
Green software engineering: the curse of methodology

Computer Science often seems distant from its natural science cousins, especially software

engineering which feels closer to sociology and psychology than to physics. Physical

measurements are often rare in software engineering, except in a few niches. One such

important niche is that of software energy consumption, green mining, green IT, and

sustainable computing, which all fall under the umbrella of green software engineering.

With the physical measurement of energy consumption comes all of the limitations of

measurement and experimentation that exist in the natural sciences and engineering.

Issues abound, from attribution of energy use, isolation of components, to replicable

experiments. These get further complicated by cloud computing whereby systems are

virtualized and attribution of resource usage is a serious issue. Thus in this work we

discuss the current state of software energy consumption, and where will it go.
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Abstract—Computer Science often seems distant from its
natural science cousins, especially software engineering which
feels closer to sociology and psychology than to physics. Physical
measurements are often rare in software engineering, except in a
few niches. One such important niche is that of software energy
consumption, green mining, green IT, and sustainable computing,
which all fall under the umbrella of green software engineering.

With the physical measurement of energy consumption comes
all of the limitations of measurement and experimentation that
exist in the natural sciences and engineering. Issues abound, from
attribution of energy use, isolation of components, to replicable
experiments. These get further complicated by cloud computing
whereby systems are virtualized and attribution of resource usage
is a serious issue.

Thus in this work we discuss the current state of software
energy consumption, and where will it go.

I. INTRODUCTION

Fundamentally all computation comes at a cost. It is of no
surprise that electrical measurements of work correspond to
computation as well. With the availability of smart phones,
heavily parallelizable clusters, cloud-mad data centers, soft-
ware and energy interact more readily than ever before. Energy
comes at a cost to generate, to deliver, and to store. Delivery
requires infrastructure, storage requires materials for batteries,
and the by-product of energy consumption, heat, requires
cooling. While hardware primarily consumes energy, it can
only be as efficient as the software that commands it.

Software’s interaction with energy is split among many
contexts. Two important contexts are mobile applications and
software services hosted within data centers. Other contexts
include embedded sensors, the desktop, etc.

a) Data Centers: are limited by energy in terms of power
limits of rack power systems as well as cooling. Typically
energy accounts for 50% to 100% of the cost of purchased
equipment over the equipment’s lifetime [1]. Racks have
limited energy hookups. Only so many power heavy units may
be powered. Furthermore for every unit put in, the wasted
heat must be addressed. A data center with poor cooling will
pay even more in energy consumption due to the excessive
use of the cooling system of each hosted server. Typically
services offered by a data-center are software services and in
many cases the services are dynamically provisioned on virtual
machines or containers.

b) Mobile: applications are slightly different, their avail-
ability is affected by the availability of energy. Without battery
energy left, no application could survive. The energy used
by mobile devices is negligible, usually less than CFL light
bulb while charging – yet the batteries are composed of
potentially toxic and costly materials. Reducing mobile energy
use leads to longer battery lives, combined with reduced
battery replacement, and more availability for the end-user.

c) Embedded/Wireless Sensors: typically run on very low
power computers and sensors that communicate information
infrequently. The availability and reliability of these systems
are directly affected by both hardware and software design.
Just these contexts alone motivate the importance of energy

efficiency and the study of software energy consumption.
Software consumption is inherently multidisciplinary as dif-
ferent engineers serve, rely on, and cater to other engineers.
Hardware creators can only do so much until it becomes the
responsibility of the software developer to develop software
in an energy efficient and sustainable manner. Software engi-
neering researchers have noticed this problem and have taken
up the torch, thus accepting their responsibility for some of
the energy consumption costs of applications.
Thus the audience of this paper is primarily software

engineering researchers and developers, but the impact of this
field is far more broad. End-users are affected by software
energy consumption by the effect of desktop and laptop
energy usage on their energy bills. The availability of end-
user mobile devices is greatly affected by software energy
consumption, whereby an inefficient program can practically
leave some users stranded without the ability to communicate.
Electrical engineers and computer engineers are affected by
software energy consumption as they have to work hand
in hand with software engineers to produce hardware that
enables general purpose computation and yet still provides
methods of achieving energy efficiency. If hardware designers
are aware of the constraints of software developers they can
address the needs of software developers and end-users as
well. Managers and other stakeholders are affected by software
energy consumption because they have to budget for data-
center costs, and poor energy consumption will affect software
sales. Furthermore as carbon taxes are being levied, energy
consumption becomes an important budget item.
In this paper I introduce software energy consumption,
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discuss past and present challenges, works, and issues relevant
to software engineering communities. Then I discuss my
predictions for the future of software energy consumption, and
where such research will go in the next decade.

