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Can we set a global threshold age to define mature forests

Philip Martin, Martin Jung, Francis Brearley, Relena Ribbons, Emily Lines, Aerin Jacobs

Globally mature forests appear to be increasing in biomass density. There is disagreement

whether these increases are the result of increases in CO2 concentrations or a legacy

effect of previous land-use. Recently, it was suggested that a threshold of 450 years

should be used to define mature forests and that many forests increasing in biomass may

be younger than this. However, the study making these suggestions failed to account for

interactions between forest age and climate. Here we revisit the issue to identify: (1) how

climate and forest age control global forest biomass density and (2) whether we can set a

threshold age for mature forests. Using data from previously published studies we

modelled the impacts of forest age and climate on biomass density using linear mixed

effects models. We examined the potential biases in the dataset by comparing how

representative it was of global mature forests in terms of its distribution, the climate space

it occupied and the ages of the forests used. Biomass density increased with forest age,

mean annual temperature and annual precipitation. Importantly the effect of forest age

increased with increasing temperature, but the effect of precipitation decreased with

increasing temperatures. The dataset was biased towards Northern hemisphere forests in

relatively dry, cold climates. The dataset was also clearly biased towards forests <250

years of age. Our analysis suggests that there is not a single threshold age for forest

maturity. Since climate interacts with forest age to determine biomass density a threshold

age at which they reach equilibrium can only be determined locally. We caution against

using biomass as the only determinant of forest maturity since this ignores forest

biodiversity which often takes longer to recover. Future study of the influence of climate

on forest biomass should aim to use the data currently being generated by long-term

monitoring networks and satellite based observations.
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28

29 Abstract

30 Globally, mature forests appear to be increasing in biomass density. There is 

31 disagreement whether these increases are the result of increases in CO2 concentrations 

32 or a legacy effect of previous land-use. Recently, it was suggested that a threshold of 

33 450 years should be used to define mature forests and that many forests increasing in 

34 biomass may be younger than this. However, the study making these suggestions failed 

35 to account for the interactions between forest age and climate. Here we revisit the issue 

36 to identify: (1) how climate and forest age control global forest biomass density and (2) 

37 whether we can set a threshold age for mature forests. Using data from previously 

38 published studies we modelled the impacts of forest age and climate on biomass 

39 density using linear mixed effects models. We examined the potential biases in the 

40 dataset by comparing how representative it was of global mature forests in terms of its 

41 distribution, the climate space it occupied, and the ages of the forests used. Biomass 

42 density increased with forest age, mean annual temperature and annual precipitation. 

43 Importantly, the effect of forest age increased with increasing temperature, but the effect 

44 of precipitation decreased with increasing temperatures. The dataset was biased 

45 towards Northern hemisphere forests in relatively dry, cold climates. The dataset was 

46 also clearly biased towards forests <250 years of age.Our analysis suggests that there 

47 is not a single threshold age for forest maturity. Since climate interacts with forest age to 

48 determine biomass density, a threshold age at which they reach equilibrium can only be 

49 determined locally. We caution against using biomass as the only determinant of forest 

50 maturity since this ignores forest biodiversity which often takes longer to recover. Future 

51 study of the influence of climate on forest biomass should aim to use the data currently 

52 being generated by long-term monitoring networks and satellite based observations.

53

54

55 Introduction

56 Forests play an important role in the global climate system, covering nearly one-

57 third of the earth�s terrestrial surface and accounting for over three-quarters of terrestrial 

58 gross primary production (Pan et al., 2013). Forests also provide vital habitats for 
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59 biodiversity and supply a wide-range of ecosystem services upon which humans 

60 depend, such as climate regulation via carbon storage in tree biomass (Foley et al., 

61 2007). Globally, mature forests appear to be increasing in biomass density, and are 

62 responsible for approximately 29% of all carbon sequestration in forests (Pan et al., 

63 2011). Mature tropical forests, in particular, have increased in biomass by around 0.5 

64 Mg C ha-1 year-1 (Baker et al., 2004; Lewis et al., 2009), though the rate of increase now 

65 appears to be slowing (Brienen et al., 2015).

