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Abstract1

Background. 16S rRNA gene sequences are routinely assigned to operational taxonomic units2

(OTUs) that are then used to analyze complex microbial communities. A number of methods have3

been employed to carry out the assignment of 16S rRNA gene sequences to OTUs leading to4

confusion over which method is the most rigorous. A recent study suggested that a clustering5

method should be selected based on its ability to generate stable OTU assignments that do not6

change as additional sequences are added to the dataset. In contrast, we contend that the ability7

of the method to properly represent the distances between the sequences is more important.8

Methods. Our analysis implemented five de novo clustering algorithms including the single linkage,9

complete linkage, average linkage, abundance-based greedy clustering, distance-based greedy10

clustering, and the open and closed-reference methods. Using two previously published datasets11

we used the Matthew’s Correlation Coefficient (MCC) to assess the stability and quality of OTU12

assignments.13

Results. The stability of OTU assignments did not reflect the quality of the assignments. Depending14

on the dataset being analyzed, the average linkage and the distance and abundance-based greedy15

clustering methods generated more robust OTUs than the open and closed-reference methods.16

We also demonstrated that for the greedy algorithms VSEARCH produced assignments that were17

comparable to those produced by USEARCH making VSEARCH a viable free and open source18

alternative to USEARCH. Further interrogation of the reference-based methods indicated that when19

USEARCH is used to identify the closest reference, the OTU assignments were sensitive to the20

order of the reference sequences because the reference sequences can be identical over the region21

being considered. More troubling was the observation that while both USEARCH and VSEARCH22

have a high level of sensitivity to detect reference sequences, the specificity of those matches was23

poor relative to the true best match.24

Discussion. Our analysis calls into question the quality and stability of OTU assignments generated25

by the open and closed-reference methods as implemented in current version of QIIME. This study26

demonstrates that de novo methods are the most rigorous and that the quality of clustering27
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assignments needs to be assessed for multiple methods to identify the optimal clustering method28

for a particular dataset.29
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Introduction30

The ability to affordably generate millions of 16S rRNA gene sequences has allowed microbial31

ecologists to thoroughly characterize the microbial community composition of hundreds of samples.32

To simplify the complexity of these large datasets, it is helpful to cluster sequences into meaningful33

bins. These bins, commonly known as operational taxonomic units (OTUs), are used to compare34

the biodiversity contained within and between different samples (Schloss & Westcott, 2011). Such35

comparisons have enabled researchers to characterize the microbiota associated with the human36

body (e.g. Huttenhower et al., 2012), soil (e.g. Shade et al., 2013), aquatic ecosystems (e.g. Gilbert37

et al., 2011), and numerous other environments. Within the field of microbial ecology, a convention38

has emerged where sequences are clustered into OTUs using a threshold of 97% similarity or39

a distance of 3%. One advantage of the OTU-based approach is that the definition of the bins40

is operational and can be changed to suit the needs of the particular project. However, with the41

dissemination of clustering methods within software such as mothur (Schloss et al., 2009), QIIME42

(Caporaso et al., 2010), and other tools (Edgar, 2010, Sun et al. (2009), Mahé et al. (2014), Edgar43

(2013), Cai & Sun (2011)), it is important to understand how different clustering methods implement44

this conventional OTU threshold. Furthermore, it is necessary to understand how the selected45

method affects the precision and accuracy of assigning sequences to OTUs. Broadly speaking,46

three approaches have been developed to assign sequences to OTUs.47

The first approach has been referred to as phylotyping (Schloss & Westcott, 2011) or closed48

reference clustering (Navas-Molina et al., 2013). This approach involves comparing sequences to a49

curated database and then clustering sequences into the same OTU that are similar to the same50

reference sequence. Reference-based clustering methods suffer when the reference does not51

adequately reflect the biodiversity of the community. If a large fraction of sequences are novel, then52

they cannot be assigned to an OTU. In addition, the reference sequences are selected because53

they are less than 97% similar to each other over the full length of the gene; however, it is known54

that the commonly used variable regions within the 16S rRNA gene do not evolve at the same rate55

as the full-length gene (Schloss & Westcott, 2011). Thus, a sequence representing a fragment of56

the gene may be more than 97% similar to multiple reference sequences. Therefore, defining OTUs57
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in the closed-reference approach is problematic because two sequences might be 97% similar to58

the same reference sequence, but they may only be 94% similar to each other. Alternatively, a59

seuquence may be equally similar to two or more reference sequences. A subtle alternative to this60

approach is to use a classifier to assign a taxonomy to each sequence so that sequences can be61

clustered at a desired level within the Linnean taxonomic hierarchy (Schloss & Westcott, 2011).62