II. BACKGROUND

Energy is the effort expended to complete a task. For
electricity we typically use joules (J), the energy unit of the
International System (SI), to indicate the energy that a task
takes. Power is the instantaneous rate of energy consumption
or the work that is being done. Typically power is measured
in Watts, which is the instantaneous amount of work done.
The multiplication of power by time is energy, or energy
is the integration of power over time. Sometimes energy is
measured as watt-hours (e.g., 1Wh) by electricity providers
where 1kWh = 3600J . For long running services power is a
common measure (average energy use per second), where as
for tasks with a clear beginnings and ends energy is a common
measure – the cost of a task.

Software energy consumption is a kind of performance
and thus part of the non-functional requirement (NFR) of
efficiency. Generally we want software to consume the least
amount of energy and have low power use. Software energy
consumption testing is typically considered a kind of per-
formance regression testing. This kind of testing typically is
evolutionary [2] and seeks to compare performance between
versions on the tasks of the product.

Benchmarking is another kind of regression testing that the
allows comparison between products. Benchmarking is less
about comparing versions, than it is about comparing different
implementations of the same task. Some energy research seeks
to benchmark applications for energy efficiency [3], [4].

III. THE PAST AND PRESENT

There are many issues in energy-aware software engineer-
ing, green software engineering, and green-mining [2] ranging
from the complexity of testing, dependency on hardware,
dependency on the environment, or dependency on software.
The generalizability of this research is hampered by the
complexity, and the lack of availability of tools. All of these
issues compound the difficulty of applying static or dynamic
analysis to software energy traces.

A. Ranking Applications by Energy Efficiency

Consumers tend to lack information about software. When
a consumer buys an oven, the oven is ranked by its energy
efficiency. What if the same ranking existed for software?
Research exists that seeks to rank software in terms of energy
efficiency much in the way that energy stars [5] rates and ranks
consumer products [3].

Three main challenges that face ranking software by energy
efficiency include:

• Software executes more than one task
• Fair benchmarks for multiple products
• Efficiency per platform (Software/Hardware)

The challenges that software faces versus ovens is that
software does multiple tasks and some of these tasks are
quite distinct, for instance email clients retrieve emails, search
emails, and viewing emails. Thus without agreement about
the shared tasks, not every feature or task can be compared
between products. This is complicated by the lack of standard-
ization. Figure 1 demonstrates an example of how application
energy rankings could be integrated into an App store: dif-
ferent apps that fulfill the same tasks could be measured on
a per task basis, as to allow consumers to see the different
efficiencies each app has to offer. Figure 1 shows 2 different
email applications that have been measured for task based
energy consumption. The first app is intended to be a feature
sparse, simple email client that due its apparent simplicity is
quite energy efficient. The second app on the right is meant
to be a full featured, easy to use, graphically brilliant email
application that is less energy efficient for reading emails than
the plain and simple email app. The app-store depicts both
apps names, icons, and user ratings, followed by the version
number of the apps. Underneath is a general energy rating
aggregated of the per-task ratings. The per task ratings are
measured and compared with other apps. The ranking must
be on a per-task basis rather than a holistic basis, as certain
apps will focus on specific behaviours and tune themselves
for it. This kind of ranking should also be done on other
dimensions of performance so that users can compare apps to
each other comprehensively and across multiple dimensions.
This kind of comparison would allow users to determine the
right app for the right occasion – power efficient apps for
energy-constrained travel, and power hungry but slick apps
for home and work. An open question related to this Figure 1
is, “how do we summarize energy consumption when different
tasks occur at different frequencies?”
Not all hardware is created equal and not all software works