66 Some researchers have hypothesised that increased CO2 concentrations in the 

67 atmosphere as a result of human activities have stimulated the growth of trees in 

68 mature forests, resulting in increased biomass (Lewis et al., 2009). However, other 

69 researchers reject these claims, hypothesising that that many mature forests are in fact 

70 undergoing secondary succession following �unseen� disturbances that occurred either 

71 hundreds of years ago (Brncic et al., 2007; Muller-Landau, 2009) or as a result of 

72 extreme weather such as El Niño events (Wright, 2005). If many supposedly mature 

73 forests are recovering from previous human influence, then this may account for 

74 observed increases in biomass density (Wright, 2005). It is thus unclear whether the 

75 mature forests in studies that showed increases in biomass were actually old enough to 

76 achieve a state of relative equilibrium, which can take decades to centuries. However, 

77 until recently there has been no attempt to determine whether there are methods that 

78 could be applied globally to enable forests recovering from disturbances to be 

79 distinguished from relatively stable mature forests.

80 Recently Liu et al. (2014) attempted to address this issue by (i) assessing how 

81 climate and forest age affect forest biomass density, and (ii) using this analysis to define 

82 an age threshold for mature forests. The authors concluded that the biomass density of 

83 mature forest stands was highest in areas with a mean annual temperature of c. 8-10°C 

84 and mean annual precipitation between 1000 and 2500 mm (Liu et al., 2014). In 

85 addition, the authors further suggested that forest biomass carbon density increased 

86 with stand age, plateauing at approximately 450 years of age (Liu et al., 2014). 

87 However, given that previous work has shown that climate strongly influences both 

88 biomass accumulation (Johnson, Zarin & Johnson, 2000; Anderson et al., 2006; 

89 Anderson-Teixeira et al., 2013) and the maximum biomass attainable by a forest 
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90 (Stegen et al., 2011) it seems unlikely that there is a single global age threshold that 

91 can be used to define mature forests.  Rather if such thresholds are used, they will need 

92 to be defined in areas with relatively homogenous climates where accumulation rates 

93 and maximum attainable biomass vary relatively little.

94 To address these issues we use the same data as Liu et al. (2014) to revisit the 

95 questions:

96 1. How do climate and forest age control the biomass density of global forests?

97 2. Can we use this to set an age threshold for mature forests globally?

98 While the analyses we present here use the same data as Liu et al. (2014), we 

99 improve on their analyses by considering interactions between precipitation, 

100 temperature and estimated forest age. Our work shows that these interactions improve 

101 model fit considerably, as well as indicating that establishment of a single age threshold 

102 for mature forests is ecologically unrealistic.

103

104 Methods

105 The data we used for this study were taken from Liu et al. (2014) in which the 

106 authors tested global-scale correlations between mature forest carbon stocks (biomass 

107 density), stand age and climatic variables using data collected from previous studies. 

108 Here we used this data on aboveground biomass (AGB, Mg ha-1) along with estimated 

109 forest age (years), mean annual precipitation (mm), mean annual temperature (℃) and 

110 geographic location (Longitude and Latitude). 

111 To examine our first question of how forest biomass is determined by climate and 

112 forest age we used linear mixed effect models (LMMs). First, we tested whether 

113 accounting for methodological differences between studies and spatial autocorrelation 

114 improved model performance compared to null models. To do this we fitted a model 

115 with a dummy random effect and compared the corrected Akaike Information Criteria 

116 (AICc) value to our null models, which included study level random effects and a matrix 

117 to account for spatial autocorrelation. Using the random effects structure deemed most 

118 parsimonious we then tested the effects of temperature, precipitation and forest age on 

119 AGB by running all possible LMMs that included two way interactions. Forest age was 

120 log transformed as increases in AGB with age tend to be non-linear (Martin, Newton & 
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121 Bullock, 2013).  All explanatory variables were standardised following Schielzeth (2010), 

122 by subtracting the mean from each value and dividing by the standard deviation. This 

123 method allows easier interpretation of coefficients and improves model convergence. To 

124 reduce heteroscedasticity in model residuals we log transformed the response variable.

