
The Impact of Test Case Summaries on Bug Fixing
Performance: An Empirical Investigation

Sebastiano Panichella,1 Annibale Panichella,2 Moritz Beller,2
Andy Zaidman,2 Harald C. Gall1

1University of Zurich, Switzerland
2Delft University of Technology, The Netherlands

panichella@ifi.uzh.ch {a.panichella,m.m.beller,a.e.zaidman}@tudelft.nl gall@ifi.uzh.ch

ABSTRACT
Automated test generation tools have been widely investi-
gated with the goal of reducing the cost of testing activities.
However, generated tests have been shown not to help devel-
opers in detecting and finding more bugs even though they
reach higher structural coverage compared to manual test-
ing. The main reason is that generated tests are difficult to
understand and maintain. Our paper proposes an approach,
coined TestScribe, which automatically generates test case
summaries of the portion of code exercised by each indi-
vidual test, thereby improving understandability. We argue
that this approach can complement the current techniques
around automated unit test generation or search-based tech-
niques designed to generate a possibly minimal set of test
cases. In evaluating our approach we found that (1) develop-
ers find twice as many bugs, and (2) test case summaries sig-
nificantly improve the comprehensibility of test cases, which
is considered particularly useful by developers.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Code Inspections and Walk-throughs, Testing Tools;
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Documentation, Enhancement

General Terms
Documentation

Keywords
Software testing, Test Case Summarization, Empirical Study

1. INTRODUCTION
Software testing is a key activity of software development

and software quality assurance in particular. However, it is
also expensive, with overall testing consuming as much as
50% of overall project effort [8], and programmers spending
a quarter of their work time on developer testing [6].

Several search-based techniques and tools [15, 18, 37] have
been proposed to reduce the time developers need to spend

This paper was first submitted to a Software Engineering venue for peer
review in August 2015.

on testing by automatically generating a (possibly minimal)
set of test cases with respect to a specific test coverage cri-
terion [11, 18, 22, 25, 38, 40, 48, 51]. These research efforts
produced important results: automatic test case generation
allows developers to (i) reduce the time and cost of the test-
ing process [5, 11, 12, 51]; to (ii) achieve higher code coverage
when compared to the coverage obtained through manual
testing [10, 19, 38, 40, 48]; to (iii) find violations of auto-
mated oracles (e.g. undeclared exceptions) [15, 19, 32, 37].

Despite these undisputed advances, manually testing is
still dominant in industry. This is partially due to the fact
that professional developers perceive generated test cases as
hard to understand and difficult to maintain [17, 41]. Indeed,
a recent study [20, 21] reported that developers spend up
to 50% of their time in understanding and analyzing the
output of automatic tools. As a consequence, automatically
generated tests do not improve the ability of developers to
detect faults when compared to manual testing [20, 21].

Recent research has challenged the assumption that struc-
tural coverage is the only goal to optimize [1, 53], showing
that when systematically improving the readability of the
code composing the generated tests, developers tend to pre-
fer the improved tests and were able to perform maintenance
tasks in less time (about 14%) and at the same level of accu-
racy [17]. However, there is no empirical evidence that such
readability improvements produce tangible results in terms
of the number of bugs actually found by developers.

This paper builds on the finding that readability of test
cases is a key factor to optimize in the contest of automated
test generation. However, we conjecture that the quality of
the code composing the generated test cases (e.g., input pa-
rameters, assertions, etc.) is not the only factor affecting
their comprehensibility. For example, consider the unit test
test01 in Figure 1, which was automatically generated for
the target class Option2. From a bird’s-eye view, the code
of the test is pretty short and simple: it contains a con-
structor and two assertions calling get methods. However,
it is difficult to tell, without reading the contents of the tar-
get class, (i) what is the behavior under test, (ii) whether
the generated assertions are correct, (iii) which if-conditions
are eventually traversed when executing the test (coverage).
Thus, we need a solution that helps developers to quickly
understand both tests and code covered.

Paper contribution. To handle this problem, our paper
proposes an approach, coined TestScribe, which is designed

1The test case has been generated using EVOSUITE [18].
2The class Option has been extracted from the apache com-
mons library

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1467v1 | CC-BY 4.0 Open Access | rec: 30 Oct 2015, publ: 30 Oct 2015

1| public class TestOption {
2|
3| @Test
4| public void test0() throws Throwable {
5| Option option0 = new Option("", "1W|^");
6| assertEquals("1W|^", option0.getDescription());
7| assertEquals("", option0.getKey());
8| }
9| }

Figure 1: Motivating example

to automatically generate summaries of the portion of code
exercised by each individual test case to provide a dynamic
view of the class under test (CUT). We argue that applying
summarization techniques to test cases does not only help
developers to have a better understanding of the code under
test, but it can also be highly beneficial to support devel-
opers during bug fixing tasks, improving their bug fixing
performance. This leads us to the first research question:

RQ1: How do test case summaries impact the
number of bugs fixed by developers?

Automatically generated tests are not immediately con-
sumable since the assertions might reflect an incorrect be-
havior if the target class is faulty. Hence, developers should
manually check the assertions for correctness and possibly
add new tests if they think that some parts of the target
classes are not tested. This leads us to our second research
question:

RQ2: How do test case summaries impact devel-
opers to change test cases in terms of structural
and mutation coverage?

The contributions of our paper are summarized as follows:
• we introduced TestScribe a novel approach to auto-

matically generate natural language summaries of JU-
nit test cases and the portion of the target classes they
are going to test;
• we conducted an empirical study involving 30 human

participants from both industry and academia to in-
vestigate the impact of test summaries on the number
of bugs that can be fixed by developers when assisted
by automated test generation tools;
• we make publicly available a replication package3 with

(i) material and working data sets of our study, (ii)
complete results of the survey; and (iii) rawdata for
replication purposes and to support future studies.

2. THE TESTSCRIBE APPROACH
This section describes the inner workings of the TestScribe

approach.

2.1 Approach Overview
Figure 2 depicts the proposed TestScribe approach, which

is designed to generate automatically summaries for test
cases leveraging (i) structural coverage information and (ii)
existing approaches on code summarization. In particular,
TestScribe generates summaries for the portion of code ex-
ercised by each individual test case, thus, providing a dy-
namic view of the code under test. We notice that un-
like TestScribe, existing approaches on code summarization
[31, 33, 34, 45] generate static summaries of source code
without taking into account which part of the code is ex-
ercised during test case execution. Our approach consists
of four steps: 1 Test Case Generation, 2 Test Coverage

Analysis, 3 Summary Generation, and 4 Summary Ag-
gregation. In the first step, namely Test Case Generation,

3
http://www.ifi.uzh.ch/seal/people/panichella/tools/TestScribe.html

Figure 2: Overview TestScribe

we generate test cases using EVOSUITE [18]. In the sec-
ond step Test Coverage Analysis, TestScribe identifies the
code exercised by each individual test case generated in the
previous step. To detect the executed lines of code we rely
on Cobertura4 a tool based on jcoverage5. The goal of this
step is to collect the information that will be summarized
in the next steps, such as the list of statements tested by
each test case, the used class attributes, the used parame-
ters and the covered conditional statements etc. During the
step Summary Generation, TestScribe takes the collected
information and generates a set of summaries at different
levels of granularity: (i) a global description of the class un-
der test, (ii) a global description of each test case, (iii) a
set of fine-grained descriptions of each test case (describing
for example statements and/or branch executed by the test
case). Finally, during the Summary Aggregation step the
extracted information and/or descriptions are added to the
original test suite. An example of tests summaries generated
by TestScribe, for the test case showed in Figure 1, which
tests the Java Class Option of the system Apache Commons
CLI 6, can be found in Figure 3. The complete example of
generated test suite for such class is available online 7.

