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Can we set a global threshold age to define mature forests

Philip Martin, Martin Jung, Francis Brearley, Relena Ribbons, Emily Lines, Aerin Jacobs

Globally mature forests appear to be increasing in biomass density. There is disagreement
whether these increases are the result of increases in CO2 concentrations or a legacy
effect of previous land-use. Recently, it was suggested that a threshold of 450 years
should be used to define mature forests and that many forests increasing in biomass may
be younger than this. However, the study making these suggestions failed to account for
interactions between forest age and climate. Here we revisit the issue to identify: (1) how
climate and forest age control global forest biomass density and (2) whether we can set a
threshold age for mature forests. Using data from previously published studies we
modelled the impacts of forest age and climate on biomass density using linear mixed
effects models. We examined the potential biases in the dataset by comparing how
representative it was of global mature forests in terms of its distribution, the climate space
it occupied and the ages of the forests used. Biomass density increased with forest age,
mean annual temperature and annual precipitation. Importantly the effect of forest age
increased with increasing temperature, but the effect of precipitation decreased with
increasing temperatures. The dataset was biased towards Northern hemisphere forests in
relatively dry, cold climates. The dataset was also clearly biased towards forests <250
years of age. Our analysis suggests that there is not a single threshold age for forest
maturity. Since climate interacts with forest age to determine biomass density a threshold
age at which they reach equilibrium can only be determined locally. We caution against
using biomass as the only determinant of forest maturity since this ignores forest
biodiversity which often takes longer to recover. Future study of the influence of climate
on forest biomass should aim to use the data currently being generated by long-term
monitoring networks and satellite based observations.
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Abstract

Globally, mature forests appear to be increasing in biomass density. There is
disagreement whether these increases are the result of increases in CO, concentrations
or a legacy effect of previous land-use. Recently, it was suggested that a threshold of
450 years should be used to define mature forests and that many forests increasing in
biomass may be younger than this. However, the study making these suggestions failed
to account for the interactions between forest age and climate. Here we revisit the issue
to identify: (1) how climate and forest age control global forest biomass density and (2)
whether we can set a threshold age for mature forests. Using data from previously
published studies we modelled the impacts of forest age and climate on biomass
density using linear mixed effects models. We examined the potential biases in the
dataset by comparing how representative it was of global mature forests in terms of its
distribution, the climate space it occupied, and the ages of the forests used. Biomass
density increased with forest age, mean annual temperature and annual precipitation.
Importantly, the effect of forest age increased with increasing temperature, but the effect
of precipitation decreased with increasing temperatures. The dataset was biased
towards Northern hemisphere forests in relatively dry, cold climates. The dataset was
also clearly biased towards forests <250 years of age.Our analysis suggests that there
is not a single threshold age for forest maturity. Since climate interacts with forest age to
determine biomass density, a threshold age at which they reach equilibrium can only be
determined locally. We caution against using biomass as the only determinant of forest
maturity since this ignores forest biodiversity which often takes longer to recover. Future
study of the influence of climate on forest biomass should aim to use the data currently

being generated by long-term monitoring networks and satellite based observations.

Introduction
Forests play an important role in the global climate system, covering nearly one-
third of the earth’s terrestrial surface and accounting for over three-quarters of terrestrial

gross primary production (Pan et al., 2013). Forests also provide vital habitats for
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biodiversity and supply a wide-range of ecosystem services upon which humans
depend, such as climate regulation via carbon storage in tree biomass (Foley et al.,
2007). Globally, mature forests appear to be increasing in biomass density, and are
responsible for approximately 29% of all carbon sequestration in forests (Pan et al.,
2011). Mature tropical forests, in particular, have increased in biomass by around 0.5
Mg C ha'' year' (Baker et al., 2004; Lewis et al., 2009), though the rate of increase now
appears to be slowing (Brienen et al., 2015).

Some researchers have hypothesised that increased CO, concentrations in the
atmosphere as a result of human activities have stimulated the growth of trees in
mature forests, resulting in increased biomass (Lewis et al., 2009). However, other
researchers reject these claims, hypothesising that that many mature forests are in fact
undergoing secondary succession following ‘unseen’ disturbances that occurred either
hundreds of years ago (Brncic et al., 2007; Muller-Landau, 2009) or as a result of
extreme weather such as El Nifio events (Wright, 2005). If many supposedly mature
forests are recovering from previous human influence, then this may account for
observed increases in biomass density (Wright, 2005). It is thus unclear whether the
mature forests in studies that showed increases in biomass were actually old enough to
achieve a state of relative equilibrium, which can take decades to centuries. However,
until recently there has been no attempt to determine whether there are methods that
could be applied globally to enable forests recovering from disturbances to be
distinguished from relatively stable mature forests.