The strength of the reference based approach is that the methods are generally fast, scaling linearly63

with the number of sequences being clustered.64

The second approach has been referred to as distance-based (Schloss & Westcott, 2011) or de65

novo clustering (Navas-Molina et al., 2013). In this approach, the distance between sequences is66

used to cluster sequences into OTUs rather than the distance to a reference database. In contrast to67

the efficiency of closed-reference clustering, the speed of hierarchical de novo clustering methods68

scale quadratically with the number of unique sequences. The expansion in sequencing throughput69

combined with sequencing errors inflates the number of unique sequences resulting in the need for70

large amounts of memory and time to cluster the sequences. If error rates can be reduced through71

stringent quality control measures, then these problems can be overcome (Kozich et al., 2013).72

As an alternative, heuristics have been developed to approximate the clustering of hierarchical73

methods (Edgar, 2010, Sun et al. (2009), Mahé et al. (2014)). One critique of de novo approaches74

is that OTU assignments are sensitive to the input order of the sequences (He et al., 2015, Mahé75

et al. (2014)). Whether the differences in assignments is meaningful is unclear; however, the76

variation in results could represent equally valid clustering of the data. The strength of de novo77

clustering is its independence of references for carrying out the clustering step. After clustering,78

the classification of each sequence can be used to obtain a consensus classification for the OTU79

(Schloss & Westcott, 2011). For this reason, de novo clustering has been preferred across the field.80

The third approach, open-reference clustering, is a hybrid of the closed-reference and de novo81

approaches (Navas-Molina et al., 2013; Rideout et al., 2014). Open-reference clustering involves82

performing closed-reference clustering followed by de novo clustering on those sequences that83

are not sufficiently similar to the reference. In theory, this method should exploit the strengths of84

both closed-reference and de novo clustering; however, the different OTU definitions employed by85

closed-reference and de novo clustering pose a possible problem when the methods are combined.86
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An alternative to this approach has been to classify sequences to a bacterial family or genus and87

then assigned to OTUs within those levels using the average linkage method (Schloss & Westcott,88

2011). For example, all sequences assigned to the Porphyromonadaceae would then be assigned89

to OTUs using the average linkage method using a 3% distance threshold. Those sequences that90

did not classify to a known family would also be clustered using the average linkage method. An91

advantage of this approach is that it lends itself nicely to parallelization since each taxonomic group92

is seen as being independent and can be processed separately. Such an approach would overcome93

the difficulty of mixing OTU definitions between the closed-reference and de novo approaches.94

The growth in options for assigning sequences using each of these three broad approaches has95

been considerable. It has been difficult to objectively assess the quality of OTU assignments.96

Some have focused on the time and memory required to process a dataset (Sun et al., 2009; Cai97

& Sun, 2011; Rideout et al., 2014, Mahé et al. (2014)). These are valid parameters to assess98

when judging a clustering method, but have little to say about the quality of the OTU assignments.99

Others have attempted to judge the quality of a method by its ability to generate data that parallels100

classification data (Sun et al., 2011; Cai & Sun, 2011; Chen et al., 2013; Edgar, 2013). This101

approach is problematic because bacterial taxonomy often reflects historical biases amongst102

bacterial systematicists. Furthermore, it is well known that the rates of evolution across lineages are103

not the same (Wang et al., 2007; Schloss, 2010). Others have assessed the quality of clustering104

based on their ability to generate the same OTUs generated by other methods (Rideout et al.,105

2014; Schmidt, Rodrigues & Mering, 2014). This is problematic because it does not solve the106

fundamental question of which method is most correct. We recently proposed an approach for107

evaluating OTU assignments using the distances between pairs of sequences (Schloss & Westcott,108

2011). Those sequences that were similar to each other and found in the same OTU were called109

true positives while those that were similar and found in different OTUs were called false negatives.110

Meanwhile, those sequences that were different from each other and found in the same OTU111

were called false positives and those that were dissimilar and found in different OTUs were called112

true negatives. Counting the frequency of these different classes allowed us to judge how each113

method balanced the ratio of true positives and negatives to false positives and negatives using114
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the Matthew’s correlation coefficient (MCC; Matthews, 1975). This is an objective approach to115

assessing the quality of the OTU assignments.116

A recent analysis by He and colleagues (2015) attempted to characterize the three general clustering117

approaches by focusing on what they called stability. They defined stability as the ability of a method118

to provide the same clustering on a subset of the data as was found in the full dataset. Their119

concept of stability did not account for the accuracy of the OTU assignments and instead focused on120

the precision of the assignments. A method may be very precise, but low in accuracy. In the current121

analysis, we assessed the accuracy and precision of the various clustering methods. Building on122

our previous analysis of clustering methods, our hypothesis was that the methods praised by the He123

study for their stability actually suffered a lack of accuracy. In addition, we assess these parameters124

in light of sequence quality using the original 454 dataset and a larger and more modern dataset125

generated using the MiSeq platform.126

Results and Discussion127

Summary and replication of He study. We obtained the Canadian soil dataset from Roesch et128

al. (2007) and processed the sequences as described by He and colleagues. Using these data, we129

reconsidered three of the more critical analyses performed in the He study.130

First, we sought to quantify whether the OTU assignments observed for a subset of the data131

represented the same assignments that were found with the full dataset. The He study found that132

when they used the open and closed-reference methods the OTUs formed using the subsetted133

data most closely resembled those of the full dataset. Among the de novo methods they observed134

that the abundance-based greedy clustering (AGC) method generated the most stable OTUs135

followed by the single linkage (SL), distance-based greedy clustering (DGC), complete linkage136

