUMENT), m-[ HAS_REACTION]->Node_0 ,

Node_0 -[: HAS_PRODUCT]->Node_1 , Node_1 -[: IS_REACTANT]->Node_2

WHERE Node_0 <>Node_1 AND Node_0 <>Node_2 AND Node_1 <>Node_2
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RETURN DISTINCT ID(m), d.FILENAME , COUNT(Node_0)

AS sum ORDER BY sum DESC’,

‘params ’:{}

}

Exemplary Application
Using the aforementioned combination of tools and methods, we exemplarily an-

alyzed two data sets on a cluster node (180GB RAM, 16 Intel(R) Xeon(R) CPU

X5650 @ 2.67GHz). Graph-pattern identification is an NP-complete task, thus mem-

ory and CPU are the limiting constraints.

Data Set

For the pattern detection, we incorporated publicly available models from BioMod-

els. The stored reaction networks are encoded in SBML. BioModels contains two

types of models: curated and non-curated. We here chose only models from the cu-

rated branch as those models are ensured to accurately represent the work described

in the reference publication. Furthermore, curated models are syntactically and se-

mantically validated and annotated with ontology terms, and they comply with the

MIRIAM standard [38]. Specifically, we analyzed SBML-models from two different

releases of BioModels. Release 1 (in the following referred to as R1) is the first

release of the repository. It contains 30 curated models. Release 29 (in the following

referred to as R29) is one of the latest releases. It contains 575 curated models. We

chose these two releases to take the evolution of BioModels into account.

As we decided to perform subgraph analysis with an FSM algorithm, we translated

the biological reaction network into a graph representation using the MaSyMoS

database. For the reaction network, the MaSyMoS graph structure distinguishes

two types of nodes (i. e.,labeled species and reaction) and three types of edges

(labeled is reactant, has product, and is modifier).

Quantitative Analysis

First, we performed a key figure analysis to calculate the quantities of node types

and edges in the networks. In our data set, 557 out of 575 models in R29 contain

species, and 499 models contain reactions. The remaining models only define rules,

but do not form a network. The data set contains a total of 18852 reaction nodes

and 16843 species nodes.

Data set R1 contains only 30 curated models. These models contain a total of

736 reactions and 425 species. The big difference in numbers between R1 and R29

are due to the rapid growth of models, as previously reported [2]. On average, a

model from R29 has 30.2 species and 37.7 reactions. In R1, a model has 14.6 species

and 25.4 reactions on average. For both datasets most models contain three up to

eleven species. In addition, most models have three up to twelve reactions. However,

there are a few outliers with more than 100 reactions and species. Figure 2 shows

the correlation between species (and their respective role as reactants, products

and modifier) and reactions. As the figure states, most reactions have two or three

participating species. The most frequently encoded reaction has two species as re-

actants and one species as product. The second most frequently encoded reaction

has one species as reactant and one as product.
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Figure 2 Listing of the node degree for reaction nodes in the data set R29 of curated models in
BioModels Database. For each number of species (from 1 to 6, and more then 6) participating in
a reaction, the figure lists the number of reaction nodes identified with a particular combination of
its species relations (reaction class). The figure sums up smaller reaction classes displayed by X. It
becomes obvious that most reactions have two or three participating species.

Exemplary Patterns

We identified a subset of patterns shared by at least a certain number of models. For

data set R29, we were able to identify 37 patterns in total. Each identified pattern

is shared by at least 350 out of 575 models. For the much smaller data set R1, we

identified 190 patterns. Here, each pattern is shared by at least 20 out of 30 models.

For R29, the identified patterns contain between one and six entities (species or

reactions) whereas patterns for R1 contain between one and eleven entities. It was

not possible to scale down the number of models that share a pattern due to memory

limitations.

Common types of reactions

From the quantitative analysis and the statistics shown in Figure 2, we expected

to see patterns having one reaction and three species (participating as product,

reactant or modifier). Surprisingly, the pattern identification shows that no such

patterns are shared by at least 350 models in R29 or by at least 20 models in R1,

respectively. Subsequently, we searched for expected structures having one reaction

and three species in the MaSyMoS database. The specific combination of two re-

actants as a reaction’s input and one product as a reaction’s output only occurs in

314 models, despite being the most frequently encoded reaction class according to

Figure 2. Same holds for all other possible reaction classes with three species for

R29 and R1, respectively. One can conclude that such types of reactions are often

used, but are not equally distributed across models.