125 Models were ranked by AICc and model averaging performed using all models 

126 with an   to produce coefficient estimates (Burnham & Anderson, 2002; 

127 Burnham, Anderson & Huyvaert, 2010). These coefficient estimates were subsequently 

128 used to predict AGB in relation to stand age, precipitation and temperature. Based on 

129 our results we then inferred an answer to our second question, relating to thresholds in 

130 forest maturity. If interactions between climate and forest age were considered 

131 important we determined that it was not possible to set a global age threshold by which 

132 to define mature forests without considering their local characteristics.

133 It is important in analyses that combine data from multiple sources to determine 

134 whether the data being used show signs of bias that might influence a study�s results. 

135 One example of such a bias is if data is not representative of an overall population 

136 which it seeks to represent (Tuck et al., 2014). In the case of our study such bias may 

137 be caused by an over or underrepresentation of particular forest ages, certain climates 

138 and particular geographic regions. To test for this we (i) examined the age distribution of 

139 forests using histograms; (ii) determined the climate space encompassed by the sites 

140 used in this study compared to that occupied by forests globally; (iii) and examined the 

141 geographical distribution of study sites. For the comparison of the forest climate space 

142 we binned the data on precipitation into bins of 200 mm and mean annual temperature 

143 into bins of 1°C. We then used a global grid with a resolution of 0.5 decimal degrees to 

144 identify where forest was present based on the globcover 2009 dataset (Bontemps et 

145 al., 2011). We determined the mean total precipitation and mean annual temperature in 

146 each grid cell where forest was present using WorldClim (Hijmans et al., 2005). We then 

147 compared the percentage of our data contained within each temperature and 

148 precipitation bin with the percentage area of global forests contained in each bin.

149 All analyses were conducted in R version 3.2.1 (R Development Core Team, 2008) and 

150 with models producing using the nlme (Pinheiro et al., 2015) and MuMIn packages 

151 (Barton, 2015).
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152

153 Results

154 Our model averaged results indicated positive relationships between AGB and 

155 the logarithm of forest age (slope=0.24, SE=0.02, P<0.001), mean annual temperature 

156 (slope=0.18, SE=0.04, P<0.001) and total annual precipitation (slope=0.32, SE=0.04, 

157 P<0.001).  Importantly, the slope related to forest age increased with mean annual 

158 temperature (interaction term=0.06, SE=0.02 ,P=0.018). In addition, the positive effect 

159 of total annual precipitation on AGB was reversed at higher temperatures (interaction 

160 term=-0.12, SE=0.02, P<0.001). The interaction term between total precipitation and 

161 forest age was not significant (-0.02, SE=0.02, P=0.439). Models included in the model 

162 averaging process had reasonable descriptive power with conditional R2 values varying 

163 from 0.18 to 0.24. Predictions using model averaged coefficients did not show a clear 

164 plateauing of AGB at any age (Figure 1), contrary to the findings of Liu et al. (2014). 

165 These models also showed much greater descriptive power than those of Liu et al. 

166 (2014), as models containing only age, precipitation and temperature were poorly 

167 supported  114.17 and 139.99 respectively).

168 There are clear biases in the dataset we used for this analysis. Tropical and 

169 Southern Hemisphere forests are under-represented, relative to the area which they 

170 cover (Figure 2a). While the data we used also covered a wide range of climatic 

171 conditions there was a bias towards forests found in relatively cold, dry climates and 

172 away from warmer, wetter climates (Figure 2b). The dataset we used was also clearly 

173 biased towards younger forests, containing relatively few stands > 250 years of age 

174 (Figure 2c)  (although we note that the ages of many tropical sites appear to be 

175 uncritical reference to Luyssaert et al. (2007) , where the ages of the trees in a range of 

176 minimally disturbed tropical forests was reported as being between 100-165 years old).