(CL), and average linkage (AL) methods. We first sought to assess the calculated the MCC for the137

OTU assignments generated by each of the clustering methods using 20, 40, 60, and 80% of the138

sequences relative to the OTU composition formed by the methods using the full dataset (Figure139

1A). Similar to the He study, we replicated each method and subsampled to the desired fraction of140
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the dataset 30 times. Multiple subsamplings was necessary because a random number generator141

is used in some of the methods to break ties where pairs of sequences have the same distance142

between them. Across these sequencing depths, we observed that the stability of the OTUs143

generated by the SL and CL methods were highly sensitive to sampling effort relative to the OTUs144

generated by the AL, AGC, and DGC methods (Figure 1A). Our results (Figure 1B) largely confirmed145

those of Figure 4C in the He study with one notable exception. The He study observed a broad146

range of MCC values among their AL replicates when analyzing OTUs generated using 60% of the147

data. This result appeared out of character and was not explained by the authors. They observed a148

mean MCC value of approximately 0.63 (95% confidence interval between approximately 0.15 and149

0.75). In contrast, we observed a mean value of 0.93 (95% confidence interval between 0.91 and150

0.95). This result indicates that the AL assignments were far more stable than indicated in the He151

study. Regardless, although the assignments are quite stable, it does support the assertion that152

the OTU assignments observed for the subset of the data do not perfectly match the assignments153

that were found with the full dataset as they did with the reference-based methods; however, the154

significance of these differences is unclear.155

Second, the He study and the original Roesch study showed that rarefaction curves calculated156

using CL-generated OTU assignments obtained using a portion of the dataset did not overlap with157

rarefaction curves generated using OTU assignments generated from the full dataset. The He and158

Roesch studies both found that the CL method produced fewer OTUs in the subset than in the159

rarefied data. In addition, the He study found that the SL method produced more OTUs, the AGC160

produced fewer, and the other methods produced similar numbers of OTUs than expected when161

comparing the subsetted data to the rarefied data. Our results support those of these previous162

studies (Figure 2). It was clear that inter-method differences were generally more pronounced163

than the differences observed between rarefying from the full dataset and from clustering the164

subsetted data. The number of OTUs observed was largest using the CL method, followed by the165

open-reference method. The AL, AGC, and DGC methods all provided comparable numbers of166

OTUs. Finally, the closed-reference and SL methods generated the fewest number of OTUs.167

Third, the authors attempted to describe the effects of the OTU assignment instability on168

comparisons of communities. They used Adonis to test whether the community structure169
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represented in subsetted communities resembled that of the full dataset when only using the170

unstable OTUs (Anderson, 2001). Although they were able to detect significant p-values, they171

appeared to be of marginal biological significance. Adonis R statistics close to zero indicate172

the community structures from the full and subsetted datasets overlapped while values of one173

indicate the communities are completely different. The He study observed adonis R statistics174

of 0.02 (closed-reference), 0.03 (open-reference), 0.07 (CL, AGC, DGC), and 0.16 (SL and AL).175

Regardless of the statistical or biological significance of these results, the analysis does not make176

sense since, by definition, representing communities based on their unstable OTUs would yield177

differences. Furthermore, the de novo and open-reference approaches do not consistently label the178

OTUs that sequences belong to when the clustering methods are run multiple times with different179

random number seeds. To overcome this, the authors selected representative sequences from180

each OTU and used those representative sequences to link OTU assignments between the different181

sized sequence sets. The justification for this analysis is specious as the OTU assignments are182

based on the data available in the dataset when the sequences are clustered and comparing183

assignments in this manner are irreconcilable. It is not surprising that the only analysis that did not184

provide a significant p-value was for the closed-reference analysis, which is the only analysis that185

provides consistent OTU labels. Finally, the authors built off of this analysis to count the number of186

OTUs that were differentially represented between the subsetted and full datasets by each method.187

This analysis assumes that the OTUs generated using the full dataset were correct, which was an188

unsubstantiated assumption since the authors did not assess the quality of the OTU assignments.189

Because this analysis was so poorly designed, we did not seek to reproduce it.190

OTU assignment methods vary in their accuracy. More important than the stability of OTUs is191

whether sequences are assigned to the correct OTUs. A method can generate highly stable OTUs,192

but the OTU assignments may be meaningless if they poorly represent the specified cutoff and193

the actual distance between the sequences. To assess the quality of OTU assignments by the194

various methods, we made use of the pairwise distance between the unique sequences to count195

the number of true positives and negatives and the number of false positives and negatives for each196

method and sampling depth. This enabled us to calculate the average MCC value as a measure197

of a method’s accuracy and its variation as a measure of its precision. We made three important198
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observations. First, each of the de novo methods varied in how sensitive their MCC values were to199

additional sequences (Figure 1C). The SL and CL methods were the most sensitive; however, the200

accuracy of the OTU assignments did not meaningfully differ when 80 or 100% of the data were201

assigned to OTUs using the de novo methods. Second, the AL method had higher MCC values202

than the other methods followed by DGC, AGC, CL, open-reference, and closed-reference, and203