the same on all hardware. Thus if software executes differently
on different hardware it must be measured, simulated, or
estimated on that hardware. Thus when one ranks software,
should it be invariant of the hardware? If so how should one
normalize it [3], [6]? Zhang [3] poses a method of normalizing
across platform with linear scaling – this technique is used
by the Green-Miner [6] to normalize measurements from
different smart-phones under test. Our models should address
the hardware dependent performance versus the hardware
invariant performance.
Furthermore software energy consumption is not stable

across versions [2], [7], [8], [9]. Testing a single build of
the software might not be enough, a partial or entire energy
consumption profile should probably be built. Users of an app
will probably care if there is change in energy efficiency [10].
There are three main works which attempt to benchmark

or pose the software energy problem in a similar way to
Energy Star rankings [5]. Amsel et al. [11] discussed green
tracker and compared web browsers for energy consumption
performance. Zhang et al. [3], [12] describe the differences
between applications that do the same tasks yet perform
differently in terms of energy use. They propose software
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Fig. 1. Storyboard mock-up of future App ratings in the App Store

application energy consumption ratings (SAECR)/Green Star,
a method to measure and compare and rank applications
much like Energy Star [5]. Ecodroid [4] employed static and
dynamic analysis to automatically rank applications – they did
not use task based measurement.”

Task based measurement is difficult because a task must
be common across multiple software applications as to be
important enough to be measured. Furthermore there is a
granularity issue, at what level do we measure the task: per
entity, per kilobyte, per task, per feature? When a new kind
of application appears do we compare it to other applications
based on shared features or shared tasks even though the intent
of an application is the same? Task based measurement is a
hard problem with many possible solutions. Sometimes one
just needs to look at the intent, for instance imagine a new
kind of video game, perhaps all that matters is not how the
game operates, but that it provides entertainment – thus we
would probably measure its energy performance for the task
of entertaining.

Other stakeholders, such as manager, product owners, and
developers might be concerned about other kinds of energy
consumption – that of their virtual machines and services in
the cloud and costs of such hosting. Thus not just mobile-apps
should be ranked, but infrastructure software, middle-ware,
operating systems, file-systems, and all of the components
of cloud software distributions ought to be measured. This
information might be less about sales and more about opti-
mization and improved resource utilization. Tasks of service

oriented software would be servicing an end-users session.
Tasks of a middle-ware stack could be publication, delivery,
and notification of workers.

Thus consumers need access to energy performance in-
formation and the app-store might be the perfect place to
display such details, as shown in Figure 1. Whereas managers,
software engineers, and system administrators might need
this information from their OS providers and the software
distributors, such as apt for Debian and Ubuntu.

B. Generalizable Models

One overarching goal of much of the energy consumption
research is to produce a model that generalizes across many
applications. The use-case of such a model is that developers
do not have access to expensive hardware and cannot accu-
rately measure the energy consumption of their applications –
thus they must rely upon estimations based on different kinds
of analyses and models. But these generalizable models suffer
from the range of hardware, operating systems, environment,
software domains, and versions of software.

In the mobile arena the wide-range of screen-sizes, memory
sizes, and kinds of processors tends to hamper generalizable
models. Furthermore the Android ecosystem is considered
fragmented in terms of hardware and software [13]. Server-
side, the difference between different x86 manufacturers chips
can be significant. Thus there is much hardware variation
in terms of primary components. This ignores the range
of peripherals and I/O devices that be prevalent on mobile
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devices: GPS, motion sensor, touch sensors, light sensor,
accelerometers, cameras, bluetooth, wifi, etc.

The issue of different operating systems is also relevant,
Windows and Linux do not share the same code base and
handle energy management differently. Android includes cus-
tomizations distinct from Linux as well. Furthermore there
are different versions and distributions of Linux, Windows,
Android, OSX, and iOS. Thus measurements from one envi-
ronment might not hold for another.

Furthermore generalizable models suffer from a lack of data.
Energy traces are not prevalent in the operational data within
Github git repositories or other publicly available repositories.
Continuous integration tools tend not to measure or estimate
energy. One possible repository of energy data, from the
Carat project [14], is not publicly accessible to developers
and researchers. Thus there is a real lack of software energy
data available to researchers and what is available is not very
comprehensive [15].

