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ABSTRACT11

Data analysis tools have become essential to the study of biology. Tools available today were constructed
with layers of technology developed over decades. Here, we explain how some of the principles used
to develop this technology are sub-optimal for the construction of data analysis tools for biologists. In
contrast, we applied language workbench technology (LWT) to create a data analysis language, called
MetaR, tailored for biologists with no programming experience, as well as expert bioinformaticians and
statisticians. A key novelty of this approach is its ability to blend user interface with scripting in such a
way that beginners and experts alike can analyze data productively in the same analysis platform. While
presenting MetaR, we explain how a judicious use of LWT eliminates problems that have historically
contributed to data analysis bottlenecks. These results show that language design with LWT can be a
compelling approach for developing intelligent data analysis tools.
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The modern tools of biology often require biologists to rely on software tools for data analysis. For14

instance, software tools are required for analysis of high-throughput data, for the study of genome-wide15

gene expression, genetic or epigenetic. Similarly, most fields of biology require specialized software tools16

for analysis of microscopy, crystallography or other data. Most analysis software is constructed in a very17

similar manner: writing a program as a collection of text source code that is compiled into one or more18

executable analysis tools. Despite the evolution of programming languages, encoding programs as text19

has been a constant since the invention of the first high-level programming language (FORTRAN Backus20

[1958, 1978]).21

In this manuscript, we discuss several drawbacks of encoding programs as text that we believe22

contribute to common challenges encountered by data analysts. Language Workbenches (LWs) with23

projectional editors offer an alternative to storing source code as text. These approaches were conceived24

in the 90s Simonyi [1995] and have since led to the development of robust software development25

environments Dmitriev [2004], Erdweg et al. [2013]. For this study, we used the Meta-Programming26

System (MPS, http://jetbrains.com/mps), a robust and open-source LW to explore whether27

LW technology (WLT) can help develop improved data analysis tools.28

One question we were particularly interested in testing was whether we could create an analysis tool29

that would blend the boundary between programming/scripting languages and graphical user interfaces.30

Programming languages such as the R language Ihaka and Gentleman [1996] are frequently preferred for31

data analysis by experts. They have so far been the most flexible and powerful tools for data analysis, but32

require a steep learning curve. In contrast, beginners tend to prefer data analysis software with a graphical33

user interface, which are easier to learn, but eventually are found to lack flexibility and extensibility.34

We reasoned that blending these two types of interfaces into one tool could provide a simpler way for35

beginners to learn elements of scripting, improve repeatability and reproducibility of their analyses, and36

increase their productivity.37

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1465v2 | CC-BY 4.0 Open Access | rec: 12 Dec 2015, publ: 12 Dec 2015



We found that LWT made it straightforward to develop a data analysis tool that blends the distinction38

between graphical user interface and scripting. If implementation was straightforward, our design of a39

novel type of analysis tool was an iterative process that benefited from frequent feedback from users of40

the tool. In this manuscript, we describe the goals of the language, explain how the tool can be used, and41

highlight the most innovative aspects of the language compared to other tools used for data analysis, such42

as the R language Ihaka and Gentleman [1996] or electronic notebooks.43

The initial focus of MetaR was on analysis of RNA-Seq data and the creation of heatmaps, but the44

tool is general and can be readily extended to support a broad range of data analyses. For instance, we45

have used MetaR to analyze data in a study of association between the allogenomics score and kidney46

graft function Mesnard et al. [2015]. We chose to focus on the construction of heatmaps as a use case and47

illustration for this study because this activity is of interest to many biologists who obtain high-throughput48

data.49

Interestingly, we found that both beginners and experts can benefit from blending user interfaces and50

scripting. Beginners benefit because the MetaR user interface is much simpler to learn than the full R51

programming language. Expert users benefit because they can develop high-level language elements52

to simplify repetitive aspects of data analysis in ways that text-based programming languages cannot53

achieve.54

LANGUAGE WORKBENCH TECHNOLOGY PRIMER55

Since many readers may not be familiar with LWT, this section briefly describes how this technology56

differs from traditional text-based technology.57

Text-based programming languages are implemented with compilers that internally convert the text58

representation of the source code into an abstract syntax tree (AST), a data structure used when analyzing59

and transforming programming languages into machine code.60

In the MPS LW, the AST is also a central data structure, but the parsing elements of the compilers are61

replaced with a graphical user interface (called a projectional editor) that enables users to directly edit the62

data structure. Where text-based languages are restricted to programs written as text, a projectional editor63

can support both textual and graphical user interfaces (such as images, buttons, tables or diagrams) Voelter64

and Solomatov [2010]. Projectional editors can also offer distinct views of the same AST, implemented as65

alternative editors. Projectional editors keep an AST in memory until the user saves the program. Saving66

an AST to disk is done using serialization (loading is conversely done via deserialization to memory AST67

data structures).68

The choice of serialization rather than encoding with text has a profound consequence. Serialization69

uniquely identifies the concept for each node in an AST. This method makes it possible to combine AST70

fragments expressed with different languages, when the concept hierarchy of the languages supports71

composition. We have presented examples of language composition in Simi and Campagne [2014],72