Recently Liu et al. (2014) attempted to address this issue by (i) assessing how
climate and forest age affect forest biomass density, and (ii) using this analysis to define
an age threshold for mature forests. The authors concluded that the biomass density of
mature forest stands was highest in areas with a mean annual temperature of c¢. 8-10°C
and mean annual precipitation between 1000 and 2500 mm (Liu et al., 2014). In
addition, the authors further suggested that forest biomass carbon density increased
with stand age, plateauing at approximately 450 years of age (Liu et al., 2014).
However, given that previous work has shown that climate strongly influences both
biomass accumulation (Johnson, Zarin & Johnson, 2000; Anderson et al., 2006;

Anderson-Teixeira et al., 2013) and the maximum biomass attainable by a forest
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90 (Stegen et al., 2011) it seems unlikely that there is a single global age threshold that

91 can be used to define mature forests. Rather if such thresholds are used, they will need
92 to be defined in areas with relatively homogenous climates where accumulation rates

93 and maximum attainable biomass vary relatively little.

94 To address these issues we use the same data as Liu et al. (2014) to revisit the

95 questions:

96 1. How do climate and forest age control the biomass density of global forests?
97 2. Can we use this to set an age threshold for mature forests globally?
98 While the analyses we present here use the same data as Liu et al. (2014), we

99 improve on their analyses by considering interactions between precipitation,

100 temperature and estimated forest age. Our work shows that these interactions improve
101 model fit considerably, as well as indicating that establishment of a single age threshold
102  for mature forests is ecologically unrealistic.

103

104 Methods

105 The data we used for this study were taken from Liu et al. (2014) in which the
106 authors tested global-scale correlations between mature forest carbon stocks (biomass
107 density), stand age and climatic variables using data collected from previous studies.
108 Here we used this data on aboveground biomass (AGB, Mg ha-') along with estimated
109 forest age (years), mean annual precipitation (mm), mean annual temperature (°C) and
110 geographic location (Longitude and Latitude).

111 To examine our first question of how forest biomass is determined by climate and
112 forest age we used linear mixed effect models (LMMs). First, we tested whether

113 accounting for methodological differences between studies and spatial autocorrelation
114 improved model performance compared to null models. To do this we fitted a model
115 with a dummy random effect and compared the corrected Akaike Information Criteria
116  (AlCc) value to our null models, which included study level random effects and a matrix
117 to account for spatial autocorrelation. Using the random effects structure deemed most
118 parsimonious we then tested the effects of temperature, precipitation and forest age on
119 AGB by running all possible LMMs that included two way interactions. Forest age was

120 log transformed as increases in AGB with age tend to be non-linear (Martin, Newton &
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Bullock, 2013). All explanatory variables were standardised following Schielzeth (2010),
by subtracting the mean from each value and dividing by the standard deviation. This
method allows easier interpretation of coefficients and improves model convergence. To
reduce heteroscedasticity in model residuals we log transformed the response variable.

Models were ranked by AICc and model averaging performed using all models
with an AAICc <7 to produce coefficient estimates (Burnham & Anderson, 2002;
Burnham, Anderson & Huyvaert, 2010). These coefficient estimates were subsequently
used to predict AGB in relation to stand age, precipitation and temperature. Based on
our results we then inferred an answer to our second question, relating to thresholds in
forest maturity. If interactions between climate and forest age were considered
important we determined that it was not possible to set a global age threshold by which
to define mature forests without considering their local characteristics.

It is important in analyses that combine data from multiple sources to determine
whether the data being used show signs of bias that might influence a study’s results.
One example of such a bias is if data is not representative of an overall population
which it seeks to represent (Tuck et al., 2014). In the case of our study such bias may
be caused by an over or underrepresentation of particular forest ages, certain climates
and particular geographic regions. To test for this we (i) examined the age distribution of
forests using histograms; (ii) determined the climate space encompassed by the sites
used in this study compared to that occupied by forests globally; (iii) and examined the
geographical distribution of study sites. For the comparison of the forest climate space
we binned the data on precipitation into bins of 200 mm and mean annual temperature
into bins of 1°C. We then used a global grid with a resolution of 0.5 decimal degrees to
identify where forest was present based on the globcover 2009 dataset (Bontemps et
al., 2011). We determined the mean total precipitation and mean annual temperature in
each grid cell where forest was present using WorldClim (Hijmans et al., 2005). We then
compared the percentage of our data contained within each temperature and
precipitation bin with the percentage area of global forests contained in each bin.