2.2 Test Suite Generation
Literature describes several methods that are capable of

automatically generating test input based on the source code
of the program under test based on different search strate-
gies, such as genetic algorithms [18, 38], symbolic execu-
tion [10], etc. Among them, we have selected EVOSUITE [18],
a tool that automatically generates JUnit test cases with
JUnit assertions for classes written in Java code. Internally,
EVOSUITE uses a genetic algorithm to evolve candidate
test suites (individuals) according to the chosen coverage cri-
terion where the search is guided by a fitness function [18],
which considers all the test targets (e.g., branches, state-
ments, etc.) at the same time. In order to make the test
cases produced more concise and understandable, at the end
of the search process the best test suite is post-processed
to reduce its size while preserving the maximum coverage
achieved. The final step of this post-processing consists of
adding test assertions, i.e., statements that check the out-
come of the test code. These assertions are generated using

4
http://cobertura.github.io/cobertura/

5
http://java-source.net/open-source/code-coverage/jcoverage-gpl

6
https://commons.apache.org/proper/commons-cli/

7
http://www.ifi.uzh.ch/seal/people/panichella/TestOption.txt

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1467v1 | CC-BY 4.0 Open Access | rec: 30 Oct 2015, publ: 30 Oct 2015

1| /** The main class under test is Option. It describes
2| * a single option and maintains information regarding:
3| * - the option;
4| * - the long option;
5| * - the argument name;
6| * - the description of the option; 3.a
7| * - whether it has required;
8| * - whether it has optional argument;
9| * - the number of arguments;
10| * - the type, the values and the separator of the option;**/
11| public class TestOption {
12| /** OVERVIEW: The test case "test0" covers around 3.0% 3.b
13| * (low percentage) of statements in "Option" **/
14| @Test
15| public void test0() throws Throwable {
16| // The test case instantiates an "Option" with option 3.c
17| // equal to "", and description equal to "1W|^".
18| Option option0 = new Option("", "1W|^");
19| // Then, it tests:
20| // 1) whether the description of option0 is equal to 3.c
21| // "1W|^";
22| assertEquals("1W|^", option0.getDescription());
23| // 2) whether the key of option0 is equal to ""; 3.c
24| // The execution of the method call used in the assertion 3.d
25| // implicitly covers the following 1 conditions:
26| // - the condition "option equal to null" is FALSE;
27| assertEquals("", option0.getKey());
28| }
29| }

Figure 3: Example of summary generated by
TestScribe for a JUnit test method exercising the
class Options.java

a mutation-based heuristic [22], which adds all possible as-
sertions and then selects the minimal subset of those able to
reveal mutants injected in the code. Consequently, the final
test suite serves as starting point for a tester, who has to
manually revise the assertions. It is important to note that
the use of EVOSUITE is not mandatory in this phase of the
TestScribe, indeed, it is possible to rely on other existing
tools such as Randoop 8 to generate test cases. However, we
select EVOSUITE since it generates minimal test cases with
the minimal set of test assertions reaching high structural
coverage [20, 21].

2.3 Test Coverage Analysis
Once the test cases are generated, TestScribe relies on

Cobertura, to find out which statements and branches are
tested by each individual test case. However, with the aim
at generating tests summaries for the covered information
we need more fine-grained information regarding the code
elements composing each covered statement, such as at-
tributes, method calls, the conditions delimiting the tra-
versed branches, etc.

In the next step TestScribe extracts keywords from the
identifier names of such code elements, to build the main tex-
tual corpus required for generating the coverage summaries.
Therefore, on top of Cobertura we built a parser based on
JavaParser9 to collect the following information after the
execution of each test case: (i) the list of attributes and
methods of the CUT directly or indirectly invoked by the
test case; (ii) for each invoked method our parser collects all
the statements executed, the attributes/variables used and
calls to other methods of the CUT; (iii) the boolean values of
branch decisions in the if-statements to derive which condi-
tions are verified when covering a specific true/false branch
of the CUT.

The output of this phase is represented by the list of fine-
grained code elements and the lines of code covered by each
test case.

2.4 Summary Generation
The goal of this step is to provide to the software devel-

oper a higher-level view of which portion of the CUT each

8
http://mernst.github.io/randoop/

9
https://github.com/javaparser/javaparser

test case is going to test. To generate this view, TestScribe
extracts natural language phrases from the underlying cov-
ered statements by implementing the well known Software
Word Usage Model (SWUM) proposed by Hill et al. [27].
The basic idea of SWUM is that actions, themes, and any
secondary arguments can be derived from an arbitrary por-
tion of code by making assumptions about different Java
naming conventions, and using these assumptions to link
linguistic information to programming language structure
and semantics. Indeed, method signatures (including class
name, method name, type, and formal parameters) and field
signatures (including class name, type, and field name) usu-
ally contain verbs, nouns, and prepositional phrases that can
be expanded in order to generate readable natural language
sentences. For example, verbs in method names are consid-
ered by SWUM as the actions while the theme (i.e., subjects
and objects) can be found in the rest of the name, the formal
parameters, and then the class name.

Pre-processing. Before identifying the linguistic ele-
ments composing the covered statements of the CUT, we
split the identifier names into component terms using the
Java camel case convention [27, 45], which splits words based
on capital letters, underscores, and numbers. Then, we ex-
pand abbreviations in identifiers and type names using both
(i) an external dictionary of common short forms for English
words [42] and (ii) a more sophisticated technique called
contextual-based expansion [26], that searches the most ap-
propriate expansion for a given abbreviation (contained in
class and method identifiers).

Part-of-speech tagging. Once the main terms are ex-
tracted from the identifier names, TestScribe uses Language-
Tool 10, a Part-of-speech (POS) tagger to derive which terms
are verbs (actions), nouns (themes) and adjectives. Specif-
ically, LanguageTool is an open-source Java library that
provides a plethora of linguistic tools (e.g., spell checker,
POS tagger, translator, etc.) for more than 20 different lan-
guages. The output of the POS tagging is then used to de-
termine whether the names (of method or attribute) should
be treated as Noun Phrases (NP), Verb Phrases (VP), and
Prepositional Phrases (PP) [27]. According to the type of
phrase, we used a set of heuristics similar to the ones used
by Hill et al. [27] and Sridhara et al. [45] to generate natural
language sentences using the pre-processed and POS tagged
variables, attributes and signature methods.

Summary Generation. Starting from the noun, verb
and prepositional phrases, TestScribe applies a template-
based strategy [31, 34, 45] to generate summaries. This
strategy consists of using pre-defined templates of natural
language sentences that are filled with the output of SWUM,
i.e., the pre-processed and tagged source code elements in
covered statements. TestScribe creates three different types
of summaries at different levels of abstractions: (i) a gen-
eral description of the CUT, which is generated during a
specific sub-step of the Summary Generation called Class
Level Summarization; (ii) a brief summary of the struc-
tural code coverage scores achieved by each individual JUnit
test method; (iii) a fine grained description of the statement
composing each JUnit test method in order to describe the
flow of operations performed to test the CUT. These fine-
grained descriptions are generated during two different sub-
steps of the Summary Generation: the Fine-grained State-

10
https://github.com/languagetool-org/languagetool

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1467v1 | CC-BY 4.0 Open Access | rec: 30 Oct 2015, publ: 30 Oct 2015

ments Summarization and the Branch Covered Summariza-
tion. The first sub-step provides a summary for the state-
ments in the JUnit test methods, while the latter describes
the if-statements traversed in the executed path of the CUT.

Class Level Summarization. The focus of this step is
to give to a tester a quick idea of the responsibility of the
class under test. The generated summary is especially useful
in the not-very-uncommon case where the class under test
is not well commented/documented [33, 34]. To this end
we implemented an approach similar to the one proposed
by Moreno et al. in [33, 34] for summarizing Java classes.
Specifically, Moreno et al. defined a heuristics based ap-
proach for describing the class behavior based on the most
relevant methods, the superclass and class interfaces, and
the role of the class within the system. Differently, during
the Class Level Summarization we focuse on the single CUT
by considering only its interface and its attributes, while a
more detailed description of its methods and its behaviour
is constructed later during the sub-step Fine-grained State-
ments Summarization. More specifically, during this sub-
step are considered only the lines executed by each test case
using the coverage information as base data to describe the
CUT behavior. Figure 3 shows an example of summary
(in orange) generated during the Class Level Summariza-
tion phase for the class Option.java. With this summary
the developer has the possibility to have a quick understand-
ing of the CUT without reading all of its lines of code.