Benson and Campagne [2015]. In this manuscript, we extensively use language composition to extend the73

R language and provide the ability to embed user interfaces into R programs.74

Abstract Syntax Tree (AST)75

An AST is a data structure traditionally used by compilers as a step towards generating machine code.76

In the MPS Language Workbench, an AST is a tree data structure, where nodes of the tree are instances77

of concepts (in the object-oriented sense). Figure 1 illustrates the notion of AST nodes, concepts and78

projectional editor.79

AST concepts may have properties (values of primitive types), children (lists of other nodes they80

contain), references (links to other nodes defined elsewhere in the AST). An AST has always a root node,81

which is used to start traversing the tree. In the MPS LW, AST root nodes are stored in models.82

Languages83

In the MPS LW, languages are defined as collection of concepts, concept editors (which together implement84

the user interface for the language), and other language aspects Campagne [2014]. Each language has a85

name which is used to import, or activate, the language inside a model. After importing a language into a86

model, it becomes possible to create ASTs with this language in the model. Creating an AST starts with87

the creation of a root node. Children of the root node are added using the projectional editor. Children of88

root nodes, properties and references can be edited interactively in the editor.89
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R SCRIPT

EXPRESSION

operator

IDENTIFIER

right

DemoScript.R

a

1 2

+

<-

B. Nodes: 
Program
represented 
as AST

A. Program AST projected in the editor C. Language
Concepts

left

BINARY
EXPRESSION

Figure 1. Concepts, Nodes and Projectional Editor. Panel A: Projectional editor showing a simple R
script with one assignment expression. Panel B: An abstract syntax tree is shown with nodes that
correspond to the program in panel A. Panel C: Language Concepts for the nodes in Panel (B) (shown as
blue boxes). Each concept is connected to other concepts with an open-ended arrow to indicate
inheritance (e.g., A <- B indicates that B is a sub-concept of A). Green boxes indicate fields of a
concept and are connected to the concept that has these fields by a line with a black diamond on the
concept that owns the field. This shows that BinaryExpression is a concept that is an
Expression and has three fields: left, operator and right. Dotted lines connect nodes to their
concept. For instance, the <- and + nodes are instances of BinaryExpression.
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DESIGN OF A HIGH-LEVEL DATA ANALYSIS LANGUAGE90

Several decisions must be made when designing a new computational language. Most decisions are driven91

by design goals. We have designed the MetaR language to address the following goals:92

1. The language should help users who have no knowledge of programming. The goal is to offer a93

smooth learning curve for beginners used to GUIs. We favor declarative language constructs over94

flexibility in parts of the language aimed at beginners.95

2. Since a table of data is a frequent input when working with high-throughput data, make Table a first96

class element of the design. Leverage this element to simplify the annotation of the columns of a97

table. We rely on the idea that a little formalism (e.g., annotation of table columns) goes a long way98

to simplify analysis scripts.99

3. Eliminate the need to know the language syntax to help beginners get started quickly. We leverage100

the MPS LW and its projectional editor to this end (Voelter and Solomatov [2010]). The MPS101

projectional editor provides interactive features, such as auto-completion, that provide guidance to102

beginners and experts alike when using the language to develop analyses.103

4. Provide the ability to blend a scripting language with a graphical user interface. We use language104

composition and the ability of the MPS LW to render nodes with a mix of text and graphical user105

interface components.106

5. Offer essential data transformations (e.g., joining two tables, taking subsets of rows of a table) via107

simple, yet composable language elements.108

6. Provide means for experts to use their knowledge of the R language to work-around cases when109

the MetaR language is not sufficiently expressive to perform a specific analysis. We offer the110

ability to embed R code inside a MetaR analysis, as well as the ability to write scripts in the R111

language. In both instances, this variant of the R language supports language composition and112

enables embedding graphical user interfaces inside script fragments.113

High-level Design Choices114

In addition to these goals, the design of MetaR included several strategic choices. We now present these115

choices and their rationales:116

Choice of a Target Language and Runtime System A language needs a runtime system to execute the117

code of programs written in the language. A possible choice for a runtime is to target another high-level118

language (such as Java, or C) but this would require implementing all aspects of data manipulation in the119

target language. Since the R language (Ihaka and Gentleman [1996]) is widely used for data analysis in120

biology, we considered using it as a runtime system. Experts biostatisticians and bioinformaticians have121

developed many R packages that implement advanced analysis for biological high-throughput data. These122

packages can be used to simplify the implementation of a runtime system for a new data analysis language.123

We therefore decided that the MetaR language would generate R code in order to take advantage of the124

packages developed in this language. This decision greatly simplified the implementation of the MetaR125

language because it removed the need to develop a custom language runtime system.126