Species as a reaction modifier:

Generally, species in R29 most often take part in a reaction as a modifier (33209

times), and less as a product (23630) or reactant (25595). However, only four out of

37 retrieved patterns (R29) contain species that act as a modifier. One of those four

patterns is shown in Figure 3. A further investigation reveals the unequal distribu-

tion of modifiers among the models. Ten models together count for 20620 modifier

usages. Among those ten models, five models are derivations of the aforementioned

semi-automatically created models of metabolic networks [6].
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Figure 3 Species as modifier: This pattern
occurred in 351 models of data set R29 and
shows a species taking part in a reaction as a
modifier and a reactant

Figure 4 Cycle: The smallest biologically
meaningful cycle (2 species and 2 reactions).
It is contained in 330 models of data set R29
and in 25 models of data set R1.

Figure 5 Functional motifs postulated by [15]: A gray circle in a motif indicates an interaction
that may be either + or -. All white circles in a motif must have the same sign, either + or -, and
they must be of opposite sign to any black circle in the same motif. We grouped this motifs by
structure. For example, motifs 3-5 are grouped as they are all cycles of two species and two
reactions. An analogous group is built by motifs 9-12. The groups are depicted by alternating
colors.

Motifs

Biologists have an interest in classifying models by their function. Tyson and Novak

[15], for example, were interested in the mechanisms of information processing. They

showed that complex networks could be decomposed into simple patterns, each

fulfilling specific functions within a cell. These patterns were postulated as common

motifs in biochemical reaction networks. It remains an open question how and how

frequently these motifs are encoded in a model. Figure 5 shows the network motifs

that were postulated by [15]. The structure of motifs 3-5 can be represented as a

graph with two species and two reactions forming a cycle. Such motifs can encode,

for example, the production and degradation of a protein, or positive or negative

feedbacks. While analysing the function of patterns requires knowledge of a domain

expert, frequently occurring patterns can be determined automatically. Using our

workflow, we identified one pattern that represents the structure of motifs 3-5; it

occurs in 26 models of R1 (shown in Figure 4). However, this pattern is not among

the 37 patterns retrieved using dataset R29. A subsequent query in MaSyMoS, for

the exact pattern, reveals that it the structure indeed only contained in 342 models.

Surprisingly, the query retrieved more than 45,000 occurrences of this cycle in R29.

To investigate further, we ordered the results by model. Again, the answer is the
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distribution of the pattern: two models by [5] (generated semi-automatically) count

for approximately 10,000 cycles each. Together with our observations regarding the

usage of species as modifiers in reactions, we can assume that semi-automatically

generated models have a distinguishable network structure. BioModels contains two

prominent examples of such models [5, 6].

Pattern identification (semantics-aware)

Our workflow currently does not consider semantic annotations and thus cannot

provide information about the intended semantics of reactions and species. Conse-

quently, we cannot distinguish all of the postulated motifs. For example, the pattern

describing a simple cycle (cmp. Figure 4) could be corresponding to motif 3, motif 4

or motif 5.

To regard semantics, we adapted Step 2 of the described workflow. The net-

work extraction was refined to additionally receive for the species and reactions the

SBO-annotation [39] of these entities. These annotations reflect the biological role

of each species and reaction. Two downsides of this approach have to be consid-

ered: First, only 116 out of 575 (R29) models have reaction networks annotated

with SBO terms. Second, as [40] states, the specificity of SBO-annotations varies

among models. Taken together, the remaining reaction networks are less complex,

allowing us to retrieve 176 patterns contained by at least 12 out of 116 valid mod-

els. Structure-wise, Figure 6 and 7 are equivalent to Figure 4, but they now include

semantics, i. e. the role of each participating species and reaction. Figure 7 is an

identified pattern that describes a biochemical reaction (SBO:176) between simple

chemicals (SBO:247) and Figure 7 describes the phosphorylation (SBO:216) and

de-phosphorylation (SBO:330) of a polypeptide chain (SBO:252).

Figure 6 Simple chemical and
biochemical reaction.

Figure 7 Phosphorylation and
de-phosphorylation of a
polypeptide chain.

Figure 8 Transcription,
translation and degradation of
messenger RNA.