SL (Figure 1D). Third, with the possible exception of the CL method, the MCC values for each204

of the methods only demonstrated a small amount of variation between runs of the method with205

a different ordering of the input sequences. This indicates that although there may be variation206

between executions of the same method, they produce OTU assignments that are equally good.207

Revisiting the concept of stability, we question the value of obtaining stable OTUs when the full208

dataset is not optimally assigned to OTUs. Our analysis indicates that the most rigorous method for209

assigning the Canadian soils sequences to OTUs using a 97% threshold was the AL method.210

Deep sampling of 16S rRNA genes. Three factors make the Canadian soil dataset less than211

desirable to evaluate clustering methods. First, it was one of the earliest 16S rRNA gene sequence212

datasets published using the 454 FLX platform. Developments in sequencing technology now213

permit the sequencing of millions of sequences for a study. In addition, because the original Phred214

quality scores and flowgram data are not available, it was not possible for us to adequately remove215

sequencing errors (Schloss, Gevers & Westcott, 2011). The large number of sequences that one216

would expect to remain in the dataset are likely to negatively affect the performance of all of the217

clustering methods. Second, the dataset used in the He study covered the V9 region of the 16S218

rRNA gene. For a variety of reasons, this region is not well represented in databases, including the219

reference database used by the closed and open-reference methods. Of the 99,322 sequences220

in the default QIIME database, only 48,824 fully cover the V9 region. In contrast, 99,310 of the221

sequences fully covered the V4 region. Inadequate coverage of the V9 region would adversely222

affect the ability of the reference-based methods to assign sequences to OTUs. Third, our previous223

analysis has shown that the V9 region evolves at a rate much slower than the rest of the gene224

(Schloss, 2010). With these points in mind, we compared the clustering assignment for each of225

these methods using a time series experiment that was obtained using mouse feces (Schloss et al.,226

2012; Kozich et al., 2013). The MiSeq platform was used to generate 2,825,000 sequences from227
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the V4 region of the 16S rRNA gene of 360 samples. Parallel sequencing of a mock community228

indicated that the sequencing error rate was approximately 0.02% (Kozich et al., 2013). Although229

no dataset is perfect for exhaustively testing these clustering methods, this dataset was useful for230

demonstrating several points. First, when using 60% of the data, the stability relationships amongst231

the different methods were similar to what we observed using the Canadian soil dataset (Figure232

3AB). With the exception for the clusters generated using CL, the methods all performed very well233

with stabilities greater than 0.91. Second, the MCC values calculated relative to the distances234

between sequences were generally higher than was observed for the Canadian soil dataset for235

all of the methods except the CL and SL methods. Surprisingly, the MCC values for the DGC236

(0.77) and AGC (0.76) methods were comparable to the AL method (0.76; Figure 3CD). This result237

suggests that the optimal method is likely to be database-dependent.238

Finally, as was observed with the Canadian soil dataset, there was little variation in MCC values239

observed among the 30 randomizations. Therefore, although the methods have a stochastic240

component, the OTU assignments do not vary meaningfully between runs. The results from241

both the Canadian soil and murine microbiota datasets demonstrate that the de novo methods242

can generate stable OTU assignments and that the assignments are highly reproducible. Most243

importantly, these analyses demonstrate that the OTU assignments using the AL, AGC, and DGC244

de novo methods are consistently more robust than either of the reference-based methods.245

Evalution of Swarm as an alternative de novo clustering algorithm. The Swarm algorithm is246

a recently proposed de novo method for assigning sequences to OTUs that identifies clusters of247

sequences based on the number of differences between each other without applying a distance248

threshold (Mahé et al., 2014). Swarm was originally validated by comparing the results against249

the expected clusters formed based on the taxonomic composition of a mock community. Similar250

to the authors of the He study, the Swarm developers suggest that method are needed that are251

insensitive to input order. Use of Swarm on the Canadian soil and murine datasets demonstrated252

that similar to the other de novo methods, Swarm’s OTU assignments changed as sequences were253

added (Figures 1A and 3A). When we compared the OTU assignments for both datasets when254

using all of the sequence data, the variation in MCC values across the 30 randomizations were255

not meaningfully different (Figures 1D and 3D). Most importantly, when we selected the distance256
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threshold that optimized the MCC value, the quality of the OTU assignments was close to that of257

the AL assignments when using the Canadian soil dataset and considerably worse than that of258

the murine dataset (Figures 1D and 3D). Interestingly, the distance thresholds that resulted in the259

largest MCC values were 3 and 2% for the Canadian soil and murine datasets, respectively. This260

suggests that OTU definitions are not consistent across datasets when using the Swarm algorithm.261