Data Object Surrogates MetaR makes extensive use of Data Object Surrogates (DOS, our terminology).127

A data object surrogate is an object that represents other data (the source data). The surrogate often128

contains only limited information from the original data source. The DOS contains just enough to facilitate129

referring to the source data in another context for the purpose of data analysis, but not as much as to130

represent the entire content of the data source in memory. A good example of DOS is the Table object,131

which stores information about the columns of a data file. The Table DOS describes the columns of the132

table, but does not store the data contained in the table. A DOS typically has a name which can be used133

to refer to the DOS and its source data inside a MetaR model. References to table DOS help users refer134

to the table as they develop an analysis. Our use of the MPS LW facilitates the creation of DOS. In the135

MPS LW, we model DOS as concepts of the language. For instance, the Table DOS is represented by a136

Table concept, whose instances can be created in a model as root nodes. DOS are also used in MetaR to137

represent plots.138
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Immutable Data Objects Many programming languages (of which C, C++, Java, Perl, Python and R139

are members) make it possible to define variables or objects whose values can be changed (so called140

mutable variables). While this provides flexibility, it is a frequent source of confusion for beginners until141

they have developed their own mental model of how program steps modify variable values. During the142

design of MetaR, we chose to offer immutable objects rather than mutable variables when possible. This143

makes MetaR analyses easier to reason about because the value of objects cannot be changed after the144

object is created. Note that design decision does not prevent adding mutable variables to the MetaR145

language, but simplifies initial learning of the language by complete beginners.146

Organization into Languages147

We designed MetaR as a collection of MPS languages. The main language, org.campagnelab.metar is148

aimed at beginners with limited computational experience.149

In the next section, we explain how the MetaR language can be used from the point of view of an150

end-user. This section also includes highlights of features that differ from the state of the art in data151

analysis. Please note that exhaustive reference documentation is available elsewhere (see Campagne152

and Simi [2015]) and the goal of the following paragraphs is to provide a sufficient introduction to data153

analysis with MetaR that readers can understand the impact of the innovations we tested in developing154

this tool.155

The MetaR Language156

Tables157

An example of an immutable DOS is the MetaR Table object. In MetaR, objects of type Table represent158

tabular data with columns and rows of data. An example of a MetaR Table is shown in Figure 2. A159

MetaR Table is associated to a data file that contains the actual data of the table in a Tab-Separated Value160

(TSV). The location of the data file can be specified using Variables (i.e., ${project}), which offer161

independence from the local file system structure, and are particularly useful when keeping analyses162

under source control). A table has columns. Columns have names and types, which determine how data163

in each column is used. Types of data include string, numeric, boolean and enumeration (a small number164

of pre-defined categories, such as Male and Female). Figure 2 presents a table of RNA-Seq read counts165

which was obtained from the Gene Expression Omnibus Seguin-Estevez et al. [2014] and annotated to166

enable analysis with MetaR.167

Annotating a Table consists of two steps: (1) browsing to the file that contains the data. This can be168

accomplished by clicking on the file dialog button (the little square with ...) to locate the file. Upon169

selection of a valid file, the MetaR table node inspects the file and determines column names and types.170

Names and types are then shown in the Table node (under the Columns heading). (2) Specific columns171

can be annotated with one or more Column Groups.172

Users can define arbitrary Column Groups in a different node called “Column Groups and Usages”173

(shown on the right of Figure 2). If two columns are related, user can define a Group Usage to explicitly174

document the relation. For instance, in Figure 2, the usage LPS Treatment is defined to indicate that175

the Column Groups LPS=no and LPS=yes are two kinds of LPS treatments.176

Tables and their annotations help users formalize information about data in a table. We find that177

asking the user to provide such information early on is beneficial because the structure of annotations can178

be leveraged in other parts of the language to provide intelligent auto-completion, customized for each179

table of data (for instance, to provide auto-completion for column names when writing expressions, or to180

select columns to use when joining two tables, examples of intelligent auto-completion is provided in the181

following sections, see Figure 3).182

For instance, in the dataset of Seguin-Estevez et al. [2014], users can indicate which columns contain183

data for samples that were treated (LPS=yes) with lipopolysaccharide (LPS) or not (LPS=no). MetaR184

facilitates the data curation steps of a data analysis project by offering an interactive user interface to185

help users keep track of annotations. The interface is interactive in several ways: group names can be186

auto-completed to the groups defined in the “Column Group and Usage” object. Menus are available to187

add column group annotations to a set of columns that the user has selected. In addition to LPS treatment,188

Figure 2 shows the count annotation, used in an RNA-Seq differential expression analysis to identify189

which columns contain read counts, the ID column group, which uniquely identifies specific rows of the190

data table and the heatmap column group, used to choose which columns groups should be heatmap.191
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Table GSE59364_DC_all.csv ...
File Path