Too many models are very hardware dependent. For instance
the models of Pathak et al. [16] require arduous component
modeling. Where as much of the work of Hindle et al. [6] only
is tested on a small subset of Android devices and platforms.
Karan et al. [17], [18] built upon Pathak et al. [16] work
and suggested a rule-of-thumb model based on system calls
that works relatively well: if the system call count signifi-
cantly changes between versions then the energy use between
versions changes significantly. This rule-of-thumb specifically
avoids mis-classifying many of the 90% of changes which do
not affect the energy profile of an application. This model was
extended and generalized as a regression problem by Shaiful
et al. [19] who estimate not only change, but actual energy
usage. The system call based models are general and relative
to the products themselves, they model applications that face
the user quite well. Yet the models fail to account for CPU use
effectively without the use of counters. Models need to address
what is generalizable and stable across subsets of hardware
– what can accounted or controlled for – and what part of
the models are hardware dependent. This knowledge enables
generalization of models to similar devices.

While these models range in deploy-ability and usefulness,
will programmers want to apply these models?

C. How knowledgeable are programmers about energy?

While software engineering researchers are interested in
software energy consumption are programmers knowledgeable
or aware? Currently in 2015, the answer is a resounding, “not
really.”

Pinto et al. [20] studied StackOverflow [21], a question-
answer site for programmers. They found that energy related
questions were poorly answered and that many questions were
asked.

Pang et al. [22] followed up and surveyed and interviewed
programmers. Pang et al. found that programmers surveyed did
not have much experience with software energy consumption.
Not only did they lack experience but rarely were they asked to
address software energy consumption. The programmers also

said they would consider energy consumption when buying a
mobile device.
Wilke et al. [10] corroborates the view of these developers.

They found that App ratings on Google Play Store suffered
when user commented on poor energy consumption behaviour.
Khalid et al. [23] have made similar observations.
Many works aim to help developers by finding specific

energy bugs [24]. Manotas et al. [25] provide suggestions
for energy efficient collections. Others have suggested us-
ing genetic programming to optimize already existing pro-
grams [26]. Some works discuss the cost of using libraries
that provide advertisements [27] and some works describe
the costs and benefits of ad-blocking with respect to energy
consumption [28]. Some work aims to optimize display usage
through color choices [29]. While others help to provide
feedback to developers if anything has changed [18].

D. Measurement

Software energy consumption needs to be measured. Many
researchers use time as a proxy but for idle applications this
might not be appropriate [3].
Hindle et al. [6] describes the green miner, a hardware-based

continuous regression test framework. The green miner is a
software queue for tests that enables deployment of tests onto a
series of Android phones, enabling parallel execution of tests.
Figure 2 depicts a screen-shot of a report from the green miner
over a single test-run of an application. The time-line shows
the power usage over time, followed by an energy consumed
per component stacked bar plot. The energy consumed and
power used is broken down by tasks within the test. At the
end meta-data about the test is recorded. A similar work was
presented by Banerjee et al. [30] whereby they use physical
instrumentation.
Li et al. [31] tried to used high frequency measurements

to attribute energy use to particular source lines, while Hao
et al. [32] applied program analysis to estimate energy use.
Gupta et al. [33] attempted to correlate measurements with
library usage.
LessWatts.org from Intel develops and provides the

PowerTop tool to estimate energy use at run-time based on
ACPI information [34].
Thus there are many hardware methods of measuring energy

but many are too complicated for programmers so they opt for
either server hardware with instrumentation or for estimations
from ACPI. Not everyone has electrical measurement exper-
tise, thus when in doubt ask a colleague or an another engineer
about measurement.

IV. IMMEDIATE CHALLENGES

The field is currently immature. There is a lack of:

• Shared tools;
• Shared datasets;
• Benchmarks datasets;
• Agreement on methodology;
• Coherent community;
• Methodological discussion about addressing threats;
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Fig. 2. Green Miner Example Test Run

• Lack of agreement on methodological threats.

All of these issues pile up into immediate challenges that
face current software energy research as well as those works
of the future. This section tries to illustrate the potential issues
that the field faces.