All analyses were conducted in R version 3.2.1 (R Development Core Team, 2008) and
with models producing using the nime (Pinheiro et al., 2015) and MuMIn packages
(Barton, 2015).
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153 Results

154 Our model averaged results indicated positive relationships between AGB and
155 the logarithm of forest age (slope=0.24, SE=0.02, P<0.001), mean annual temperature
156  (slope=0.18, SE=0.04, P<0.001) and total annual precipitation (slope=0.32, SE=0.04,
157 P<0.001). Importantly, the slope related to forest age increased with mean annual

158 temperature (interaction term=0.06, SE=0.02 ,P=0.018). In addition, the positive effect
159 of total annual precipitation on AGB was reversed at higher temperatures (interaction
160 term=-0.12, SE=0.02, P<0.001). The interaction term between total precipitation and
161 forest age was not significant (-0.02, SE=0.02, P=0.439). Models included in the model
162 averaging process had reasonable descriptive power with conditional R? values varying
163 from 0.18 to 0.24. Predictions using model averaged coefficients did not show a clear
164 plateauing of AGB at any age (Figure 1), contrary to the findings of Liu et al. (2014).
165 These models also showed much greater descriptive power than those of Liu et al.

166 (2014), as models containing only age, precipitation and temperature were poorly

167 supported (AAICc=112.41, 114.17 and 139.99 respectively).

168 There are clear biases in the dataset we used for this analysis. Tropical and

169 Southern Hemisphere forests are under-represented, relative to the area which they
170 cover (Figure 2a). While the data we used also covered a wide range of climatic

171 conditions there was a bias towards forests found in relatively cold, dry climates and
172 away from warmer, wetter climates (Figure 2b). The dataset we used was also clearly
173 biased towards younger forests, containing relatively few stands > 250 years of age
174  (Figure 2c) (although we note that the ages of many tropical sites appear to be

175 uncritical reference to Luyssaert et al. (2007) , where the ages of the trees in a range of
176 minimally disturbed tropical forests was reported as being between 100-165 years old).
177

178 Discussion

179 Our results indicates that climate and forest age interact to determine

180 aboveground biomass density in global mature forests. This study is, to our knowledge,
181 the first to quantitatively show this interaction. Previous studies have shown that

182 biomass accumulation rate of regrowing forests depend on precipitation and
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temperature (Johnson, Zarin & Johnson, 2000; Anderson et al., 2006; Anderson-
Teixeira et al., 2013) and that climate is an important constraint of biomass in mature
forests (Stegen et al., 2011). Our work builds on these suggesting that biomass of
mature forests depends on their age, as well as the climate they experience. We show
that forests experiencing higher temperatures accumulated biomass more rapidly, in
agreement with previous studies (Anderson-Teixeira et al., 2013). However, our results
also suggested that there is little interaction between forest age and annual
precipitation. Taken together these results support the findings of Anderson et al. (2006)
that, on a global scale, temperature differences drive the majority of differences in rates
of biomass accumulation. However, reality is likely to be more complex than our results
suggest. For example, Stegen et al. (2011) suggested that water deficits resulting from
interactions between precipitation and temperature are a primary limiting factor of the
biomass that can be attained by mature forests.

In contrast to the recent study of Liu et al. (2014) we found that it is not possible
to set a threshold age at which forests can be considered mature. Since our results
indicated that aboveground biomass density was best determined by models that
included interactions between climate and stand age, any threshold age for mature
forests must be determined at a relatively local scale. Accumulation of biomass varies
locally with soil nutrient content and drainage, distance to other forest patches and
previous land-use (Norden et al., 2015). In addition, local effects such as priority effects,
herbivore density, invasive species, pathogen presence and edge effects can all result
in unpredictable successional pathways (Norden et al., 2015). As such, predicting the

age at which forests can be considered mature may be difficult, even at a local scale.

The need for better data

Though our analysis is an improvement on that performed by Liu et al. (2014) we
were limited by the representativeness of the data used. These data comprised few
tropical forest sites, were biased towards relatively cold, dry forests and very few forests
>250 years of age were included in the dataset. The lack of data from tropical forests
limits the generality of this analysis meaning that we have little confidence about

extrapolating our results to the tropics. This is particularly important as tropical forests
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store approximately one third of global terrestrial carbon (Dixon et al., 1994) and appear
to be increasing in biomass (Baker et al., 2004; Lewis et al., 2009). As such, our
analysis and that of Liu et al. (2014) can say nothing about whether the recent
increases in biomass in apparently mature tropical forests may be a result of recovery
from past disturbances as Liu et al. suggested. The relative lack of data for forests >250
years of age in our study limits our conclusions, given that forests are often thought to
take 100-400 years to reach maturity (Guariguata and Ostertag 2001).