${project}/data/GSE59364_DC_all.csv
Columns

gene: string [ ID ]
mRNA len: numeric
genomic span: numeric
DC_normal: numeric
DC_treated: numeric
DC0904: numeric [ counts, LPS=no ]
DC0907: numeric [ counts, LPS=no ]
DCLPS0910: numeric [ counts, LPS=yes ]
DCLPS0913: numeric [ counts, LPS=yes ]
A_DC: numeric [ counts, LPS=no ]
A_DC_LPS: numeric [ counts, LPS=yes ]
B_DC: numeric [ counts, LPS=no ]
B_DC_LPS: numeric [ counts, LPS=yes ]
C_DC: numeric [ counts, LPS=no ]
C_DC_LPS: numeric [ counts, LPS=yes ]
C2DC: numeric [ counts, LPS=no ]
C2DCLPS: numeric [ counts, LPS=yes ]
C3DC: numeric [ counts, LPS=no ]
C3DCLPS: numeric [ counts, LPS=yes ]

Column Groups and Usages

Define Usages:
LPS_Treatment
heatmap

Define Groups:
ID used for << ... >>
LPS=yes used for LPS_Treatment heatmap
LPS=no used for LPS_Treatment heatmap
counts used for << ... >>

Figure 2. Table and Column Group objects. This figure presents the Table and Column Group
objects. Green arrows show some cross-references among nodes of Tables and Column Groups. For
instance, the ID group used to annotate the gene column is a reference to the ID group defined under the
Column Group and Usage Container.

This illustrates that the table annotation mechanism is flexible and can be leveraged by specific statements192

of the language, in order to indicate that the statement needs data annotated in a certain way.193

Analyses194

Analyses make it possible for users to express how data is to be analyzed. Figure 3 presents a MetaR195

Analysis node. This analysis is the one we use as a worked example during training sessions we offer at196

our institution. The editor of an analysis node offers an interface similar to that of a script in a traditional197

editor, but provides a more interactive and intelligent user interface. For instance, auto-completion198

is available at every point inside an analysis and suggests possible elements of the language that are199

compatible with the context at the cursor position.200

The user may accept a suggestion and this results in the insertion of the language element at the201

position of the cursor. When the context calls for referencing a column of a table, for instance, only202

columns of Tables available at this point of the analysis are shown. While it is still possible to make203

mistakes when using this interface, mistakes created as a result of typos are less common than in programs204

encoded as text, for two reasons:205

• Auto-completion offers a convenient way to set references between objects. Accepting an auto-206

completion suggestion helps users avoid typos.207

• Some users choose not to use auto-completion to set references and instead type a referenced node208

name. In this case, mis-typed names that cannot be resolved to a valid node are highlighted in red209

and in the right margin of the editor (this feature of the MPS LW is available for all languages210

developed with the MPS platform). This highlighting draws the attention of the user to the error or211

typo. This feature is also important when merging different versions of an analysis placed under212

source control or when combining analyses from parts of other analyses (e.g., errors will be clearly213

marked after a code fragment is pasted into a new analysis).214

Auto-completion help is available for the various types of references supported by the MetaR language.215

Examples of these can be seen on Figure 3 for tables (whose names are in green), plots (whose names are216
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Analysis Limma analysis
{

import table GSE59364_DC_all.csv

subset rows GSE59364_DC_all.csv when true: $(gene) != "Total" -> filtered
limma voom counts= filtered model: ~ 0 + LPS

comparing LPS=YES - LPS=NO -> Results

join ( filtered, Results ) by group ID -> MergedResults
subset rows MergedResults when true: ($(adj.P.Val) < 0.0001) & ($(logFC) > 2 | $(logFC) < -2) -> 1% FDR
heatmap with 1% FDR select data by one or more group LPS=YES, group LPS=NO -> plot HeatmapStyle [

annotate with these groups: LPS
scale values: scale by row
cluster columns: false cluster rows: true

]

multiplot -> PreviewHeatmap [ 1 cols x 1 rows ] Hide preview

[ plot ]

render plot as PDF named "heatmap.pdf" ... 72dpi
write Results to "results.tsv" ...