Finally, the Swarm developers indicated that hierarchical de novo algorithms were too impractical to262

use on large MiSeq-generated datasets. Our ability to apply AL to the large mouse dataset and263

even larger datasets suggests (e.g. Schubert, Sinani & Schloss, 2015, Zackular et al. (2015)) that264

it is not necessary to sacrifice OTU assignment quality for speed.265

Evalution of an open-source alternative to USEARCH. For some datasets the AGC and DGC266

methods appear to perform as well or better than the hierarchical clustering methods. As originally267

described in the He study, the AGC and DGC methods utilized the USEARCH program and268

the DGC method is used for clustering in UPARSE (Edgar, 2010, Edgar (2013)). The source269

code for USEARCH is not publicly available and only the 32-bit executables are available for270

free to academic users. Access for non-academic users and those needing the 64-bit version is271

available commercially from the developer. An alternative to USEARCH is VSEARCH, which is272

being developed in parallel to USEARCH as an open-source alternative. One subtle difference273

between the two programs is that USEARCH employs a heuristic to generate candidate alignments274

whereas VSEARCH generates the actual global alignments. The VSEARCH developers claim275

that this difference enhances the sensitivity of VSEARCH relative to USEARCH. Using the two276

datasets, we determined whether the AGC and DGC methods, as implemented by the two programs,277

yielded OTU assignments of similar quality. In general the overall trends that we observed with278

the USEARCH-version of AGC and DGC were also observed with the VSEARCH-version of the279

methods (Figure 4). When we compared the two implementations of the AGC and DGC methods,280

the OTUs generated by the VSEARCH-version of the methods were as stable or more stable than281

the USEARCH-version when using 60% of the datasets. In addition, the MCC values for the entire282

datasets, calculated relative to the distance matrix, were virtually indistinguishable. These results283

are a strong indication that VSEARCH is a suitable and possibly better option for executing the284

AGC and DGC methods.285
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Problems with reference-based clustering in general and as implemented in QIIME. The He286

study and our replication attempt validated that the closed-reference method generated perfectly287

stable OTUs. This was unsurprising since, by definition, the method is designed to return one-to-one288

mapping of reads to a reference. Furthermore, because it treats the input sequences independently289

the input order or use of a random number generator is not an issue. An important test that was not290

performed in the He study was to determine whether the clustering was sensitive to the order of the291

sequences in the database. The default database used in QIIME, which was also used in the He292

study, contains full-length sequences that are at most 97% similar to each other. We randomized293

the order of the reference sequences 30 times and used them to carry out the closed-reference294

method with the full murine dataset, which contained 32,106 unique sequences. Surprisingly, we295

observed that the number of OTUs generated was not the same in each of the randomizations. On296

average there were 28,059 sequences that mapped to a reference OTU per randomization (range297

from 28,007 to 28,111). The original ordering of the reference resulted in 27,876 sequences being298

mapped, less than the minimum observed number of mapped sequences when the references were299

randomized. This surprising result was likely due to the performance of the USEARCH heuristic.300

To test this further, we substituted VSEARCH for USEARCH in the closed-reference method. When301

we used VSEARCH the original ordering of the reference sequences and all randomizations were302

able to map 27,737 sequences to reference OTUs. When we calculated the true distance between303

each of the murine sequences and the references, we were able to map 28,238 of the murine304

sequences to the reference sequences when using a 97% similarity threshold without the use of a305

heuristic. This result indicates that the closed reference approach, whether using USEARCH or306

VSEARCH, does not exhaustively or accurately map reads to the closest reference. To quantify307

this further, we calculated the MCC for the USEARCH and VSEARCH assignments relative to308

the assignments using the non-heuristic approach. Using USEARCH the average MCC was 0.78309

(range: 0.75 to 0.80) and using VSEARCH the average MCC was 0.65 (range: 0.64 to 0.66). The310

two methods had similar sensitivities (USEARCH: 0.98 and VSEARCH: 0.97), but the USEARCH311

specificity (0.73) was considerably higher than VSEARCH (0.60). Overall, these results indicate312

that although heuristic approaches may be fast, they do a poor job of mapping reads to the correct313

reference sequence relative to non-heuristic approaches.314
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We also observed that regardless of whether we used USEARCH or VSEARCH, the reference OTU315

labels that were assigned to each OTU differed between randomizations. When we used USEARCH316

to perform closed-reference clustering, an average of 57.38% of the labels were shared between317

pairs of the 30 randomizations (range=56.14 to 59.55). If we instead used VSEARCH an average of318

56.23% of the labels were shared between pairs of the 30 randomizations (range=53.48 to 59.12).319

To better understand this result, we further analyzed QIIME’s reference database. We hypothesized320

that within a given region there would be sequences that were more than 97% similar and possibly321

identical to each other. When a sequence was used to search the randomized databases, it would322

encounter a different reference sequence as the first match with each randomization. Among323

those reference sequences that fully overlap the V4 region, there were 7,785 pairs of sequences324

that were more than 97% similar to each other over the full length of the 16S rRNA gene. When325

the extracted V4 sequences were dereplicated, we identified 88,347 unique sequences. Among326

these dereplicated V4 sequences there were 311,430 pairs of sequences that were more than327