177

178 Discussion

179 Our results indicates that climate and forest age interact to determine 

180 aboveground biomass density in global mature forests. This study is, to our knowledge, 

181 the first to quantitatively show this interaction. Previous studies have shown that 

182 biomass accumulation rate of regrowing forests depend on precipitation and 
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183 temperature (Johnson, Zarin & Johnson, 2000; Anderson et al., 2006; Anderson-

184 Teixeira et al., 2013) and that climate is an important constraint of biomass in mature 

185 forests (Stegen et al., 2011). Our work builds on these suggesting that biomass of 

186 mature forests depends on their age, as well as the climate they experience. We show 

187 that forests experiencing higher temperatures accumulated biomass more rapidly, in 

188 agreement with previous studies (Anderson-Teixeira et al., 2013). However, our results 

189 also suggested that there is little interaction between forest age and annual 

190 precipitation. Taken together these results support the findings of Anderson et al. (2006) 

191 that, on a global scale, temperature differences drive the majority of differences in rates 

192 of biomass accumulation. However, reality is likely to be more complex than our results 

193 suggest. For example, Stegen et al. (2011) suggested that water deficits resulting from 

194 interactions between precipitation and temperature are a primary limiting factor of the 

195 biomass that can be attained by mature forests.

196 In contrast to the recent study of Liu et al. (2014) we found that it is not possible 

197 to set a threshold age at which forests can be considered mature. Since our results 

198 indicated that aboveground biomass density was best determined by models that 

199 included interactions between climate and stand age, any threshold age for mature 

200 forests must be determined at a relatively local scale. Accumulation of biomass varies 

201 locally with soil nutrient content and drainage, distance to other forest patches and 

202 previous land-use (Norden et al., 2015). In addition, local effects such as priority effects, 

203 herbivore density, invasive species, pathogen presence and edge effects can all result 

204 in unpredictable successional pathways (Norden et al., 2015). As such, predicting the 

205 age at which forests can be considered mature may be difficult, even at a local scale. 

206

207 The need for better data

208 Though our analysis is an improvement on that performed by Liu et al. (2014) we 

209 were limited by the representativeness of the data used. These data comprised few 

210 tropical forest sites, were biased towards relatively cold, dry forests and very few forests 

211 >250 years of age were included in the dataset. The lack of data from tropical forests 

212 limits the generality of this analysis meaning that we have little confidence about 

213 extrapolating our results to the tropics. This is particularly important as tropical forests 
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214 store approximately one third of global terrestrial carbon (Dixon et al., 1994) and appear 

215 to be increasing in biomass (Baker et al., 2004; Lewis et al., 2009). As such, our 

216 analysis and that of Liu et al. (2014) can say nothing about whether the recent 

217 increases in biomass in apparently mature tropical forests may be a result of recovery 

218 from past disturbances as Liu et al. suggested. The relative lack of data for forests >250 

219 years of age in our study limits our conclusions, given that forests are often thought to 

220 take 100-400 years to reach maturity  (Guariguata and Ostertag 2001).

221 Critically, the setting of any threshold requires accurate aging of forests. This is 

222 not a trivial task. In mature forests trees are recruited as other die, creating a complex 

223 patchwork of differently aged trees (Chazdon, 2014). As such, defining the age of a 

224 forest using the oldest tree (as studies that we used data from did) will likely only be 

225 accurate in relatively young forests where tree ages do not differ greatly. However, in 

226 mature forests where all pioneer individuals have been replaced, the age of the oldest 

227 tree no longer provides a useful determinant of forest age. Thus, the precision of our 

228 estimates for younger forest are undoubtedly greater, and more useful, than for older 

229 forests.  Furthermore, as most tropical trees lack annual growth rings, 14C dating is the 

230 only feasible way to currently age most tropical trees and this is prohibitively expensive 

231 in many cases.