}

A_D
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B_D
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D
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−1
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Figure 3. MetaR Analysis. The Analysis node is composed of a list of statements. This analysis works
with the table of data presented in Figure 2, removes the row of data where the value Total appears in
the gene column, performs statistical modeling with Limma Voom to identify genes differentially
expressed between LPS treated and control samples, constructs a heatmap and displays the plot as a
preview. Finally, the analysis converts the plot to PDF format and writes the joined table (statistics and
counts) in the results.tsv file.

in blue), styles (names shown with a green background and white foreground, such as HeatmapStyle), or217

Column Group names (shown with a blue grey background and black foreground). Pressing control-B218

(or command-B on Mac) with the cursor on these nodes navigates to the destination of the reference (a219

menu is also available to help novice users discover this navigation mechanism). References may point to220

children nodes defined inside an analysis (e.g., plots), or nodes defined outside the analysis (e.g., tables221

and column groups).222

Importantly, the MetaR user interface can also display buttons and images directly as part of the223

language. This feature takes advantage of the ability of the MPS LW to embed arbitrary graphical elements224

in the projectional editor. This capability is illustrated in Figure 3 by the “Hide Preview” button and by225

the heatmap image shown immediately below the multiplot keyword (pressing this button hides the226

plot preview).227

The level of interactivity provided by the MetaR user interface is best conveyed by watching video228

recordings of its use. We provide training videos at http://metaR.campagnelab.org that help229

illustrate how much more interactive the MetaR language is compared to other languages commonly used230

for data analysis.231

Language Composition and Micro-Languages232

Since MetaR is implemented as a set of MPS languages, it fully supports language composition (Voelter233

and Solomatov [2010]). Language composition has no equivalent in text-based programming languages234

and many readers may be therefore unfamiliar with this technique. We will use an example to explain the235

advantage of this technique for data analysis.236
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Consider the table of results produced by the analysis shown in Figure 3. Users are likely to need237

to annotate the subset of genes found differentially expressed with gene names and gene descriptions.238

Information such as this is available in the Biomart system Haider et al. [2009].239

To illustrate language composition, we created a new kind of MetaR statement called query240

biomart, which we defined in a micro-language. A micro-language is a language which provides241

only a few concepts meant to extend a host language. In this case, the MetaR language is the host242

language and query biomart is a concept contributed by the the micro-language. The purpose of this243

concept is to connect to Biomart and retrieve data. In the R language, this functionality is provided as a244

BioConductor package (called “biomaRt”, Durinck et al. [2005])245

Analysis Micro Language Example
{

import table results.tsv
query biomart database ENSEMBL GENES 81 (SANGER UK) and dataset Homo sapiens genes (GRCh38.p3)

get attributes HGNC symbol from feature of types string with column group annotation select a group
Description from feature of types string with column group annotation select a group
Ensembl Gene ID from feature of types string with column group annotation ID

filters HGNC symbol(s) [e.g. NTN3] from results.tsv when true: $(adj.P.Val ) < 0.01
-> resultFromBioMart

join ( resultFromBioMart , results.tsv ) by group ID -> Annotated Results
}

Figure 4. Example of Micro-language Composition. The query biomart stament is defined in a
micro-language called org.campagnelab.metar.biomart, which extends the host language
org.campagnelab.metar.tables. The biomart language provides one statement that offers an interactive
user interface to help users retrieve data from biomart. This language reuses expressions and tables from
the host language. Micro-languages can be enabled or disabled dynamically by the end-user at the level
of a model. This example retrieves Human ENSEMBL identifiers and gene descriptions using the HGNC
gene symbols used as identifiers in the Results table (see Figure 3 for the analysis that produced Results).

Querying Biomart in R consists in calling one of the functions defined in the package with specific246

parameters. The statement is very specialized, and for this reason would not typically be part of the core247

statements of a text-based programming language. Leveraging language composition, we can offer a248

dedicated statement that supports auto-completion in a remote Biomart instance. The statement acts as a249

specialized user interface designed to help users retrieve data from Biomart (in very much the same way250

that the web-based interface to Biomart helps users query this resource, but here completely integrated251

with the MetaR host language).252

Figure 4 illustrates how the query biomart statement can be used to obtain gene annotations. In or-253

der to use these statements, end-users of MetaR would declare using both the org.campagnelab.metar.tables254

(the host language) and org.campagnelab.metar.biomart (the micro-language). In this specific case, the255

micro-language is provided with the MetaR distribution, but end-users can also implement other micro-256

languages to seamlessly combine them with the host language (the process for doing so is described in257

the MetaR documentation booklet Campagne and Simi [2015], Chapter 10). This capability makes it258

possible to customize the data analysis process for specific problems in much more flexible ways than259

would be possible with text-based programming languages: with the query biomart statement, we260

demonstrated that it is possible to remotely query databases to support auto-completion directly in the261

language. In contrast, text-based languages can only be extended in ways compatible with the syntax of262

the programming language, and are not able to support such levels of interactivity.263

Composable R language264

In addition to the MetaR language illustrated in Figure 2-4, we have developed a composable R language.265

This language models the traditional R language Ihaka and Gentleman [1996], but supports language266

composition. Composable R is implemented in the language org.campagnelab.metar.R distributed with267

MetaR. R programs can be pasted in text form into an RScript root node and the text is parsed and268

converted to nodes of the composable R language. In Figure 5, we show the R code equivalent to the269

analysis shown in Figure 4. This R script was pasted from the text generated automatically from the270