97% similar to each other. The presence of duplicate V4 reference sequences explains the lack328

of labeling stability when using either USEARCH or VSEARCH to carry out the closed-reference329

method. We suspect that the reference database was designed to only include sequences that330

were at most 97% similar to each other as a way to overcome the limitations of the USEARCH331

search heuristic.332

Beyond comparing the abundance of specific OTUs across samples, the reference database is333

used in the open and closed-reference methods to generate OTU labels that are used in several334

downstream applications. It is commonly used to extract information from a reference phylogenetic335

tree to carrying out UniFrac-based analyses (Hamady, Lozupone & Knight, 2009) and to identify336

reference genomes for performing analyses such as PICRUSt (Langille et al., 2013). Because337

these downstream applications depend on the correct and unique labeling of the OTUs, the lack338

of stability of the labeling is problematic. As one illustration of the effects that incorrect labels339

would have on an analysis, we asked whether the duplicate sequences had the same taxonomies.340

Among the 3,132 reference sequences that had one duplicate, 443 had discordant taxonomies.341

Furthermore, among those 1,699 sequences with two or more duplicates, 698 had discordant342

taxonomies. Two sequences mapped to 30 and 10 duplicate sequences and both contained 7343
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different taxonomies. Among the sequences within the database, there was also a sequence344

that had 131 duplicates and contained 5 different taxonomies. When we analyzed the 28,238345

sequences that mapped to the reference sequences using a non-heuristic approach, we observed346

that 18,315 of the sequences mapped to more than one reference sequence. Of these sequences,347

13,378 (73.04%) mapped to references that were identical over the V4 region and 4,937 (26.96%)348

mapped equally well to two or more references that were not identical over the V4 region. Among349

the combined 18,315 sequences that mapped to multiple reference sequences, the taxonomy of the350

multiple reference sequences conflicted for 3,637 (19.86%). Together, these results demonstrate351

some of the considerable problems with the reference-based clustering of sequences.352

Conclusions353

It is worth noting that the entire design of the He study was artificial. First, their analysis was based354

on a single soil sample. Researchers generally have dozens or hundreds of samples that are pooled355

and clustered together to enable comparison across samples. Second, all of the sequence data356

from these datasets is pooled for a single analysis. It is unclear why anyone would ever perform an357

analysis based on a subset of their data. Because of these points, the value of identifying stable358

OTUs is unclear. Greater emphasis should be placed on obtaining an optimal balance between359

splitting similar sequences into separate OTUs and merging disparate sequences into the same360

OTU. Through the use of the pairwise distances between sequences, we were able to use the361

MCC to demonstrate that, in general, the AL method is consistently robust, but that Swarm, AGC,362

and DGC sometimes perform as well as AL. At least for the murine dataset, Swarm also could be363

among the least robust methods. Although there is concern that running the methods multiple times364

yields different clusterings, we have shown that there is little variation in their MCC values. This365

suggests that the different clusterings by the same method are equally good. Finally, it is impossible366

to obtain a clustering with no false positives or false negatives and the optimal method may vary by367

dataset. With this in mind, researchers are encouraged to calculate and report their MCC values368

for the AL method and at least one other method.369
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Our analysis of those methods that implemented USEARCH as a method for clustering sequences370

revealed that its heuristic limited its specificity. When we replaced USEARCH with VSEARCH, the371

clustering quality was as good or better. Although there may be parameters in USEARCH that can372

be tuned to improve the heuristic, these parameters are likely dataset dependent. Based on the373

data presented in this study, its availability as an open source, and free program, VSEARCH should374

replace USEARCH in the de novo clustering methods; however, USEARCH performed better375

than VSEARCH for closed-reference clustering. Furthermore, although not tested in our study,376

VSEARCH can be parallelized leading to potentially significant improvements in speed. Although377

USEARCH and VSEARCH do not utilize aligned sequences, it is important to note that a sequence378

curation pipeline including denoising, alignment, trimming to a consistent region of the 16S rRNA379

gene, and chimera checking are critical to making proper inferences (Schloss, Gevers & Westcott,380

2011; Schloss, 2012; Kozich et al., 2013).381

We have assessed the ability of reference-based clustering methods to capture the actual distance382

between the sequences in a dataset in parallel with de novo methods. Several studies have383

lauded both the open and closed-reference approaches for generating reproducible clusterings384

(Navas-Molina et al., 2013; Rideout et al., 2014; He et al., 2015), yet we have shown that both385

reference-based approaches did a poor job of representing the distance between the sequences386

compared to the de novo approaches. Although the OTU assignments are reproducible and stable387

across a range of library sizes, the reference-based OTU assignments are a poor representation of388

the data. We also observed that the assignments were not actually reproducible when the order389

of the reference sequences was randomized. When USEARCH was used, the actual number390

of sequences that mapped to the reference changed depended on the order of the reference.391