Test Method Summarization. This step is respon-
sible for generating a general description of the statement
coverage scores achieved by each JUnit test method. This
description is extracted by leveraging the coverage informa-
tion provided by Cobertura to fill a pre-defined template. An
example of summary generated by TestScribe for describing
the coverage score is depicted in Figure 3 (in yellow): before
each JUnit test method (test0 in the example) TestScribe
adds a comment regarding the percentage of statements cov-
ered by the given test method independently from all the
other test methods in TestOption. This type of description
allows to identify the contribution of each test method to the
final structural coverage score. In the future we plan to com-
plement the statement coverage describing further coverage
criteria, such as branch or mutation coverage.

Fine-grained Statement Summarization. As describ-
ed in Section 2.3 TestScribe extracts the fine-grained list
of code elements (e.g. methods, attributes, local variables)
composing each statement of the CUT covered by each JU-
nit test method. This information is provided as input
to the Fine-grained Statements Summarization phase, thus,
TestScribe performs the following three steps: (i) parses all
the instructions contained in a test method; (ii) it uses the
SWUM methodology for each instruction and determines
which kind of operation the considered statement is per-
forming (e.g. if it declares a variable, it uses a construc-
tor/method of the class, it uses specific assertions etc.) and
which part of the code is executed; and (iii) it generates a set
of customized natural-language sentences depending on the
selected kind of instructions. To perform the first two steps,
it assigns each statement to one of the following categories:

• Constructor of the class. A constructor typically im-
plies the instantiation of an object, which is the im-
plicit action/verb, with some properties (parameters).
In this case, our descriptor links the constructor call to
its corresponding declaration in the CUT to map for-

mal and actual parameters. Therefore, pre-processing
and POS tagger are performed to identify the verb,
noun phrase and adjectives from the constructor sig-
nature. These linguistic elements are then used to fill
specific natural language templates for constructors.
Figure 3 contains an example of a summary generated
to describe the constructor Option(String, String),
i.e., the lines 16 and 17 (highlighted in green).
• Method calls. A method implements an operation and

typically begins with a verb [27] which defines the main
action while the method caller and the parameters de-
termine theme and secondary arguments. Again, the
linguistic elements identified after pre-processing and
POS tagging are used to fill natural language templates
specific for method calls. More precisely, the summa-
rizer is able to notice if the result of a method call is
assigned as value to a local variable (assignment state-
ment), thus, it adapts the description depending on
the specific context. For particular methods, such as
getters and setters, it uses ad-hoc templates that differ
from the templates used for more general methods.
• Assertion statements. This step defines the test oracle

and enables to test whether the CUT behaves as in-
tended. In this case the name of an assertion method
(e.g. assertEquals, assertFalse, notEquals etc) defines
the type of test, while the input parameters represent
respectively (i) the expected and (ii) the actual be-
havior. Therefore, the template for an assertion state-
ment is defined by the (pre-processed) assertion name
itself and the value(s) passed (and verified) as param-
eter(s) to the assertion. Figure 3 reports two exam-
ples of descriptions generated for assertion methods
where one of the input parameters is a method call,
e.g., , getKey() (the summary is reported in line 23
and highlighted in green).

Branch Coverage Summarization. When a test method
contains method/constructor calls, it is common that the
test execution covers some if-conditions (branches) in the
body of the called method/constructor. Thus, TestScribe,
after the Fine-grained Statements Summarization step, en-
riches the standard method call description with a sum-
mary describing the boolean expressions of the if condition.
Therefore, during the Branch Coverage Summarization step
TestScribe generates a natural language description for the
tested if condition. When an if condition is composed
of multiple boolean expressions combined via boolean op-
erators, we generate natural language sentences for the in-
dividual expressions and combine them. Thus, during the
Branch Coverage Summarization, we adapt the descriptions
when an if-condition contains calls to other methods of the
CUT. In the previous example reported in Figure 3, when
executing the method call getKey() (line 27) for the ob-
ject option0, the test method test0 covers the false branch
of the if-condition if (opt == null), i.e., it verifies that
option0 is not null. In Figure 3 the lines 24, 25 and 26,
(highlighted in red) represent the summary generated dur-
ing the Branch Coverage Summarization for the method call
getKey().

2.5 Summary Aggregation
The Information Aggregator is in charge of enriching the

original JUnit test class with all the natural language sum-
maries and descriptions provided by the summary generator.
The summaries are presented as different block and inline

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1467v1 | CC-BY 4.0 Open Access | rec: 30 Oct 2015, publ: 30 Oct 2015

Table 1: Java classes used as objects of our study
Project Class eLOC Methods Branches
Commons Primitives ArrayIntList 65 12 28
Math4J Rational 61 19 36

comments: (i) the general description of the CUT is added
as a block comment before the declaration of the test class;
(ii) the brief summaries of the statement coverage scores
achieved by each individual JUnit test method is added as
block comments before the corresponding test method body;
(iii) the fine-grained descriptions are inserted inside each test
method as inline comments to the corresponding statements
they are summarizing.

3. STUDY DESIGN AND PLANNING
In the following, we report the definition and planning of

our empirical study.

3.1 Study Definition
The goal of our study is to investigate to what extent

the summaries generated by TestScribe improve the com-
prehensibility of automatically generated JUnit test cases
and impact the ability of developers to fix bugs. We mea-
sure such an impact in the context of a testing scenario in
which a Java class has been developed and must be tested
using generated test cases with the purpose of identifying
and fixing bugs (if any) in the code. The quality focus con-
cerns the understandability of automatically generated test
cases when enriched with summaries compared to test cases
without summaries. The perspective is of researchers inter-
ested in evaluating the effectiveness of automatic approaches
for the test case summarization when applied in a practical
testing and bug fixing scenario. We therefore designed our
study to answer the following research questions (RQs):

RQ1 How do test case summaries impact the number of
bugs fixed by developers? Our first objective is to ver-
ify whether developers are able to identify and fixing
more faults when relying on automatically test cases
enriched with summaries.

RQ2 How do test case summaries impact developers to change
test cases in terms of structural and mutation cover-
age? The aim is assessing whether developers are more
prone to change test cases to improve their structural
coverage when the summaries are available.

3.2 Study Context
The context of our study consists of (i) objects, i.e., Java

classes extracted from two Java open-source projects, and
(ii) participants testing the selected objects, i.e., professional
developers, researchers and students from the University of
Zurich and the Delft University of Technology. Specifically,
the object systems are Apache Commons Primitives and
Math4J that have been used in previous studies on search-
based software testing [20, 21, 41]. From these projects, we
selected two Java classes: (i) Rational that implements a
rational number, and (ii) ArrayIntList, which implements
a list of primitive int values using an array. Table 1 details
characteristics of the classes used in the experiment. eLOC
counts the effective lines of source code, i.e. source lines
without purely comments, braces and blanks [30]. For each
class we consider a faulty version with five injected faults
available from previous studies [20, 21]. These faults were

Table 2: Experience of Participants
Programming Experience Absolute # Frequency

1-2 years 1 3.3%
3-6 years 20 66.6%
7-10 years 8 26.6%
>10 years 1 3.3%

Σ 30 100%

generated using a mutation analysis tool, which selected the
five mutants (faults) more difficult to kill, i.e., the ones that
can be detected by the lowest number of test cases [20, 21].
These classes are non-trivial, yet feasible to reasonably test
within an hour; they do not require (i) to learn and un-
derstand complicated algorithms and (ii) to examine exten-
sively other classes in the same library.

To recruit participants we sent email invitations to our
contacts from industrial partners as well as to students and
researchers from the Department of Computer Science at the
University of Zurich and at Delft University of Technology.
In total we sent out 44 invitations (12 developers and 32
researchers). In the end, 30 subjects (67%) performed the
experiment and sent their data back, see Table 2. Of them,
7 were professional developers from industry and 23 were
students or senior researchers from the authors’ Computer
Science Departments. All of the 7 professional developers
have more than seven years of programming experience in
Java (one of them more than 15 years). Among the 23 sub-
jects from our departments, 2 were Bachelor’s students, 5
were Master’s students, 14 PhD students, and 2 senior re-
searchers. Each participant had at least three years of prior
experience with Java and the JUnit testing framework.