232

233 Problems with defining mature forests

234 While in the future it may be possible to determine at what age forest biomass 

235 becomes relatively stable, we advise against using this as a definition of forest maturity 

236 for three reasons. Firstly, while carbon storage in the form of biomass is important from 

237 the perspective of alleviating the impacts of climate change, it tends to recover relatively 

238 quickly. In tropical secondary forests, community composition of tree species can take 

239 >150 years to recover, with biomass recovering in approximately 100 years (Martin, 

240 Newton & Bullock, 2013). Thus, while biomass accumulation is important, using it alone 

241 to define forest successional stage may lead to forests being classified as mature, when 

242 they are still undergoing the latter stages of succession. 

243 Secondly, though mature forests can appear to be relatively stable when 

244 observed at a single point in time, they never reach equilibrium. Over decadal time 
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245 scales even apparently mature forests rarely show stable biomass (Valencia et al., 

246 2009), and are influenced by changes in climate and changes in local land use. Thirdly, 

247 old-growth forests are defined as forests which do not contain any individual trees that 

248 colonised immediately following allogenic disturbances (Chazdon, 2014). As such 

249 forests that contain remnant cohorts of long-lived pioneer species should be considered 

250 as late successional rather than old-growth forests (Chazdon, 2014). Thus, examining 

251 changes in biomass is likely to be of little use in separating late successional forests 

252 such as these from true old-growth.

253

254 The future of forest biomass assessment

255 The results of this study and the work by Liu et al. (2014) highlight that better, 

256 more spatially representative data is needed in order to understand the relationship 

257 between forest biomass and climate at a global scale. To improve this knowledge 

258 biomass data such as those used in this study, and from long term monitoring plots, are 

259 being collected across the globe (Anderson-Teixeira et al., 2015; Brienen et al., 2015). 

260 Although ease of data accessibility can vary, much is freely available (e.g. 

261 https://www.forestplots.net/) and its use would substantially strengthen the conclusions 

262 of studies such as ours.

263 Comprehensive global monitoring of spatial variation in biomass is only possible 

264 through the use of remote sensing techniques. Vegetation indices such as the 

265 normalized difference vegetation index (NDVI) are now available for over multiple 

266 decades and have frequently been used as proxies to calculate biomass (e.g. Dong et 

267 al., 2003). Models of aboveground biomass using lidar estimates of forest height and 

268 structure are even more accurate than those using optical and spaceborne lidar data. 

269 These improved models have recently allowed the production of pan-tropical maps of 

270 forest carbon stocks (Saatchi et al., 2011; Baccini et al., 2012), although uncertainty 

271 remains in these maps, particularly in areas with little field data (Mitchard et al., 2013). 

272 To resolve many of these issues, the European Space Agency will, in around 2020, 

273 launch the BIOMASS mission, which is specifically designed to measure aboveground 

274 forest biomass and height at a spatial resolution of 200 m (Le Toan et al., 2011). This 

275 instrument will provide unprecedented data on the spatial variability of forest biomass 
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276 on a global scale, and combined with ground-based measurements will allow for a much 

277 more precise understanding of the relationship between forest biomass and climate.

278

279
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280 Tables

281

282 Table 1 - Characteristics of studies used in this paper

283

Reference Mean annual 

temperature (°C)

Mean annual 

precipitation 

(mm)

mean forest 

age (years)

(Bondarev, 1997) -13.3 290 190

(Liu et al., 2011) 13.6 1235 87

(Chang et al., 1997) -3.7 347 204

(China�s Forest Editorial 

Committee, 1999)

-1.0 470 216

(Feng, Wang & Wu, 

1999)

9.0 850 350

(Hudiburg et al., 2009) 7.8 2276 423

(Kajimoto et al., 2006) -9.8 610 158

(Keeton et al., 2010) 7.0 800 217

(Keith, Mackey & 

Lindenmayer, 2009)

10.7 1593 500

(Liu et al., 2014) -3.2 596 163

(Luo, 1996) 5.2 889 130

(Luyssaert et al., 2007) 7.3 1204 162

(Ma et al., 2012) -0.1 618 137
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(Tan et al., 2011) 11.3 1840 300