Critically, the setting of any threshold requires accurate aging of forests. This is
not a trivial task. In mature forests trees are recruited as other die, creating a complex
patchwork of differently aged trees (Chazdon, 2014). As such, defining the age of a
forest using the oldest tree (as studies that we used data from did) will likely only be
accurate in relatively young forests where tree ages do not differ greatly. However, in
mature forests where all pioneer individuals have been replaced, the age of the oldest
tree no longer provides a useful determinant of forest age. Thus, the precision of our
estimates for younger forest are undoubtedly greater, and more useful, than for older
forests. Furthermore, as most tropical trees lack annual growth rings, 14C dating is the
only feasible way to currently age most tropical trees and this is prohibitively expensive

in many cases.

Problems with defining mature forests

While in the future it may be possible to determine at what age forest biomass
becomes relatively stable, we advise against using this as a definition of forest maturity
for three reasons. Firstly, while carbon storage in the form of biomass is important from
the perspective of alleviating the impacts of climate change, it tends to recover relatively
quickly. In tropical secondary forests, community composition of tree species can take
>150 years to recover, with biomass recovering in approximately 100 years (Martin,
Newton & Bullock, 2013). Thus, while biomass accumulation is important, using it alone
to define forest successional stage may lead to forests being classified as mature, when
they are still undergoing the latter stages of succession.

Secondly, though mature forests can appear to be relatively stable when

observed at a single point in time, they never reach equilibrium. Over decadal time
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245 scales even apparently mature forests rarely show stable biomass (Valencia et al.,

246  2009), and are influenced by changes in climate and changes in local land use. Thirdly,
247 old-growth forests are defined as forests which do not contain any individual trees that
248 colonised immediately following allogenic disturbances (Chazdon, 2014). As such

249 forests that contain remnant cohorts of long-lived pioneer species should be considered
250 as late successional rather than old-growth forests (Chazdon, 2014). Thus, examining
251 changes in biomass is likely to be of little use in separating late successional forests
252 such as these from true old-growth.

253

254  The future of forest biomass assessment

255 The results of this study and the work by Liu et al. (2014) highlight that better,
256 more spatially representative data is needed in order to understand the relationship

257 between forest biomass and climate at a global scale. To improve this knowledge

258 biomass data such as those used in this study, and from long term monitoring plots, are
259 being collected across the globe (Anderson-Teixeira et al., 2015; Brienen et al., 2015).
260 Although ease of data accessibility can vary, much is freely available (e.g.

261 https://www.forestplots.net/) and its use would substantially strengthen the conclusions

262  of studies such as ours.

263 Comprehensive global monitoring of spatial variation in biomass is only possible
264 through the use of remote sensing techniques. Vegetation indices such as the

265 normalized difference vegetation index (NDVI) are now available for over multiple

266 decades and have frequently been used as proxies to calculate biomass (e.g. Dong et
267 al., 2003). Models of aboveground biomass using lidar estimates of forest height and
268 structure are even more accurate than those using optical and spaceborne lidar data.
269 These improved models have recently allowed the production of pan-tropical maps of
270 forest carbon stocks (Saatchi et al., 2011; Baccini et al., 2012), although uncertainty
271 remains in these maps, particularly in areas with little field data (Mitchard et al., 2013).
272 To resolve many of these issues, the European Space Agency will, in around 2020,
273 launch the BIOMASS mission, which is specifically designed to measure aboveground
274 forest biomass and height at a spatial resolution of 200 m (Le Toan et al., 2011). This

275 instrument will provide unprecedented data on the spatial variability of forest biomass
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on a global scale, and combined with ground-based measurements will allow for a much

more precise understanding of the relationship between forest biomass and climate.
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280 Tables

281

282 Table 1 - Characteristics of studies used in this paper

283
Reference Mean annual Mean annual | mean forest

temperature (°C) | precipitation |age (years)
(mm)