3.3 Experimental Procedure
The experiment was executed offline, i.e., participants re-

ceived the experimental material via an online Survey plat-
form11 that we use to collect and to monitor time and ac-
tivities. An example of survey sent to the participants can
be found online12. Each participant received an experiment
package, consisting of (i) a statement of consent, (ii) a pre-
test questionnaire, (iii) instructions and materials to perform
the experiment, and (iv) a post-test questionnaire. Before
the study, we explained to participants what we expected
them to do during the experiment: they were asked to per-
form two testing sessions, one for each faulty Java class.
They could use the test suite (i.e., JUnit test cases) gener-
ated by EVOSUITE to test the given classes and to fix the
injected bugs. Each participant received two tasks: (i) one
task included one Java class to test plus the corresponding
generated JUnit test cases enriched WITH the summaries
generated by TestScribe; (ii) the second task consisted of a
second Java class to test together with the corresponding
generated JUnit test cases WITHOUT summaries.

The experimental material was prepared to avoid learning
effects: each participant received two different Java classes
for the two testing tasks; each participant received for the
first task test cases enriched with corresponding summaries,
while for the second task they received the cases without
the summaries. We assigned the tasks to the participants
in order to have a balanced number of participants which
test (i) the first class with summaries followed by the sec-
ond class without summaries; and (ii) the first class with-

11
http://www.esurveyspro.com

12
http://www.ifi.uzh.ch/seal/people/panichella/tools/TestScribe/Survey.pdf

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1467v1 | CC-BY 4.0 Open Access | rec: 30 Oct 2015, publ: 30 Oct 2015

out summary followed by the second class with summaries.
Since EVOSUITE uses randomized search algorithms (i.e.,
each run generates a different set of test cases with different
input parameters), we provided to each participant different
starting test cases.

Before starting the experiment, each participant was asked
to fill in the pre-study questionnaire reporting their pro-
gramming and testing experience. After filling in the ques-
tionnaire, they could start the first testing task by open-
ing the provided workspace in the Eclipse IDE. The stated
goals were (i) to test the target class as much as possible,
and (ii) to fix the bugs. Clearly, we did not reveal to the
participants where the bugs were injected, nor the number
of bugs injected in each class. In the instructions we accu-
rately explain that the generated JUnit test cases are green
since EVOSUITE, as well as other modern test generation
tools [15, 37], generate assertions that reflect the current
behavior of the class [18]. Consequently, if the current be-
havior is faulty, the assertions reflect the incorrect behavior
and, thus, must be checked and eventually corrected [20].

Therefore, participants were asked to start reading the
available test suite, and to edit the test cases to (eventually)
correct the assertions. They were also instructed to add new
tests if they think that some parts of the target classes are
not tested, as well as to delete tests they did not understand
or like. In each testing session, participants were instructed
to spend no more than 45 minutes for completing each task
and to finish earlier if and only if (i) they believe that their
test cases cover all the code and (ii) the found and fixed all
the bugs. Following the experiment, subjects were required
to fill in an exit survey we used for qualitative analysis and
to collect feedback. In total, the duration of the experiment
was two hours including completing the two tasks and filling
in the pre-test and post-test questionnaires.

We want to highlight that we did not reveal to the par-
ticipants the real goal of our study, which is to measure the
impact of test case summaries on their ability to fix bugs. As
well as we did not explain them that they received two dif-
ferent tasks one with and the other one without summaries.
Even in the email invitations we use to recruit participants,
we did not provide any detail to our goal but we used a more
general motivation, which was to better understand the bug
fixing practice of developers during their testing activities
when relying on generated test cases.

3.4 Research Method
At the end of the experiment, each participant produced

two artifacts for each task: (i) the test suite automatically
generated by EVOSUITE, with possible fixes or edits by the
participants, e.g., adding assertions to reveal faults; and (ii)
the original (fixed) target class, i.e., without (some of) the
injected bugs. We analyze the target classes provided by
the participants in order to address RQ1: for each class
we inspect the modifications applied by each participant in
order to verify whether the modifications are correct (true
bug fixing) or not. Thus, we counted the exact number of
seeded bugs fixed by each participant to determine to what
extent test summaries impact the their bug fixing ability.

For RQ2 we computed several structural coverage met-
rics for each test suite produced when executed on the orig-
inal classes, i.e., on the target classes without bugs [20, 21].
Specifically, we use Cobertura to collect statement, branch,
and method coverage scores achieved. The mutation score

was computed by executing the JUnit test suite using PIT13,
a popular command line tool that automatically seeds a Java
code generating mutants. Then it runs the available tests
and computes the resulting mutation score, i.e., the per-
centage of mutants detected by the test suites. As typical in
mutation testing, a mutant is killed (covered) if the tests fail,
otherwise if the tests pass then the mutation is not covered.

Once we have collected all the data, we used statistical
tests to verify whether there is a statistical significant dif-
ference between the scores (e.g., the number of fixed bugs)
achieved by participants when relying on tests with and
without summaries. We employed non-parametric tests since
the Shapiro-Wilk test revealed that neither the number of
detected bugs, nor the coverage or mutation measures follow
a normal distribution (p � 0.01). Hence, we used the non-
parametric Wilcoxon Rank Sum test with a p-value thresh-
old of 0.05. Significant p-values indicate that there is a sta-
tistical significant difference between the scores (e.g., num-
ber of fixed bugs) achieved by the two groups, i.e., by partici-
pants using test cases with and without summaries. In addi-
tion, we computed the effect-size of the observed differences
using the Vargha-Delaney (Â12) statistic [49]. The Vargha-

Delaney (Â12) statistic also classifies the obtained effect size
values into four different levels (negligible, small, medium
and large) that are easier to interpret. We also checked
whether other co-factors, such as the programming experi-
ence, interact with the main treatment (test summaries) on
the dependent variable (number of bugs fixed). This was
done using a two-way permutation test [4], which is a non-
parametric equivalent of the two-way Analysis of Variance
(ANOVA). We set the number of iterations of the permuta-
tion test procedure to 1,000,000 to ensure that results did
not vary over multiple executions of the procedure [4].

Parameter Configuration. There are several param-
eters that control the performance in terms of structural
coverage for EVOSUITE; in addition, there are different
coverage criteria to optimize when generating test cases.
We adopted the default parameter settings used by EVO-
SUITE [18], since a previous empirical study demonstrated [2]
that the default values widely used in the literature give
reasonably acceptable results. For the coverage criterion,
we consider the default criterion, which is branch coverage,
again similar to previous experiments [20, 21]. The only pa-
rameter that we changed is the running time: we run EVO-
SUITE for ten minutes in order to achieve the maximum
branch coverage.

4. RESULTS
In the following, we report results of our study, with the

aim of answering the research questions formulated in Sec-
tion 3.

4.1 RQ1: Bug Fixing
Figure 4 depicts the box-plots of the number of bugs fixed

by the participants, divided into the (i) target classes to fix
and (ii) the availability of TestScribe-generated summaries.
The results indicate that for both tasks the number of bugs
fixed is substantially higher when to the participants had
test summaries at their disposal. Specifically, from Figure 4
we can observe that for the class ArrayIntList participants
without TestScribe summaries were able to correctly iden-
tify and fix 2 out of 5 bugs (median value; 40% of injected

13http://pitest.org/

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1467v1 | CC-BY 4.0 Open Access | rec: 30 Oct 2015, publ: 30 Oct 2015

●

0

1

2

3

4

5

ArrayIntList Rational

N
. F

ix
ed

 B
ug

s

With Summaries Without Summaries

Figure 4: RQ1: Bugs fixed with and without sum-
maries.

bugs) and no participant was able to fix all the injected
bugs. Vice versa, when we provided to the participants the
TestScribe summaries, the median number of bugs fixed is
3 bugs and about 30% of the the participants were able to
fix all the bugs. This result represents an important im-
provement (+50% of bugs were fixed by participants) if we
consider that in both the scenarios, WITH and WITHOUT
summaries, the amount of time given to the participants was
the same. Similarly, for Rational, when relying on test cases
with summaries, the median number of bugs fixed is 4 out
of 5 (80%) and 31% of participants were able to fix all the
bugs. Vice versa, using test cases without summaries the
participants fixed 2 bugs (median value). Hence, when us-
ing the summaries the participants were able to fix twice as
many number of bugs (+100%) with respect to the scenario
in which they were provided test cases without comments.