(Zhou et al., 2002) -4.7 446 149

(Zhu et al., 2005) -2.0 459 84
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287

288 Table 2 - Candidate mixed effect models for explaining global forest carbon 

289 density. A=Age, T=Temperature, P=Precipitation

290

Formula Model 

rank

df log likelihood AICc ∆AICc weight

A+T+P+A*T+T*P 1 10 -305.02 630.44 0 0.56

A+T+P+A*T+T*P+

A*P

2 11 -304.61 631.7 1.26 0.3

A+T+P+T*P 3 9 -307.74 633.81 3.37 0.1

A+T+P+T*P 4 10 -307.74 635.88 5.44 0.04

A+T+P+A*T 5 9 -318.73 655.79 25.35 <0.01

A+T+P+A*T+A*P 6 10 -318.43 657.25 26.82 <0.01

A+T+P+A*P 7 9 -319.98 658.28 27.85 <0.01

A+T+P+A 8 8 -321.03 658.32 27.88 <0.01

A+P 9 7 -329.94 674.08 43.64 <0.01

A+P+A*P 10 8 -329.74 675.73 45.3 <0.01

A+T+A*T 11 8 -333.58 683.42 52.98 <0.01

A+T 12 7 -335.71 685.63 55.19 <0.01

T+P+T*P 13 8 -350.23 716.72 86.28 <0.01

T+P 14 7 -363.42 741.04 110.6 <0.01

A 15 6 -365.35 742.84 112.41 <0.01
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P 16 6 -366.23 744.61 114.17 <0.01

T 17 6 -379.14 770.43 139.99 <0.01

Null model 18 5 -395.95 802.01 171.57 <0.01

291

292 Link to R-scripts used for analysis:

293 https://github.com/PhilAMartin/Liu_reanalysis

294
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Figure 1(on next page)

Image of influence of age and climate on forest aboveground biomass

Relationship between forest age and aboveground biomass for differing climate spaces.

Panels represent binned mean annual temperature (rows) and total annual precipitation

(columns). Bins represent quartiles so that each bin contains a similar number of data points.

Points represent individual sites and solid lines predictions from model-averaged coefficients

of models with a o���� � ��

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1474v1 | CC-BY 4.0 Open Access | rec: 3 Nov 2015, publ: 3 Nov 2015



250−583mm 583−796mm 796−1079mm 1079−5800mm

0

250

500

750

1000

0

250

500

750

1000

0

250

500

750

1000

0

250

500

750

1000

−
1
6
.8

 ~
*C

 −
 0

.2
 ~

*C
0
.2

 ~
*C

 −
 3

.8
 ~

*C
3
.8

 ~
*C

 −
 8

.0
 ~

*C
8
.0

 ~
*C

 −
 2

6
.2

 ~
*C

250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250

Age (years)

A
b
o
ve

g
ro

u
n
d
 b

io
m

a
s
s
 (

M
g
 h

a
−
1
)

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1474v1 | CC-BY 4.0 Open Access | rec: 3 Nov 2015, publ: 3 Nov 2015



2

Image showing potential biases in the dataset we used

Potential biases associated with the dataset we used for this study (a) - Spatial distribution of

sites used in this study, showing lack of tropical sites. Green areas represent forest, dots

sites used in this study. Dots are partially transparent to give an impression of site density.

(b) - Climate space represented by data used in this study and forests globally (climate data

from (Hijmans et al., 2005), forest cover data from (Bontemps et al., 2011) . Darker pixel

colour indicates greater density of data, indicating a bias towards forests with low

precipitation and low mean annual temperature. (c) - Distribution of sites used in this study

by site age, showing a bias towards forests <250 years old.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1474v1 | CC-BY 4.0 Open Access | rec: 3 Nov 2015, publ: 3 Nov 2015



PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1474v1 | CC-BY 4.0 Open Access | rec: 3 Nov 2015, publ: 3 Nov 2015