Perhaps most alarming was that the default order of the database provided the worst MCC of any392

of the randomizations we attempted. Even when we used VSEARCH to perform closed-reference393

clustering and were able to obtain a consistent clusterings, we observed that the labels on the394

OTUs differed between randomizations. Because the OTU labels are frequently used to identify395

representative sequences for those OTUs, variation in labels, often representing different taxonomic396

groups, will have a detrimental effect on the interpretation of downstream analyses.397
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Because the open-reference method is a hybrid of the closed-reference and DGC methods, it is398

also negatively affected by the various problems using USEARCH. An added problem with the399

open-reference method is that the two phases of the method employ different thresholds to define400

its OTUs. In the closed-reference step, sequences must be within a threshold of a reference to401

be in the same OTU. This means that two sequences that are 97% similar to a reference and are402

joined into the same OTU, may only be 94% similar to each other. In the DGC step, the goal is403

to approximate the AL method which requires that, on average, the sequences within an OTU404

are, on average, 97% similar to each other. The end result of the open-reference approach is that405

sequences that are similar to previously observed sequences are clustered with one threshold while406

those that are not similar to previously observed sequences are clustered with a different threshold.407

As the throughput of sequencing technologies have improved, development of clustering algorithms408

must continue to keep pace. De novo clustering methods are considerably slower and more409

computationally intensive than reference-based methods and the greedy de novo methods are faster410

than the hierarchical methods. In our experience (Kozich et al., 2013), the most significant detriment411

to execution speed of the de novo methods has been the inadequate removal of sequencing error412

and chimeras. As the rate of sequencing error increases so do the number of unique sequences413

that must be clustered. The speed of the de novo methods scales approximately quadratically, so414

that doubling the number of sequences results in a four-fold increase in the time required to execute415

the method. The rapid expansion in sequencing throughput has been likened to the Red Queen416

in Lewis Carroll’s, Through the Looking-Glass who must run in place to keep up to her changing417

surroundings (Schloss et al., 2009). Microbial ecologists must continue to refine clustering methods418

to better handle the size of the datasets, but they must also take steps to improve the quality of the419

underlying data. Ultimately, objective standards must be applied to assess the quality of the data420

and the quality of OTU clustering.421

Methods422

454 FLX-generated Roesch Canadian soil dataset. After obtaining the 16S rRNA gene423

fragments from GenBank (accessions EF308591-EF361836), we followed the methods outlined by424

17

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1466v1 | CC-BY 4.0 Open Access | rec: 30 Oct 2015, publ: 30 Oct 2015



the He study by removing any sequence that contained an ambiguous base, was identified as425

being a chimera, and fell outside a defined sequence length. Although they reported observing a426

total of 50,542 sequences that were represented by 13,293 unique sequences, we obtained a total427

of 50,946 sequences that were represented by 13,393 unique sequences. Similar to the He study,428

we randomly sampled, without replacement, 20, 40, 60, and 80% of the sequences from the full429

data set. The random sampling was repeated 30 times. The order of the sequences in the full430

dataset was randomly permuted without replacement to generate an additional 30 datasets. To431

perform the hierarchical clustering methods and to generate a distance matrix we followed the432

approach of the He study by calculating distances based on pairwise global alignments using433

the pairwise.dist command in mothur using the default Needleman-Wunsch alignment method434

and parameters. It should be noted that this approach has been strongly discouraged (Schloss,435

2012). Execution of the hierarchical clustering methods was performed as described in the original436

He study using mothur (v.1.37) and using the QIIME (v.1.9.1) parameter profiles provided in the437

supplementary material from the He study for the greedy and reference-based clustering methods.438

MiSeq-generated Murine gut microbiota dataset. The murine 16S rRNA gene sequence data439

generated from the V4 region using an Illumina MiSeq was obtained from http:/www.mothur.org/440

MiSeqDevelopmentData/StabilityNoMetaG.tar and was processed as outlined in the original study441

(Kozich et al., 2013). Briefly, 250-nt read pairs were assembled into contigs by aligning the reads442

and correcting discordant base calls by requiring one of the base calls to have a Phred quality443

score at least 6 points higher than the other. Sequences where it was not possible to resolve the444

disagreement were culled from the dataset. The sequences were then aligned to a SILVA reference445

alignment (Pruesse et al., 2007) and any reads that aligned outside of the V4 region were removed446

from the dataset. Sequences were pre-clustered by combining the abundances of sequences that447

differed by 2 or fewer nucleotides of a more abundant sequence. Each of the samples was then448

screened for chimeric sequences using the default parameters in UCHIME (Edgar et al., 2011).449

The resulting sequences were processed in the same manner as the Canadian soil dataset with450

the exception that the distance matrices were calculated based on the SILVA-based alignment.451

Analysis of reference database. We utilized the 97% OTUs greengenes reference sequence452

and taxonomy data (v.13.8) that accompanies the QIIME installation. Because the greengenes453
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reference alignment does a poor job of representing the secondary structure of the 16S rRNA gene454