MetaR analysis shown in Figure 4. Executing this script is supported in the MPS LW and yields the same271

result that of the simpler MetaR script shown in Figure 4.272
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R Example.R
libDir <- "/Users/fac2003/.metaRlibs "
dir.create(file.path(libDir), showWarnings = FALSE, recursive = TRUE) .libPaths(c(libDir))

dir.create(file.path("/Users/fac2003/R_RESULTS/manuscript "), showWarnings = FALSE, recursive = TRUE)
if ( ! ( require("biomaRt") ) ) {

if ( ! require("BiocInstaller") ) {
source("http://bioconductor.org/biocLite.R ",

local = TRUE)
}

biocLite(ask = FALSE, c("biomaRt")) library("biomaRt")
}

if ( ! require("plyr") ) {...} if ( ! require("data.table") ) {...}
results.tsv <- fread("/Users/fac2003/MPSProjects/git/metar/data/manuscript/results.tsv ",

colClasses = c("character", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric"))
cat("STATEMENT_EXECUTED/1382062817028347486/\n ")
queryBiomart_1382062817028347636 <- function ( <no parameters> ) {

output <- c()
thisDataset <- "hsapiens_gene_ensembl "
thisMart <- useMart("ensembl", dataset =
thisDataset) attributes <- c("hgnc_symbol", "
description", "ensembl_gene_id ")
filtersVector = c() valuesList = c()
filtersVector <- c(filtersVector, "
hgnc_symbol")
data <- results.tsv[

( results.tsv$ "adj.P.Val" < 0.01 )
]

valuesList <- c(valuesList, list(tableIds =
as.vector(data$ genes))) output <- getBM(
attributes = attributes, mart = thisMart,
filters = filtersVector, values = valuesList)
colnames(output) <- c("
HGNC_symbol_from_feature ", "
Description_from_feature ", "
Ensembl_Gene_ID_from_feature ") return(
data.table(output, key = colnames(output)))

}
queryBiomart_1382062817028347636 ( ) -> resultFromBioMart
write.table(resultFromBioMart , "/Users/fac2003/R_RESULTS/manuscript/table_resultFromBioMart_0.tsv ",
row.names = FALSE, sep = "\t")

cat("STATEMENT_EXECUTED/1382062817028347636/\n ")
setkey(resultFromBioMart , "Ensembl_Gene_ID_ from_feature") setkey(results.tsv, "genes")
results.tsv <- rename(results.tsv, c(genes = "Ensembl_Gene_ID_from_feature "))
tableSuffixes = c("", "")
joiningColumns = c("Ensembl_Gene_ID_from_feature ")
nextTableToMergeInto = resultFromBioMart nextTableToMergeFrom = results.tsv

mergedresults.tsv <- merge(nextTableToMergeInto , nextTableToMergeFrom , by = joiningColumns ,
suffixes = tableSuffixes) nextTableToMergeInto = mergedresults.tsv

Annotated_Results <- mergedresults.tsv rm(mergedresults.tsv )
Annotated_Results <- Annotated_Results [  , "genes" := Annotated_Results $ "Ensembl_Gene_ID_from_feature " ]

results.tsv <- rename(results.tsv, c(Ensembl_Gene_ID_from_feature = "genes"))
write.table(Annotated_Results , "/Users/fac2003/R_RESULTS/manuscript/table_Annotated_Results_0.tsv ",
row.names = FALSE, sep = "\t") cat("STATEMENT_EXECUTED/1382062817033011970/ ")

Figure 5. R language equivalent of the Analysis shown in Figure 4. To produce this figure, the
analysis shown in Figure 4 was generated to the R language and the text was pasted in a RScript node of
the composable R language. Automatic parsing of the R code into composable R objects yields a
composable R version of the biomart example. Notice that boiler plate code needed to import R packages
is shown only for the biomaRt package. Subsequent package import statements have been folded {...}
to save space in the Figure. Folding is directly supported by the MPS LW. Function calls are highlighted
in green and are linked to the function declaration in the package stub (end-user can navigate to each
function to review its list of arguments, for instance). Comparing the complexity of this code with the
equivalent MetaR code shown in Figure 4 makes a strong case for the need for simplified languages for
data analysis.
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Micro-Languages for the R Language273

A composable R language makes it possible to create micro-languages that compose directly with R as274

the host language. We demonstrate this capability by adapting the query biomart statement shown in275

Figure 4 to the R language. Adaptation is simple because both MetaR and R generate to the same target276

language (R). In this case, we create a sub-concept of Expr (this type represents any R expression), and277

define a field of type Biomart (the concept that implements query biomart). This simple adapter is278

sufficient to make it possible to use the query biomart user interface inside an R script and is defined279

in the language org.campagnelab.metar.biomartToR. The result of composing the adapter language with280

composable R is shown in Figure 6. We also provide a short video to illustrate the interactive capabilities281

of a micro-language combined with composable R (see https://youtu.be/ZwGj1RPOODQ).282