(Bondarev, 1997) -13.3 290 190
(Liu et al., 2011) 13.6 1235 87
(Chang et al., 1997) -3.7 347 204
(China’s Forest Editorial |-1.0 470 216
Committee, 1999)
(Feng, Wang & Wu, 9.0 850 350
1999)
(Hudiburg et al., 2009) 7.8 2276 423
(Kajimoto et al., 2006) 9.8 610 158
(Keeton et al., 2010) 7.0 800 217
(Keith, Mackey & 10.7 1593 500
Lindenmayer, 2009)
(Liu et al., 2014) -3.2 596 163
(Luo, 1996) 5.2 889 130
(Luyssaert et al., 2007) 7.3 1204 162
(Ma et al., 2012) -0.1 618 137

Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1474v1 | CC-BY 4.0 Open Access | rec: 3 Nov 2015, publ: 3 Nov 2015



https://paperpile.com/c/k8jMbI/97SN
https://paperpile.com/c/k8jMbI/XYm8
https://paperpile.com/c/k8jMbI/xqng
https://paperpile.com/c/k8jMbI/vRvL
https://paperpile.com/c/k8jMbI/vRvL
https://paperpile.com/c/k8jMbI/x3y8
https://paperpile.com/c/k8jMbI/x3y8
https://paperpile.com/c/k8jMbI/izvn
https://paperpile.com/c/k8jMbI/Wdmj
https://paperpile.com/c/k8jMbI/3hyv
https://paperpile.com/c/k8jMbI/J2nn
https://paperpile.com/c/k8jMbI/J2nn
https://paperpile.com/c/k8jMbI/35yB
https://paperpile.com/c/k8jMbI/uxhF
https://paperpile.com/c/k8jMbI/baOw
https://paperpile.com/c/k8jMbI/8VYU

(Tan et al., 2011) 1.3 1840 300

(Zhou et al., 2002) 4.7 446 149
(Zhu et al., 2005) -2.0 459 84
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289
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Table 2 - Candidate mixed effect models for explaining global forest carbon

density. A=Age, T=Temperature, P=Precipitation

Formula Model | df log likelihood | AlCc AAICc weight
rank
A+T+P+A*T+T*P 1 10 -305.02 630.44 |0 0.56
A+T+P+A*T+T*P+ |2 11 -304.61 631.7 |[1.26 0.3
A*P
A+T+P+T*P 3 9 -307.74 633.81 | 3.37 0.1
A+T+P+T*P 4 10 -307.74 635.88 |5.44 0.04
A+T+P+A*T 5 9 -318.73 655.79 | 25.35 <0.01
A+T+P+A*T+A*P 6 10 -318.43 657.25 | 26.82 <0.01
A+T+P+A*P 7 9 -319.98 658.28 |27.85 <0.01
A+T+P+A 8 8 -321.03 658.32 | 27.88 <0.01
A+P 9 7 -329.94 674.08 | 43.64 <0.01
A+P+A*P 10 8 -329.74 675.73 | 45.3 <0.01
A+T+A*T 11 8 -333.58 683.42 | 52.98 <0.01
A+T 12 7 -335.71 685.63 | 55.19 <0.01
T+P+T*P 13 8 -350.23 716.72 [ 86.28 <0.01
T+P 14 7 -363.42 741.04 [110.6 <0.01
A 15 6 -365.35 742.84 [112.41 <0.01
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298
299
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301
302
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310
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312
313
314
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16 6 -366.23 74461 | 114.17 <0.01

17 6 -379.14 770.43 | 139.99 <0.01

Null model 18 5 -395.95 802.01 | 171.57 <0.01

Link to R-scripts used for analysis:

https://github.com/PhilAMartin/Liu_reanalysis
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Figure 1(on next page)

Image of influence of age and climate on forest aboveground biomass

Relationship between forest age and aboveground biomass for differing climate spaces.
Panels represent binned mean annual temperature (rows) and total annual precipitation
(columns). Bins represent quartiles so that each bin contains a similar number of data points.
Points represent individual sites and solid lines predictions from model-averaged coefficients

of models with a AAICc < 7.
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2

Image showing potential biases in the dataset we used

Potential biases associated with the dataset we used for this study (a) - Spatial distribution of
sites used in this study, showing lack of tropical sites. Green areas represent forest, dots
sites used in this study. Dots are partially transparent to give an impression of site density.
(b) - Climate space represented by data used in this study and forests globally (climate data
from (Hijmans et al., 2005), forest cover data from (Bontemps et al., 2011) . Darker pixel
colour indicates greater density of data, indicating a bias towards forests with low
precipitation and low mean annual temperature. (c) - Distribution of sites used in this study

by site age, showing a bias towards forests <250 years old.
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