The results of the Wilcoxon test highlight that the use of
TestScribe summaries significantly improved the bug fixing
performance of the participants in each target class achiev-
ing p-values of 0.014 and < 0.01 for ArrayIntList and
Rational respectively (which are smaller than the signifi-

cance level of 0.05). The Vargha and Delaney Â12 statis-
tic also reveals that the magnitude of the improvements is
large for both target classes: the effect size is 0.76 (large)
and 0.78 (large) for ArrayIntList and Rational respec-
tively. Finally, we used the two-way permutation test to
check whether the number of fixed bugs between the two
groups (test cases with and without summaries) depends
on and interacts with the participants’ programming expe-
rience, which can be a potential co-factor. The two-way per-
mutation test reveals that (i) the number of bugs fixed is not
significantly influenced by the programming experience (p-
values ∈ {0.5736, 0.1372}) and (ii) there is no significant in-
teraction between the programming experience and the pres-
ence of test case summaries (p-values ∈ {0.3865, 0.1351}).
This means that all the participants benefit of using the
TestScribe’s summaries independently from their program-
ming experience.

This finding is particularly interesting if we consider that
in the previous work by Fraser et al. [20, 21] they reported
that there is no statistical difference between the number of
bugs detected by developers when performing manual test-
ing or using automatically generated test cases to this aim.
Specifically, in our study we included (i) two of the classes
Fraser et al. used in their experiments (ArrayIntList and
Rational), and for them we (ii) considered the same set
of injected bugs and (iii) we generated the test cases using
the same tool. In this paper we show that the summaries

Table 3: Descriptive statistics for the test suites
edited by the participants for ArrayIntList

Variable Factor Min Mean Max p-value A12

Method Cov. With 0.36 0.63 0.86 0.83 -
Without 0.50 0.65 0.86

Statement Cov. With 0.52 0.68 0.85 0.83 -
Without 0.61 0.68 0.85

Branch Cov. With 0.55 0.68 0.82 0.87 -
Without 0.59 0.67 0.82

Mutation Score With 0.13 0.29 0.45 0.45 -
Without 0.13 0.30 0.52

Table 4: Descriptive statistics for the test suites
edited by the participants for Rational

Variable Factor Min Mean Max p-value A12

Method Cov. With 0.89 0.95 1.00 0.80 -
Without 0.89 0.95 1.00

Statement Cov. With 0.92 0.97 1.00 1.00 -
Without 0.92 0.97 1.00

Branch Cov. With 0.85 0.86 0.90 0.89 -
Without 0.85 0.86 0.90

Mutation Score With 0.52 0.71 0.93 0.08 0.69 (M)
Without 0.31 0.61 0.89

generated by TestScribe can significantly help developers in
detecting and fixing bugs. However, a larger sample size
(i.e., more participants) would be needed to compare the
performances of participants when performing manual test-
ing, i.e., when they are not assisted by automatic tools like
EVOSUITE and TestScribe at all.

In summary, we can conclude that

RQ1 Using automatically generated test case sum-
maries significantly helps developers to identify and fix
more bugs.

4.2 RQ2: Test Case Management
To answer RQ2, we verify whether there are other measur-

able features instead of the test case summaries the might
have influenced the results of RQ1. To this aim, Tables 3
and 4 summarise the structural coverage scores achieved by
the test suite produced by human participants during the
experiment. As we can see from Table 3 there is no sub-
stantial difference in terms of structural coverage achieved
by the test suites produced by participants with and without
test case summaries for ArrayIntList. Specifically, method,
branch and statement coverage are almost identical. Similar
results are achieved for Rational as shown in Table 4: for
method, branch and statement coverage there is no differ-
ence for the tests produced by participants with and with-
out test summaries. Consequently for both the two classes
the p-values provided by the Wilcoxon test are not statisti-
cally significant and the effect size is always negligible. We
hypothesize that these results can be due to the fact that
the original test suite generated by EVOSUITE, that were
used by the participants as starting point to test the tar-
get classes, already achieved a very high structural coverage
(> 70% in all the cases). Therefore, even if the participants
were asked to manage (when needed) the test cases to cor-
rect wrong assertions, at the end of the experiment the final
coverage was only slightly impacted by these changes.

For the mutation analysis, the mutation scores achieved
with the tests produced by the participants seem to be slightly
lower when using test summaries (-1% on average) for Array-
IntList. However, the Wilcoxon test reveals that this differ-
ence is not statistically significant and the Vargha-Delaney
Â12 measure is negligible. For Rational we can notice an
improvements in terms of mutation score (+10%) for the
tests produced by participants who were provided with test

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1467v1 | CC-BY 4.0 Open Access | rec: 30 Oct 2015, publ: 30 Oct 2015

4%

6%

14%

33%

36%

45%

32%

9%

14%

6%

0% 20% 40% 60% 80% 100%

With

Without

% Count

Very Low Low Medium High Very High

Figure 5: Perceived test comprehensibility WITH
and WITHOUT TestScribe summaries.

summaries. The Wilcoxon test reveals a marginal statisti-
cal significant p-value (0.08) and the Vargha-Delaney Â12

measures an effect size medium and positive for our test
summaries, i.e., participants provided test cases able to kill
more mutants when using the test summaries. A replica-
tion study with more participants would be need to further
investigate whether the mutation score can be positively in-
fluenced when using tests summaries.

RQ2 Test case summaries do not influence how the
developers manage the test cases in terms of structural
coverage.

5. DISCUSSION AND LESSONS LEARNT
In the following, we provide additional, qualitative in-

sights to the quantitative study reported in Section 4.
Summaries and comprehension. At the end of each

task we asked to each participant to evaluate the compre-
hensibility of the test cases (either with or without sum-
mary) using a Likert scale intensity from very-low to very-
high (involving all the 30 participants). When posing this
question we did not explicitly mention terms like “test sum-
maries” but instead “test comments” to avoid biased answers
by the participants. Figure 5 compares the scores given by
participants to the provided test cases (i.e., generated by
EVOSUITE) according to whether the tests were enriched
(With) or not (Without) with summaries. We can notice
that when the test cases were commented with summaries
(With) 46% of participants labelled the test cases as easy
to understand (high and very high comprehensibility) with
only 18% of participants that considered the test cases as
incomprehensible. Vice versa, when the test cases were not
enriched with summaries (Without) only 15% of participants
judged the test cases as easy to understand, while a substan-
tial percentage of participants (40%) labeled the test case as
difficult to understand. The Wilcoxon test also reveals that
this difference is statistical significant (p-value = 0.0050)
with a positive and medium effect size (0.71) according to

the Vargha-Delaney Â12 statistic. Therefore, we can argue
that

Test summaries statistically improve the comprehensi-
bility of automatically generated test case according to
human judgements.

Post-test Questionnaire. Table 5 reports the results
to questions from the exit survey. The results demonstrate
that in most of the cases the participants considered the test
summaries (when available) as the most important source of
information to perform the tasks after the source code itself,

Table 5: Raw data for exit questionnaire
(SC=Source Code, TCS=TC Summaries, TC=Test
Cases, and MTC=Manually written TC).
Questions SC TCS TC MTC Other
Q1: What is the best
source of information?

47% 20% 20% 13% 0

Q2: Can you rank the
specified sources of
information in order of
importance from 1
(high) to 5 (low)?

(rank 1) 43% 27% 27% 3% 0%
(rank 2) 17% 53% 30% 0% 0%
(rank 3) 27% 23% 33% 10% 7%
(rank 4) 17% 17% 10% 57% 0%
(rank 5) 0% 3% 13% 7% 77%

Questions
Disagree Agree

Fully Partial Partially Fully
Q3: Adding or changing the tests leads
to better tests?

0% 14% 45% 41%

Q4: Without comments, tests are
difficult to read and understand?

0% 33% 23% 43%

Q5: Adding assertions to tests WITH
comments is prohibitively difficult?

13% 60% 27% 0%

Q6: Adding assertions to tests
WITHOUT comments is prohibitively
difficult?

10% 47% 43% 0%

Q7: I had enough time to finish my task 7% 24% 52% 17%
Q8: Automatically generated unit tests
exercise the easy parts of the program.