A brief analysis of all retrieved SBO-based patterns reveals structures similar to

Figure 9. In fact, all but one pattern with at least four entities contain a combination

of simple chemical (SBO:247), biochemical reaction (SBO:176), or phosphorylation

(SBO:216), de-phosphorylation (SBO:330) and polypeptide chain (SBO:216). The

one outsider pattern encodes the transcription, translation and degradation of mes-

senger RNA (cmp. Figure 8).

Feature matrix

Current approaches for model clustering only incorporate semantic annotation and

meta-information [40, 41]. Our work is a first step towards creating structural sim-

ilarity measures for biological models. We hypothesize that these similarity scores
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Figure 9 Exemplary pattern, a combination of simple chemical and biochemical reaction.

can help to distinguish models, for example, to classify them by a certain modeling

technique (theoretical, data driven, or hybrid). Having identified patterns at hand,

it is easy to generate a vector for each model holding the number of occurrences for

each pattern within a model. Using the approach of term frequency and inverse doc-

ument frequency with a vector space model, well studied in the field of information

retrieval, one can draw conclusions about the similarity of models based on shared

pattern. However, it is not feasible to use all identified patterns for such a model

comparison. Instead, patterns should be weighted according to their biological sig-

nificance. Also it seems fruitful to incorporate information about the uniqueness

of a pattern, i.e. does the pattern contain other identified patterns itself. Such an

analysis would lead to an approach similar to eTVSM [42].

Discussion
The presented workflow can be used to test hypotheses about reoccurring patterns

in domain-specific model sets. It can furthermore help to calculate structure-based

similarities of model (see [43] for a discussion of possible measures). Based on the

calculated similarities, models can then be classified. Finally, the evolution of a

model can be studied through the evolution of the network. Here, our workflow can

help to identify stable regions in the network.

The visualisation of identified patterns follows the SBGN standard. By providing

a standards-compliant visualisation of the detected pattern, they are more easily

comparable to other works, for example to the already existing SBGN bricks [44].

The workflow can be adapted and extended. It is possible to adapt the preprocess-

ing steps to enable pattern detection in CellML-encoded models, or even in other

model representation formats. The preprocessing could also be adapted to better

incorporate semantic information, such as the knowledge about mathematical con-

cepts encoded in the Systems Biology Ontology (SBO) [39].

Current approaches for clustering of a model set could be extended towards struc-

tural approaches. The consideratoin of patterns will further enable search for mod-

els that share similar structures, improve the mapping of similar models onto each
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other [45], and lead to recommender systems that support the modeling process. In

addition with with already existing similarity measures [43], this work will impact

the reuse and reproducibility of scientific modeling results. A number of approaches

exist to compare models based on the encoding format, the XML tags, or seman-

tic annotations. It is, for example, interesting to study models regarding function,

structure and behavior [46]; regarding their temporal evolution [47, 48]; or regard-

ing their dynamics [49]. In this paper, we propose a first step towards to a new

structural analysis by providing a workflow to retrieve frequent patterns.

In the future, we need to incorporate better information about the role of a re-

action (e. g. promoter or inhibitor). The use of annotations, specifically from SBO,

will enable us to identify motifs more precisely. SBO provides terms for the func-

tional role of a species or reaction but is to broad. For example, a species can simply

be annotated as a “simple chemical” (SBO:247). Most species and reactions in our

data sets contain such annotations, but some networks are still not annotated. The

consideration of annotation will also lower the computational costs for the search

for sub-models, because valuable semantic knowledge can be incorporated to reduce

the number of potential alignments.

Conclusion
The increasing amount of published models and the growing size of encoded reac-

tion networks demand automated methods for model analysis. Pattern detection in

biological networks, being one such method, is of great scientific interest. In this

paper, we present a workflow that addresses the problem of obtaining common pat-

terns in SBML-encoded models by applying a frequent subgraph mining algorithm.

Our workflow implementation loads a custom set of SBML models into a graph

database and delivers information about frequent patterns in that set of models.

For the pattern detection it uses a Java-based gSpan implementation. Identified

patterns can be fed back into the graph database to retrieve further information,

for example, about the pattern distribution. The presented workflow is openly avail-

able and can be adapted to other model encoding formats. It can also be extended

to support further types of pattern analysis. When being integrated with available

model repositories, information retrieved from our workflow can improve model

search, comparison, and provenance.
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