This example illustrates that a composable R language makes it possible to mix regular R code with283

new types of language constructs that can include user interfaces elements. This opens up new possibilities284

to facilitate repetitive analyses in R, for instance for specific data science domains (e.g., the Biomart285

example is useful for bioinformatic data analyses), but also for more general activities where simpler ways286

to perform a task would be beneficial. An example of this would be a micro-language to facilitate the use287

of packages to replace the boiler-plate package import code found at the beginning of most R scripts.288

QueryBiomartInR.R
if ( ! require("data.table") ) {

install.packages ("data.table", repos = "http://cran.us.r-project.org ")
library("data.table")

}
if ( ! require("biomaRt") ) {...}
if ( ! require("graphics") ) {...}

query biomart database ENSEMBL FUNGI 29 (EBI UK) and dataset Aspergillus terreus genes (Broad (CADRE))
get attributes % identity from aflavus homologs of types string with column group annotation select a group
filters << ... >>
-> resultFromBioMart
[BioMart]

pdf("histogram.pdf")
hist(resultFromBioMart $percent_identity_from_aflavus_homologs )
dev.off()

Figure 6. Composing Query Biomart with the composable R language. We developed an adapter
that makes it possible to use the MetaR query biomart statement directly inside a composable R
Script. This figure shows how the query biomart Expression adapter appears when used inside an R
script. Notice how the table and column adapters are used inside a regular hist() function call
resultFromBioMart$percent identity from aflavus homologs. These adapters make
it possible to refer to the table produced by the statement as an R expression and provide auto-completion
for column names in the table (determined dynamically based on the query expressed in the query
biomart statement).

Using R Expressions in the MetaR Language289

Figure 7 illustrates that language composition can also be used to embed R expressions inside a MetaR290

analysis. This extension is possible because both analyses and R expressions generate code compatible291

with the syntax of the R programming language. Providing a way to embed the full language in a simpler292

analysis language offers a guarantee that the end-user will not be overly limited by restrictions of the293

simpler language.294

SOFTWARE295

MetaR is distributed as a plugin of the MPS LW. Instructions for installing the software are available296

online at http://metaR.campagnelab.org. Briefly, after installing MPS, users can download297

and activate plugins with the Preferences/Plugins (Mac) or Settings/Plugins (Windows/Linux) menu.298

Plugins are stored as Zip files on the Jetbrains Plugin repository https://plugins.jetbrains.299

com/category/index?pr=mps&category_id=92 and can also be downloaded and installed300

manually from the zip file. Source code (technically, MPS languages serialized to files) are distributed301

on GitHub at https://github.com/campagnelaboratory/MetaR Campagne et al. [2015].302

MetaR (and the MPS LW) are distributed under the open-source Apache 2.0 license.303
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Figure 7. Composing R Expressions with the MetaR Language. Top panel: this example illustrates
that it is possible to use R code inside a MetaR analysis. In this snapshot, R code is delimited by the — R
and R — markers and shown with a blue background. Embedding R code in MetaR provides flexibility to
perform operations for which MetaR statements have not yet been developed. The analysis shown
simulates a dataset using simple parameters and tests the ability of Limma voom, as integrated with
MetaR, to call differentially expressed genes. Bottom panel: shows the result of executing the analysis
inside the MPS LW. As part of execution, the analysis is converted to R code, this code is run and
standard output displayed inside the LW. The STATEMENT EXECUTED// lines hyperlink the progress
of the execution with each specific analysis statement that has been executed.

DISCUSSION304

Data Object Surrogates and Relation to Meta Data305

DOS are related, but different from metadata. For instance, the Table DOS provides metadata about the306

file that contains the tabular data represented by Table nodes. It lists columns, associates columns to307

groups and defines group usages. This type of information can be thought of as metadata about the file308

that contains the tabular data. However, there is an important difference between DOS and metadata. For309

instance, a MetaR Table only provides metadata relevant to the analysis that the user needs to perform. It310

makes no effort to provide information that would have a meaning outside of the user’s analysis. This311

simplification maximizes the benefit of annotation while keeping the effort needed to produce it minimal312

and local to the user who actually needs the annotation.313

Graphical User Interfaces for Data Analysis314

Programs with graphical user interfaces (GUIs) (also called direct manipulation interfaces Galitz [2007])315

are often popular among beginners who are starting with data analysis and have no programming or316
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scripting experience. GUIs are popular in part because they facilitate discovery of software functionality317

directly when using the software. They do not require prior-knowledge of syntax.318