0% 20% 73% 7%

i.e., the code of the target classes to fix. Indeed, when an-
swering Q1 and Q2 the most common opinion is that the
source code is the primary source of information (43% of
the opinions) followed by the test summaries (57% of par-
ticipants assigned them rank 2). Interestingly, the test cases
generated by EVOSUITE are considered less important than
both (i) the test summaries and (ii) the test cases manually
written by participants during the experiment. As confirma-
tion to this finding, we received positive feedback from both
junior and more experienced participants, such as “the gen-
erated test cases with comments are quite useful” and “com-
ments give me better (and more clear) picture of the goal of
a test.”. From Table 5 we can also observe that participants
mainly considered the tests generated by EVOSUITE as a
starting point to test the target classes. Indeed, these tests
must be updated (e.g., checking the assertions) and enriched
with further manually written tests (Q3), since in most of
the cases they test the easier part of the program under
tests (according to 80% of opinions for Q8). Automatically
generated tests are in most of cases (66% of participants)
considered difficult to read and understand (Q4), especially
if not enriched with summaries describing what they are go-
ing to test (Q5 and Q6).

Quality of the Summaries. Finally, we ask the par-
ticipants to evaluate the overall quality of the provided test
summaries, similarly as done in traditional work on source
code summarization [33, 45]. We evaluate the quality ac-
cording to three widely known dimensions [33, 45]:
• Content adequacy : considering only the content of the

comments of JUnit test cases, is the important infor-
mation about the class under test reflected in the sum-
mary?
• Conciseness: considering only the content of the com-

ments in the JUnit test cases, is there extraneous or
irrelevant information included in the comments?
• Expressiveness: considering only the way the com-

ments of JUnit test cases are presented, how readable
and understandable are the comments?

The analysis is summarized in Table 6. The results high-
light that (i) 87% of the participants consider the TestScribe
comments adequate (they do not miss very important in-
formation); (ii) 90% of them perceive the summaries con-

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1467v1 | CC-BY 4.0 Open Access | rec: 30 Oct 2015, publ: 30 Oct 2015

Table 6: Raw data of the questionnaire concerning
the evaluation of TestScribe summaries.

Content adequacy
Response category Percentage of Ratings
Is not missing any information. 50%
Missing some information. 37%
Missing some very important infor-
mation.

13%

Conciseness
Response category Percentage of Ratings
Has no unnecessary information. 38%
Has some unnecessary information. 52%
Has a lot of unnecessary informa-
tion.

10%

Expressiveness
Response category Percentage of Ratings
Is easy to read and understand. 70%
Is somewhat readable and under-
standable.

30%

Is hard to read and understand. 0%

cise enough (they contain no unnecessary information); (iii)
100% of participants consider the comments easy to read
and/or somewhat readable. In summary, the majority of the
participants consider the comments generated by TestScribe
very concise and easy to understand.

Feedback. Comments collected from the survey partici-
pants mentioned interesting feedback to improve TestScribe
summaries:
• Redundant information from test to test : developers

of our study were concerned by the fact that for simi-
lar test cases TestScribe generates the same comments
and, as solution, they suggested to generate, for each
assertion already tested in previous test methods, a
new inline comment which specifies that the assertion
was already tested in a previous test method.
• Useless naming of test methods: for several partici-

pants the name of the test does not give any hint about
the method under test. They suggest to (i) “...rename
the method names to useful names... so that it is pos-
sible to see at a glance what is actually being tested by
that test case” or (ii) “...describe in the javadoc of a
test method which methods of the class are tested.”.

Lessons Learnt. As indicated in Section 4.2 test suites
having high structural coverage are not necessarily more ef-
fective to help developers in detecting and fixing more bugs.
Most automatic testing tools consider structural coverage as
the main goal to optimize for, with the underlying assump-
tion that higher coverage is strongly related to a test’s ef-
fectiveness [3]. However, our results seem to provide a clear
evidence that this is not always true as also confirmed by
the non-parametric Spearman ρ correlation test: the corre-
lation between the number of bugs fixed and the structural
coverage metrics is always lower than 0.30 for ArrayIntList
and 0.10 for Rational. Only the mutation score has a cor-
relation coefficient larger than 0.30 in both the two classes.
On the other hand, the results of RQ1 provide clear evi-
dence that the summaries generated by TestScribe play a
significant role even if they do not change the code and the
structural coverage of the original test cases generated by
EVOSUITE. Therefore, we can argue that comprehensibil-
ity or readability are two further dimensions that should be
considered (together with structural coverage) when system-
atically evaluating automatic test generation tools.

6. THREATS TO VALIDITY
In this section, we outline possible threats to the validity

of our study and show how we mitigated them.

Construct Validity. Threats to construct validity con-
cern the way in which we set up our study. Due to the fact
that our study was performed in a remote setting in which
participants could work on the tasks at their own discretion,
we could not oversee their behavior. The metadata sent to
us could be affected by imprecisions as the experiment was
conducted offline. However, we share the experimental data
with the participants using an online survey platform, which
forces the participants (1) to perform tasks in the desired
order and (2) to fill in the questionnaires. Therefore, partic-
ipants only got access to the final questionnaire after they
had handed in their tasks, as well as they could not perform
the second task without finishing the first one. Furthermore,
the online platform allows us to monitor the total time each
participant spent on the experiment. We also made sure
participants were not aware of the actual aim of the study.

Internal Validity. Threats to internal validity concern
factors which might affect the causal relationship. To avoid
bias in the task assignment, we randomly assigned the tasks
to the participants in order to have the same number of data
points for all classes/treatments. To ensure that a sufficient
number of data points are collected for statistical signifi-
cance tests, each participant performed two bug fixing tasks
—one with test summaries and one without, on different
classes— rather than one single task, to produce 60 data
points in this study. The two Java classes used as objects for
the two tasks have similar difficulty and can easily be tested
in 45 minutes, even for intermediate programmers [20, 21].
Another factor that can influence our results is the order
of assignments, i.e., first with summaries and then without
summaries or vice versa. However, the two-way permutation
test reveals that there is no significant interaction between
the order of assignments and the two tasks on the final out-
come, i.e., the number of bugs fixed (p-value = 0.7189).

External Threats. External threats concern the gener-
alizability of our findings. We considered two Java classes
already used in two previous controlled experiments inves-
tigating the effectiveness of automated test case generation
tools compared to manual testing [20, 21]. We also use the
same set of bugs injected using a mutation analysis tool,
which is common practice to evaluate the effectiveness of
testing techniques in literature [20, 21, 22]. Another threat
can be that the majority of our study participants has an
academic background. Recent studies have shown that stu-
dents perform similarly to industrial subjects, as long as
they are familiar with the task at hand [28, 35]. All stu-
dent participants had at least 3 years of experience with the
technologies used in our study, see Section 3.2. Moreover,
our population included a substantial part of professional
developers and the median programming experience of our
participants is 3-6 years. Nevertheless, we plan to replicate
this study with more participants in the future to increase
the confidence in the generalizability of our results.

Conclusion Threats. In our study we use TestScribe
to generated tests summaries for JUnit test cases generated
by EVOSUITE. It might be possible that using different
automatic test generation tools may lead to different results
in terms of test case comprehensibility. However, we notice
that (i) coverage, (ii) structure and (iii) size of test cases
generated with EVOSUITE are comparable to the output
produced by other modern test generation tools, such as
Randoop [37], JCrasher [15], etc.

We support our findings by using appropriate statistical

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1467v1 | CC-BY 4.0 Open Access | rec: 30 Oct 2015, publ: 30 Oct 2015

tests, i.e. the non-parametric Wilcoxon test and the two-way
permutation test to exclude that other co-factors (such as
the programming experience) can affect our conclusion. We
also used the Wilk-Shapiro normality test to verify whether
the non-parametric test could be applied to our data. Fi-
nally, we used the Vargha and Delaney Â12 statistical test
to measure the magnitude of the differences between the
different treatments.