A. Lack of Data

Currently there is very little data for researchers to work
with. The current pattern is for researchers to setup a test and
measure everything themselves. This is different than a lot
of mining software repositories [35], [36] research – there is
not a repository available here, unlike other kinds of dynamic
analysis such as crash reports.
Each energy trace, such as the one depicted in Figure 2,

from 1 test-run, contains many measurements of the same test
over time. Typically these tests are re-run to address error in

physical measurement and the environment. The re-running
of the tests leads researchers to summarize the distribution
of measurements leading to a collapse in the amount of
data. 5000 kilobytes of energy measurements can be quickly
collapsed down into 10 to 40 rows of summary statistics about
the test-runs. The data is effectively limited by the researchers
time and ability to run all the necessary tests. As dynamic
analysis and tracing is typically used it takes a lot of run-time
to execute tests.

Thus dynamic analysis takes time, but there is also a
limitation in the number of applications that meet the re-
quirements of the research. For instance if one is focusing
on Android applications with available source code, the set
of testable applications is quite limited. Furthermore given
those applications very few come with tests so tests need to
be generated.

Thus the field lacks data due to a lack of collecting existing
data, a lack of sharing of existing data, a lack of appropriate
applications to test, and a lack of available tests for these
applications to enable dynamic analysis.

B. CPU is not enough

Many works – especially in the area of distributed com-
puting – simply relate CPU time to energy [37], [38], [39],
[40]. While this is correct for CPU bound processes, many
applications are not CPU bound. Some are not even IO bound,
they are event bound. Thus they have an idle cost, but not much
in the way of CPU work. They might induce IO when woken
up but for the most part most user facing applications are quite
idle. Furthermore CPU use does not necessarily represent the
activity of peripherals. In the case of GPU clusters, CPU use
could be almost irrelevant as the GPU would be the dominant
energy consumer.

If processes are CPU bound, optimizing and addressing their
energy consumption is well supported by current benchmark
tools and profilers. For a CPU bound process, improvement to
its single-core run-time performance will usually improve its
energy efficiency as well.

C. Virtualization

If one cares about sustainability [41], [42] and reducing the
global energy consumption of computing, virtualization cannot
be ignored. Many services online are virtualized, running on
a virtual machine in the cloud, or within a container of a
container service.

Measuring VMs and containers is quite difficult as re-
sources are not equally shared [43]. Many clouds use over-
subscription, whereby resources are over promised to many
services with the hope that these services do not need all of
these resources at the same time. With virtual machines CPU
is often over subscribed while for containers both CPU and
memory are oversubscribed.

With most of the world’s services running within data-
centers any savings in the resources used by a service has
a potential for saving energy: when the CPU, memory, or
peripherals such as hard-drives, network cards, and GPUs.
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The less use, the less heat, resulting in less cooling and more
savings.
Currently there is some work on attributing energy con-

sumption to virtualized machines [44], [43], but it is just the
beginning of such research. Little to no work has been done
to estimate the energy use of services within containers such
as docker. At the moment it is very difficult to estimate the
energy cost of a task that is virtualized or container-ized.

D. Multi-version analysis necessary

In a software product 1 change can fundamentally change
the performance of the software [8]. The same is true to
software energy performance. Thus to characterize the perfor-
mance of a product by only its latest version is unfair. Projects
such as Hadoop have had issues with performance regressions
– Hadoop 2 on smaller clusters often performs worse on the
same task than Hadoop 1 due to resource management [45].
Software is more than the just the current version – most

developers exist in a continuously evolving context producing
many builds and many versions at once. Versioning is a
constant problem within software distributions such as De-
bian [46] or Ubuntu.
Thus 1 change can have a significant effect on performance

of software, and that change might be required to address
a raft of issues. This performance changing commit could
negate past results [9]. Romansky et al. [9] investigated if
every revision needed to be measured or just some, and found
that the performance changing commits generally were either
immediately corrected or initiated a long plateau of similar
performance across subsequent versions.
For instance if one tests if a refactoring was impactful

and just look at refactoring commits – what happens after-
ward [47]? Is the behaviour stable? Was there a bug? Just
looking at the immediate before and after commits might not
be enough to determine the actual effect of a design pattern
or a refactoring.
Thus multi-version analysis adds more software to analyze,

enables more data to be collected but also adds robustness
against some threats to validity.