(Schloss, 2010), we realigned the FASTA sequences to a SILVA reference alignment to identify the455

V4 region of the sequences.456

Calculation of Matthew’s Correlation Coefficient (MCC). The MCC was calculated by two457

approaches in this study using only the dereplicated sequence lists. First, we calculated the458

MCC to determine the stability of OTU assignments following the approach of the He study. We459

assumed that the clusters obtained from the 30 randomized full datasets were correct. We counted460

the number of sequence pairs that were in the same OTU for the subsetted dataset and the full461

dataset (i.e. true positives; TP), that were in different OTUs for the subsetted dataset and the full462

dataset (i.e. true negatives; TN), that were in the same OTU for the subsetted dataset and different463

OTUs in the full dataset (i.e. false positives; FP), and that were in different OTUs for the subsetted464

dataset and the same OTU in the full dataset (i.e. false negatives; FN). For each set of 30 random465

subsamplings of the dataset, we counted these parameters against the 30 randomizations of the466

full dataset. This gave 900 comparisons for each fraction of sequences being used in the analysis.467

The Matthew’s correlation coefficient was then calculated as:468

MCC =
TP × TN − FP × FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Second, we calculated the MCC to determine the quality of the clusterings as previously described469

(Schloss & Westcott, 2011). Briefly, we compared the OTU assignments for pairs of sequences to470

the distance matrix that was calculated between all pairs of aligned sequences. For each dataset471

that was clustered, those sequences that were in the same OTU and had a distance less than472

3% were TPs, those that were in different OTUs and had a distance greater than 3% were TNs,473

those that were in the same OTU and had a distance greater than 3% were FPs, and those that474

were in different OTUs and had a distance less than 3% were FNs. The MCC was counted for475

each dataset using the formula above as implemented in the sens.spec command in mothur. To476

judge the quality of the Swarm-generated OTU assignments we calculated the MCC value using477

thresholds incremented by 1% between 0 and 5% and selected the threshold that provided the478

optimal MCC value.479
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Software availability. A reproducible workflow including all scripts and this manuscript as a literate480

programming document are available at https://github.com/SchlossLab/Schloss_Cluster_PeerJ_481

2015. The workflow utilized QIIME (v.1.9.1; Caporaso et al., 2010), mothur (v.1.37.0; Schloss et al.,482

2009), USEARCH (v.6.1; Edgar, 2010), VSEARCH (v.1.5.0; Rognes et al., 2015), Swarm (v.2.1.1;483

Mahé et al., 2014), and R (v.3.2.0; R Core Team, 2015). The SL, AL, and CL methods are called484

nearest neighbor (NN), average neighbor (AN), and furthest neighbor (FN) in mothur; we have485

used the terminology from the He study to minimize confusion. The knitr (v.1.10.5; Xie, 2013), Rcpp486

(v. 0.11.6; Eddelbuettel, 2013), rentrez (v. 1.0.0; Winter, Chamberlain & Guangchun, 2015), and487

jsonlite (v. 0.9.16; Ooms, 2014) packages were used within R.488
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Figures489

Figure 1. Comparison of the stability (A, B) and quality (C, D) of de novo and490

reference-based clustering methods using the Canadian soil dataset. The average491

stability of the OTUs were determined by calculating the MCC with respect to the OTU assignments492

for the full dataset using varying sized subsamples (A). Thirty randomizations were performed for493

each fraction of the dataset and the average and 95% confidence interval are presented when using494

60% of the data. The quality of the OTUs were determined by calculating the MCC with respect to495

the distances between the sequences using varying sized subsamples (C). Thirty randomizations496

were performed for each fraction of the dataset and the average and 95% confidence interval are497

presented when using the full dataset (D). The vertical gray line indicates in A and C indicates498

the fraction of the dataset represented in B and D, respectively. The optimum threshold for the499

Swarm-generated assignments was 3%.500

Figure 2. The clustering methods varied in their ability to generate the same number of501

OTUs using a subset of the data as were observed when the full dataset was rarefied. The502

subsetted data are depicted by closed circles and the data from the rarefied full dataset is depicted503

by the open circles.504

Figure 3. Comparison of the stability (A, B) and quality (C, D) of de novo and505

reference-based clustering methods using the murine dataset. The average stability of506

the OTUs were determined by calculating the MCC with respect to the OTU assignments for the507

full dataset using varying sized subsamples (A). Thirty randomizations were performed for each508

fraction of the dataset and the average and 95% confidence interval are presented when using509

60% of the data. The quality of the OTUs were determined by calculating the MCC with respect to510

the distances between the sequences using varying sized subsamples (C). Thirty randomizations511

were performed for each fraction of the dataset and the average and 95% confidence interval are512

presented when using the full dataset (D). The vertical gray line indicates in A and C indicates513

the fraction of the dataset represented in B and D, respectively. The optimum threshold for the514

Swarm-generated assignments was 2%.515
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Figure 4. The VSEARCH OTUs generated by the AGC and DGC methods were comparable516

to those generated using USEARCH.517
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