7. RELATED WORK
In this section, we discuss the related literature on source

code summarization and readability of test cases.
Source Code Summarization. Murphy’s dissertation [36]

is the earlier work which proposes an approach to gener-
ate summaries by analysing structural information of the
source code. More recently, Sridhara et al. [44] suggested
to use pre-defined templates of natural language sentences
that are filled with linguistic elements (verbs, nouns, etc.)
extracted from method signature. Other studies used the
same strategy to summarize java methods [23, 31, 45], pa-
rameters [47], groups of statements [46], java classes [33, 34],
services of java packages [24] or generating commit mes-
sages [14]. Other reported applications are the generation of
source code documentation/summary by mining text data
from other sources of information, such as bug reports [39],
e-mails [39], forum posts [16] and question and answer site
(Q&A) discussions [50, 52].

However, Binkley et al. [7] and Jones et al. [43] pointed
out that the evaluation of the generated summaries should
not be done by just answering the general question “is this
a good summary?” but evaluated “through the lens of a
particular task”. Stemming from these considerations, in
this paper we evaluated the impact of automatically gener-
ated test summaries in the context of two bug fixing tasks.
In constrast, most previous studies on source code sum-
marization have been evaluated by simply surveying hu-
man participants about the quality of the provided sum-
maries [7, 23, 31, 33, 44, 45].

Test Comprehension. The problem of improving test
understandability is well known in literature [13], especially
in the case of test failures [9, 54]. For example, Zhang et
al. [54] focused on failing tests and proposed a technique
based on static slicing to generate code comments describ-
ing the failure and its causes. Buse et al. [9] proposed a
technique to generate human-readable documentation for
unexpected thrown exceptions [9]. However, both these two
approaches require that tests fail [54] or throw unexpected
Java exceptions [9]. This never happens for automatically
generated test cases, since the automatically generated as-
sertions reflect the current behaviour of the class [21]. Con-
sequently, if the current behaviour is faulty the generated
assertions do not fail because they reflect the incorrect be-
havior.

Kamimura et al. [29] argued that developers might benefit
from a consumable and understandable textual summary of
a test case. Therefore, they proposed an initial step towards
generating such summaries based on static analysis of the
code composing the test cases [29]. From an engineering
point of view, our work resumes this line of research; how-
ever, it is novel for two main reasons. First of all our ap-
proach generates summaries combining three different levels
of granularity: (i) a summary of the main responsibilities
of the class under test (class level); (ii) a fine-grained de-

scription of each statement composing the test case as done
in the past [29] (test level); (iii) a description of the branch
conditions traversed in the executed path of the class un-
der test (coverage level). As such, our approach combines
code coverage and summarization to address the problem
of describing the effect of test case execution in terms of
structural coverage. Finally, we evaluate the impact of the
generated tests summaries in a real scenario where develop-
ers were asked to test and fix faulty classes.

Understandability is also widely related with the test size
and number of assertions [3]. For these reasons previous
work on automatic test generation focused on (i) reducing
the number of generated tests by applying a post-process
minimization [18], and (ii) reducing the number of asser-
tions by using mutation analysis [22], or splitting tests with
multiple assertions [53]. To improve the readability of the
code composing the generated tests, Emira et al. [17] pro-
posed to incorporate human judgements to guide automated
unit test generation. Afshan et al. [1] investigates the use of
a linguistic model to generate more readable input strings.
Our paper shows that summaries represent an important el-
ement for complementing and improving the readability of
automatically generated test cases.

8. CONCLUSION AND FUTURE WORK
Recent research has challenged the assumption that struc-

tural coverage is the only goal to optimize [1, 52], suggesting
that understandability of test cases is a key factor to opti-
mize in the contest of automated test generation.

In this paper we handle the problem of usability of auto-
matic generated test cases making the following main con-
tributions:

• We present TestScribe a novel approach to generate
natural language summaries of JUnit tests. TestScribe
is designed to automatically generate summaries of the
portion of code exercised by each individual test case to
provide a dynamic view of the class under test (CUT).

• To evaluate TestScribe, we have set up an empirical
study involving 30 human participants from both in-
dustry and academia. Specifically, we investigated the
impact of the generated test summaries on the number
of bugs actually fixed by developers when assisted by
automated test generation tools.

Results of the study indicate that (RQ1) TestScribe sub-
stantially helps developers to find more bugs (twice as many)
and (RQ2) test case summaries do not influence how devel-
opers manage the test cases in terms of structural coverage
(RQ2). Additionally, results of our post-test questionnaire
reveal that test summaries significantly improve the compre-
hensibility of test cases according to developers’ judgements.

Future work is directed towards different directions. We
plan to further improve TestScribe summaries by (i) consid-
ering the feedback received by the participants of our study,
(ii) combining our approach with recent work that improves
the readability of the code composing the generated test [17],
(iii) complementing the generated summaries including fur-
ther coverage criteria, such as branch or mutation coverage.
Also, we aim to replicate the study involving additional de-
velopers.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1467v1 | CC-BY 4.0 Open Access | rec: 30 Oct 2015, publ: 30 Oct 2015

References
[1] S. Afshan, P. McMinn, and M. Stevenson. Evolving

readable string test inputs using a natural language
model to reduce human oracle cost. In Proceedings
International Conference on Software Testing, Verifi-
cation and Validation (ICST), pages 352–361. IEEE,
2013.

[2] A. Arcuri and G. Fraser. Parameter tuning or de-
fault values? an empirical investigation in search-based
software engineering. Empirical Software Engineering,
18(3):594–623, 2013.

[3] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman.
Test code quality and its relation to issue handling per-
formance. IEEE Trans. Software Eng., 40(11):1100–
1125, 2014.

[4] R. D. Baker. Modern permutation test software. In
E. Edgington, editor, Randomization Tests. Marcel
Decker, 1995.

[5] L. Baresi and M. Miraz. Testful: Automatic unit-test
generation for java classes. In Proceedings of the Inter-
national Conference on Software Engineering - Volume
2 (ICSE), pages 281–284. ACM, 2010.

[6] M. Beller, G. Gousios, A. Panichella, and A. Zaid-
man. When, how, and why developers (do not) test
in their IDEs. In Proceedings of the 10th Joint Meeting
of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE). ACM, 2015. To
appear.

[7] D. Binkley, D. Lawrie, E. Hill, J. Burge, I. Har-
ris, R. Hebig, O. Keszocze, K. Reed, and J. Slankas.
Task-driven software summarization. In Proceedings of
the International Conference on Software Maintenance
(ICSM), pages 432–435. IEEE, 2013.

[8] F. P. J. Brooks. The Mythical Man-Month. Addison-
Wesley, 1975.

[9] R. P. Buse and W. R. Weimer. Automatic documenta-
tion inference for exceptions. In Proceedings of the In-
ternational Symposium on Software Testing and Anal-
ysis (ISSTA), pages 273–282. ACM, 2008.

[10] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler. Exe: Automatically generating inputs of
death. In Proceedings of the Conference on Computer
and Communications Security (CCS), pages 322–335.
ACM, 2006.

[11] A. Cavarra, C. Crichton, J. Davies, A. Hartman, and
L. Mounier. Using uml for automatic test generation.
In Proceedings of the International Symposium on Soft-
ware Testing and Analysis (ISSTA). Springer-Verlag,
2002.

[12] S. Chen, H. Miao, and Z. Qian. Automatic generating
test cases for testing web applications. In Proceedings of
the International Conference on Computational Intelli-
gence and Security Workshops (CISW), pages 881–885,
Dec 2007.

[13] B. Cornelissen, A. van Deursen, L. Moonen, and
A. Zaidman. Visualizing testsuites to aid in software
understanding. In Proc. European Conference on Soft-
ware Maintenance and Reengineering (CSMR), pages
213–222. IEEE, 2007.

[14] L. F. Cortes-Coy, M. L. Vásquez, J. Aponte, and
D. Poshyvanyk. On automatically generating commit
messages via summarization of source code changes. In

Proceedings of the International Working Conference
on Source Code Analysis and Manipulation (SCAM),
pages 275–284. IEEE, 2014.

[15] C. Csallner and Y. Smaragdakis. Jcrasher: An auto-
matic robustness tester for java. Softw. Pract. Exper.,
34(11):1025–1050, 2004.

[16] B. Dagenais and M. P. Robillard. Recovering trace-
ability links between an api and its learning resources.
In Proceedings of the International Conference on Soft-
ware Engineering (ICSE), pages 47–57. IEEE, 2012.