E. Non-determinism of hardware state

One problem with modern software is that it runs on
complicated platforms. Furthermore the realistic scenario of
running applications on various hardware can be complex.
One such difficulty is hardware power saving functionality

which enables CPUs to use more or less voltage or to change
clock rates, as well as enable low power or high latency mode
in peripherals. In real world use these options are often on.
Experimentally they are often turned off or set to a constant
setting, but not always, and it is not always beneficial to create
such an artificial setting [3].
Even if we start the CPU in a certain state for a test, the test

input might induce a different CPU state [48]. Thus setting the
CPU power state before a test might not be enough to ensure
equivalent CPU power states during the test. Other sources of
hardware sources of non-determinism are wifi networks and
some disk I/O.

F. Non-determinism of software state

Software can exhibit non-determinism. Mobile platforms are
quite adaptive and small changes in the environment can result
in different behaviour. Furthermore events within the operating
system are not always controllable or deterministic. Network
communication is not deterministic as well, thus one serious
confound is the non-determinism of software state in the OS
alone. When this is combined with long running services non-
determinism abounds.
If software communicates across the network, the network

congestion, time of day, and availability of the access service
could all have an effect. If software writes to a file-system,
the current state of the file-system could determine how
continuous or how fragmented a file is written to disk – more
writes could lead to more fragmentation. Memory allocation
could fragment memory leading to more work and compaction
as time progresses. These issues are hard to address, and
the most common solution, even utilized by micro kernel
architectures, is to simply restart and throw away all that old
state.

G. The need for science

Within this section I have brought up many issues, but how
many have empirical evidence to demonstrate the dangers or
costs of ignoring these issues. What if the measurements are
strong against noise after enough runs are executed? Perhaps
after 40 runs the initial state does not matter. Arcuri and Briand
have provided practical guidelines for statistical tests within
software engineering that are specific too but are still relevant
to performance and software energy consumption [49].
Furthermore in terms of publications regarding energy what

we need is more science. Not every energy consumption paper
can be a tool paper. Sometimes a result or technique could be
integrated into an existing tool or be deployed as tool, but that
is a high bar when most bug prediction work never produces
a deployable tool. Currently for software energy consumption
research the bar is quite high, there is little taste or favour
to scientific publications, such as the work of Li et al. [50],
Romansky et al. [9], or Linares-Vásquez et al. [51], rather than
tool publications such as Green Advisor [18]. Yet communities
such as MSR [36] and ESEM [52] promote this kind of re-
search with other kinds of nonfunctional requirements (NFRs)
such a performance or maintainability have much empirical
work behind them.

H. Community

Not only do we need more science in software energy
consumption, we need more community support. There are
some industry wide groups that discuss Green IT, sustainable
IT infrastructure [53], [54], [55]. As of writing there is a
smattering of specific sustainability and green IT conferences,
none are truly coherent when it comes to software energy con-
sumption, as each venues have different goals [56], [57], [58].
There are workshops such as GREENS [58], but the motivation
to publish at GREENS is low when one can submit papers to
other venues which garner more recognition. Furthermore in
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software engineering venues one could perceive there is a lack
of a knowledge regarding software energy consumption, which
mirrors the current reality of programmers’ knowledge [22].
All of these factors lead to a software energy research

diaspora, where sub-communities are made and results are
quietly published but not noticed by other communities. It is
almost as if researchers are publishing into a vacuum whereby
other researchers do not see each other.

I. Impossible bar to reach, or potential paper?

These limitations should not scare anyone away from the
field, in fact for empiricists and experimentalists these are
papers in waiting. Many of these issues might not pose as
significant effect as we think, or their effect might be avoided
or controlled for methodologically. For any of these issues
there is an impactful avenue of research found by asking
the question, “Do we have to address this potential pitfall?”
Potential paper topics that anyone, especially up and coming
PhD students, could address:

• How to model the difference in performance between
OSX, Windows, and Linux, or iOS and Android. What
parts of energy models will change due to operating sys-
tem or hardware, and what parts of the energy models will
stay the same? How can we generalize across platforms?