[17] E. Daka, J. Campos, G. Fraser, J. Dorn, and
W. Weimer. Modeling readability to improve unit tests.
In Proceedings of the 10th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 2015. To appear.

[18] G. Fraser and A. Arcuri. Whole test suite generation.
IEEE Trans. Software Eng., 39(2):276–291, 2013.

[19] G. Fraser and A. Arcuri. 1600 faults in 100 projects:
automatically finding faults while achieving high cov-
erage with evosuite. Empirical Software Engineering,
20(3):611–639, 2015.

[20] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and
F. Padberg. Does automated unit test generation re-
ally help software testers? a controlled empirical study.
ACM Trans. Softw. Eng. Methodol. To Appear.

[21] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and
F. Padberg. Does automated white-box test genera-
tion really help software testers? In Proceedings of
the International Symposium on Software Testing and
Analysis (ISSTA), pages 291–301. ACM, 2013.

[22] G. Fraser and A. Zeller. Mutation-driven generation
of unit tests and oracles. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis
(ISSTA), pages 147–158. ACM, 2010.

[23] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. On
the use of automated text summarization techniques for
summarizing source code. In Proceedings of the Inter-
national Working Conference on Reverse Engineering
(WCRE), pages 35–44. IEEE, 2010.

[24] M. Hammad, A. Abuljadayel, and M. Khalaf. Auto-
matic summarising: The state of the art. Lecture Notes
on Software Engineering, 4(2):129–132, 2016.

[25] M. Harman and P. McMinn. A theoretical and em-
pirical study of search-based testing: Local, global, and
hybrid search. IEEE Trans. Softw. Eng., 36(2):226–247,
2010.

[26] E. Hill, Z. P. Fry, H. Boyd, G. Sridhara, Y. Novikova,
L. Pollock, and K. Vijay-Shanker. Amap: Automat-
ically mining abbreviation expansions in programs to
enhance software maintenance tools. In Proceedings of
the International Working Conference on Mining Soft-
ware Repositories (MSR), pages 79–88. ACM, 2008.

[27] E. Hill, L. Pollock, and K. Vijay-Shanker. Automat-
ically capturing source code context of nl-queries for
software maintenance and reuse. In Proceedings of
the International Conference on Software Engineering
(ICSE), pages 232–242. IEEE, 2009.

[28] M. Höst, B. Regnell, and C. Wohlin. Using students as
subjects - comparative study ofstudents and profession-
als in lead-time impact assessment. Empirical Softw.
Engg., 5(3):201–214, Nov. 2000.

[29] M. Kamimura and G. Murphy. Towards generating

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1467v1 | CC-BY 4.0 Open Access | rec: 30 Oct 2015, publ: 30 Oct 2015

human-oriented summaries of unit test cases. In Pro-
ceedings of the International Conference on Program
Comprehension (ICPC), pages 215–218. IEEE, May
2013.

[30] S. MacDonell. Reliance on correlation data for complex-
ity metric use and validation. ACM Sigplan Notices,
26(8):137–144, 1991.

[31] P. W. McBurney and C. McMillan. Automatic doc-
umentation generation via source code summarization
of method context. In Proceedings of the International
Conference on Program Comprehension (ICPC), pages
279–290. ACM, 2014.

[32] B. Meyer, I. Ciupa, A. Leitner, and L. Liu. Automatic
testing of object-oriented software. In SOFSEM 2007:
Theory and Practice of Computer Science, volume 4362
of Lecture Notes in Computer Science, pages 114–129.
Springer Berlin Heidelberg, 2007.

[33] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pol-
lock, and K. Vijay-Shanker. Automatic generation of
natural language summaries for java classes. In Proceed-
ings of the International Conference on Program Com-
prehension (ICPC), pages 23–32. IEEE, May 2013.

[34] L. Moreno, A. Marcus, L. Pollock, and K. Vijay-
Shanker. Jsummarizer: An automatic generator of nat-
ural language summaries for java classes. In Program
Comprehension (ICPC), 2013 IEEE 21st International
Conference on, pages 230–232, May 2013.

[35] T. Mortensen, R. Fisher, and G. Wines. Students
as surrogates for practicing accountants: Further evi-
dence. In Accounting Forum, volume 36, pages 251–265.
Elsevier, 2012.

[36] G. C. Murphy. Lightweight Structural Summarization
As an Aid to Software Evolution. PhD thesis, 1996.
AAI9704521.

[37] C. Pacheco and M. D. Ernst. Randoop: Feedback-
directed random testing for java. In Companion to the
22Nd ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications (OOPSLA),
pages 815–816. ACM, 2007.

[38] A. Panichella, F. Kifetew, and P. Tonella. Reformulat-
ing branch coverage as a many-objective optimization
problem. In Proceedings of the International Confer-
ence on Software Testing, Verification and Validation
(ICST), pages 1–10. IEEE, 2015.

[39] S. Panichella, J. Aponte, M. D. Penta, A. Marcus, and
G. Canfora. Mining source code descriptions from de-
veloper communications. In Proceedings of the Interna-
tional Conference on Program Comprehension, ICPC,
pages 63–72. IEEE, 2012.

[40] F. Ricca and P. Tonella. Analysis and testing of web
applications. In Proceedings of the International Con-
ference on Software Engineering (ICSE), pages 25–34.
IEEE, 2001.

[41] J. M. Rojas, G. Fraser, and A. Arcuri. Automated unit
test generation during software development: A con-
trolled experiment and think-aloud observations. In
Proceedings of the International Symposium on Soft-
ware Testing and Analysis (ISSTA), pages 338–349.
ACM, 2015.

[42] P. Runeson, M. Alexandersson, and O. Nyholm. Detec-
tion of duplicate defect reports using natural language
processing. In Proceedings of the International Confer-
ence on Software Engineering (ICSE), pages 499–510.

IEEE, 2007.
[43] K. Spärck Jones. Automatic summarising: The state of

the art. Inf. Process. Manage., 43(6):1449–1481, 2007.
[44] G. Sridhara. Automatic Generation of Descriptive

Summary Comments for Methods in Object-oriented
Programs. PhD thesis, Newark, DE, USA, 2012.
AAI3499878.

[45] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker. Towards automatically generating
summary comments for java methods. In Proceedings
of the International Conference on Automated Software
Engineering (ASE), pages 43–52. ACM, 2010.

[46] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Au-
tomatically detecting and describing high level ac-
tions within methods. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE),
pages 101–110. IEEE, 2011.

[47] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Gen-
erating parameter comments and integrating with
method summaries. In Proceedigs of the International
Conference on Program Comprehension (ICPC), pages
71–80. IEEE, 2011.

[48] P. Tonella. Evolutionary testing of classes. In Pro-
ceedings of the International Symposium on Software
Testing and Analysis (ISSTA), pages 119–128. ACM,
2004.

[49] A. Vargha and H. D. Delaney. A critique and improve-
ment of the cl common language effect size statistics of
mcgraw and wong. Journal of Educational and Behav-
ioral Statistics, 25(2):101–132, 2000.

[50] C. Vassallo, S. Panichella, M. Di Penta, and G. Can-
fora. Codes: Mining source code descriptions from de-
velopers discussions. In Proceedings of the International
Conference on Program Comprehension (ICPC), pages
106–109. ACM, 2014.

[51] C. Wang, F. Pastore, A. Goknil, L. Briand, and
Z. Iqbal. Automatic generation of system test cases
from use case specifications. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis
(ISSTA), pages 385–396. ACM, 2015.

[52] E. Wong, J. Yang, and L. Tan. Autocomment: Min-
ing question and answer sites for automatic comment
generation. In Proceedings of the International Confer-
ence on Automated Software Engineering (ASE), pages
562–567. IEEE, 2013.

[53] J. Xuan and M. Monperrus. Test case purification for
improving fault localization. In Proceedings of the In-
ternational Symposium on Foundations of Software En-
gineering (FSE), pages 52–63. ACM, 2014.

[54] S. Zhang, C. Zhang, and M. Ernst. Automated doc-
umentation inference to explain failed tests. In Pro-
ceedings of the International Conference on Automated
Software Engineering (ASE), pages 63–72. IEEE, 2011.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1467v1 | CC-BY 4.0 Open Access | rec: 30 Oct 2015, publ: 30 Oct 2015