• The effects of state on repeated tests. Benchmarks are
often performed without restarting or without clearing
caches. Methodologically what do we lose by ignoring
this, versus what do we gain in test performance?

• The effects of differing wifi-state on energy tests. Wifi
cards and radio-based networking tend to operate differ-
ent in different contexts, such as closeness to a router or
interference. How does this affect energy tests?

• Temperature, mobile devices, and energy consumption.
Mobile devices typically lack temperature control mech-
anism and are often stored close to a warm human body,
what is the impact of energy-testing at room temperature
versus body temperature?

• Effective version test selection. How many versions do we
really need to measure? Multi-version testing is expensive
in terms of effort and time [59], what are effective
selection and search strategies to reduce this work?

• Effect of hyper-visors on energy consumption. Much
cloud computing uses virtualization – what is the impact
of the hyper-visor on energy performance of a cloud
server?

• How to control for non-determinism in disk I/O. File-
systems are not necessarily deterministic as repeated
writes can lead to fragmentation [60]. What is the energy
impact of disk and file-system non-determinism on en-
ergy consumption? Does this have an affect on I/O based
tests?

• How to control for non-determinism in network I/O.
Network I/O often occurs out on the wild internet
whereby traffic and congestion change hourly. When we
run energy tests how much should we and can we control
for these factors – and how much do we gain if we do?

• How to account for different background cloud utiliza-
tion. Cloud computers often host multiple clients – how
do different levels of tenancy affect energy consumption
of a single virtual machine or service?

• What is the effect of isolation on our tests? The average
user or cloud service will not be running software in
a clean room environment. How does software energy
consumption respond to the noise of real environments?

• Is there difference between software instrumentation and
human input? If our tests are automated by faking user
inputs, do the inputs and instrumentation use more or less
energy?

• What issues affect ACPI energy estimates? ACPI is often
used to estimate energy consumption but do we need to
control for blind spots in ACPI – can these be addressed
by better models?

• How many energy measurements do I need per version?
When we wish to compare 2 versions how many mea-
surements do we really need from each version? Can we
determine the number of measurements dynamically to
reduce work?

• Does the quality of test cases matter when measuring
energy? Does code coverage matter for testing? How
much exercise should a test do in order for its energy
measurement to be representative, meaningful or compa-
rable?

Thus these limitations should spur scientific research into
the effects and costs of addressing and ignoring the issues
brought up in this section. These limitations and proposal for
future work segways into what will be expected in the future,
next.

V. THE FUTURE

In this section I lay out my prediction for the future of
software energy consumption research.

A. Multi-version analysis will be expected

In the future researchers will engage in multi-version anal-
ysis of performance and energy consumption. They will use
multi-version analysis because a primary concern of energy
consumption is performance regression e.g., “has performance
worsened?” Multi-version analysis will also be used to in-
crease the generality and robustness of their research. Instead
of making claims about 1 snapshot of a program’s performance
researchers will establish the profile [9] of a program’s perfor-
mance. This is especially important in research that engages in
factor analysis as it provides more measurement of the system
but also protects against spurious factors being reported as
significant.

B. An end to developer measurement

In the future we will never expect a developer to physi-
cally benchmark or measure their software. This will be the
realm of technicians and researchers, not developers. Physical
measurement will be avoided by easy to access services,
better models of services and apps, and better software energy
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estimation frameworks that appropriately address the needs
and limitations of developers.

d) No hardware Instrumentation: hardware is expensive,
and it requires much knowledge and training to address
hardware measurement. The developer of the future will not
have to rely on expensive testing hardware, or the questionable
measurements of their ACPI chip-sets.

e) Access to Hardware Regression Testing Services: if
developers truly need physical measurement they will be able
to outsource it. We expect in the future that services will be
available that will be like the Green Miner [6] – developers
will submit applications, specify the hardware to test on and
simply wait for a result back from the framework. No awkward
setup, no difficult testing. What physical measurements are
made will probably be integrated into even better models.

For verification programmers will have the option to submit
their application to a continuous integration, testing, and
deployment service that will provide some hardware based
measurement. Yet for the most part the future engineers
need not worry about actually measuring software energy
consumption.

f) Recommender Systems and Agents: Much like
Clippy [61], integrated into Microsoft Office, developers
should be treated with recommender systems and smart agents
that can help guide their software development towards better
energy performance. These systems could be integrated into
IDEs as to provide immediate suggestions and hints to the
developer.

C. Online Shared Repository

The future holds promise as large open shared reposito-
ries of dynamic traces of energy consumption are curated.
Different platforms, different applications, different tests and
different runs all aggregated in large online repositories of
data. These shared repositories would allow the curation of
community tuned models of energy consumption. Much like
the PROMISE repository [62].

The repositories would allow the hours and hours that prac-
titioners and researchers spending benchmarking and testing
software to be used to develop better models. The variation in
available runs alone would be intensely beneficial. Even the
tests themselves could be shared, enabling further collabora-
tion.

The future is crowd sourced and open shared traces available
to all.

D. Cloud and Container Estimation

One of the largest concerns in the future will be the
sustainability of software services [41]. There will be pressure
from social causes, combined with carbon taxes and worldwide
sustainability pressure to reduce carbon emissions. This will
affect the software as a service market. Furthermore companies
will be asked to estimate their energy use so they can argue if
they are green and sustainable. The requirements of sustainable
engineering will prompt for developer awareness of the issues
and the ability to estimate the impact of services.

Thus all the difficulties mentioned before in Section IV-C
will conflict with the requirement of energy estimation –
programmers of the future will have to estimate or measure
the sustainability of distributed software ecosystems. These
ecosystems might not be fully subscribed to – many will
be relatively idle services – but such estimates of energy
consumption will be required.

Programmers will submit usage scenarios, configuration,
and their software to a testing service that will estimate the
energy usage of their services at different loads. This will
require a new kind of continuous integration and deployment
software to operate. Furthermore such a system will need
measurement instruments to enable measuring, modeling, and
estimation of software energy consumption.

E. Budgeted Software and Energy Requirements

More managers and customers will explicit request software
energy consumption be addressed in their applications. As
Lago et al. [42] suggest, sustainability will be perceived as
a software quality issue.

This will imply that not only will energy requirements exist,
but likely services will be granted energy budgets that they
have work within. It is likely that services provided by Amazon
AWS and other cloud providers will start explicitly charging
for energy rather than just CPU, Memory, IO and network
usage. With this change in pricing part of the requirements
elicitation process will be to define the energy budgets of a
service.

F. Education

As Pang et al. [22] found, developers are not very aware of
software energy consumption and thus if they were asked to
act on it, as not very educated on the causes of software energy
consumption. As of writing this, software energy consumption
is a niche topic rarely taught to computer scientists or software
engineers – although somewhat addressed in electrical engi-
neering and computer engineering curriculums. Developers of
the future will face the demand for sustainable systems, thus
computer science and software engineering curriculums will
change to address green software engineering.

VI. CONCLUSIONS

Software energy consumption research currently faces many
challenges and threats to validity. Among these are attribution
of energy use to processes, measurement of virtualized or
containerized processes, estimation of energy use, and lack
of freely available software energy tools that do not require
physical hardware.

Methodologically software energy research is plagued by
threats to generalizability regarding OS versions, application
versions, environments, the variety of available hardware,
and a lack of recorded operational data and measurements.
Currently there is a very limited research community who has
done little to share data and tools. This is further compounded
by a fragmentation of the community across numerous small
conferences and workshops. Some of this fragmentation arises
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from the fundamental multidisciplinary aspects of software
energy consumption: electrical engineers, computer engineers,
and software engineers should work together to help each other
address energy consumption holistically so that software can
be written to take advantage of hardware advances, and so
hardware can take better advantage of software knowledge for
energy consumption and performance.
The future holds much promise for the field of software

energy consumption as there are many hard challenges that
need to be addressed. The programmers of the future will face
sustainability as a requirement and will have to design software
with energy efficiency in mind. These programmers not only
will receive education, instruction, and training, they will have
at their disposal powerful models and tools that are integrated
into their development environment ever ready to provide them
with software energy awareness when they need it.
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