Data Analysis software with GUIs constrains how analysis is to be performed and provides clear319

menus and buttons that make it obvious what the program can do. A user can often discover new ways to320

perform analysis with these tools simply by browsing the user interface and looking at choices offered321

in menus and dialogs of the program. While such programs are favored by beginners (because they322

are relatively easy to learn), more advanced users who need to perform similar analyses across several323

datasets tend to strongly prefer analysis software that does not require repeating interactions with a GUI324

for every new dataset that must be studied. The novel approaches we have used to develop MetaR share325

these advantages with GUIs.326

A minority of analysis software with GUIs also supports writing and running scripts in their user327

interface. For instance, JMP from SAS Inc. is an example of a statistical analysis software with GUI that328

also offers a scripting language. However, when scripting is offered, it is often only loosely integrated329

with the rest of the interface. Furthermore, users who are familiar with the GUI often need to learn330

scripting from scratch and do not benefit much from their prior experience using the GUI.331

Scripting and Programming Languages for Data Analysis332

Scripting and programming languages are popular options for data analysis because analyses encoded333

in scripts or programs can be reused with different datasets. This makes these options popular among334

researchers who have programming skills and engage frequently in data analysis. The popularity and335

power of scripting for data analysis is epytomized by the development of the R language Ihaka and336

Gentleman [1996], which has become a defacto workhorse of open data science in biology. The versatility337

of the R language is its strength, but mastering the language requires elements of programming. Learning338

the R programming language is not as simple as learning how to use a GUI analysis tool and many users339

who would benefit from data analysis experience difficulties with the steep learning curve involved in340

learning programming and the R language.341

In contrast to R, the MetaR language offers a much simpler alternative for users who have no prior342

programming background. At the same time, the Composable R language offers the means for expert R343

users to extend the R language with micro-languages in order to provide custom user interfaces. Such344

interfaces could be used to flatten the learning curve for novice data analysts or to empower expert data345

analysts with expressive means to encode solution to specific problems. Since both these options are346

available in the same platform (the MPS LW), users who become skilled with one language acquire347

transferable skills that help them learn other languages available on the platform.348

Impact on Development of User Proficiency349

The MetaR high-level language shown in Figure 2-4 is aimed at novice data analysts. An interesting350

question is whether such a language can help novice data analysts learn skills that are useful when working351

with a variety of data analysis tasks.352

If the language is sufficiently general, then novice users may learn skills that they can reuse when353

learning other general data analysis languages. If the language is too limited, then novice users would354

only learn a specialized analysis tool similar to existing GUI analysis tools. Rigorously determining to355

which category the MetaR language belongs would require following users for several months or years356

while they use the tool and we have not done such a study. However, we think that MetaR can help users357

transition to more general languages for the following reasons.358

First, users who learn the high-level MetaR language acquire basic skills that are similar to those359

needed when working with other languages, including composable R. For instance, users learn to formalize360

their analysis intent using the constructs offered by the language. This is a very important first step that361

users with a strong programming background may take for granted, but that is difficult for novice users to362

acquire when they are distracted with problems of syntax. MetaR avoids syntax distractions and helps363

novice users focus on the logic of an analysis (e.g., how to combine language elements to achieve the364

desired analysis).365

Second, the high-level MetaR language does not offer loops and conditionals. Since these language366

features are often needed for advanced analysis, many users who reach the point where they will need367

these language features will need to learn a language like R. MetaR offers composable R for this purpose.368

Novice users who have first learned the MetaR high-level language will be familiar with the MPS LW369

platform where composable R is also available. Some skills that users have acquired working with the370
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high-level language will be directly transferable, including: how to run a script, how to navigate references371

to look at definitions, how to use auto-completion or use intentions to transform the program automatically,372

how to use source control (seamlessly integrated with the MPS LW). Subsets of the R language will still373

need to be learned to perform more advanced analysis, but learning can occur in an environment where374

the user is already comfortable. We believe that such an integrated environment where both high-level and375

low-level languages of the R ecosystem are offered will facilitate teaching of the many skills needed for376

data analysis. Formally testing whether this intuition is correct will require comparing cohorts of subjects377

learning data analysis. Alternatively, the answer may become apparent if a large number of data analysts378

were to transition to using composable R after initially learning the MetaR high-level language.379

Relation to Electronic Notebooks380

MetaR shares some similarities to electronic notebooks such as IPython Pérez and Granger [2007], Jupyter381

(https://jupyter.org/) and Beaker (http://beakernotebook.com/) notebooks, but also382

has some important differences.383

Regarding analogies, both MetaR and notebooks can be used to present analysis results alongside the384

code necessary to reproduce the results. For instance, the MetaR multi-view plot can be used to show a385

plot at the location where the statement is introduced in an analysis.386

MetaR was developed approximately over the course of one year (2015). As such the software cannot387

be expected to be as feature-rich as software developed for many years. Beside this obvious difference,388

MetaR has the advantage to support language composition. In contrast, current data analysis notebooks389

support conventional programming languages constructed using text-based technology. Therefore, the390

closest that notebooks can approach language composition is to support multiple languages in one391

notebook, a so-called polyglot feature, available for instance in the Beaker notebook. Polyglot notebooks392

are useful, but cannot be extended by data analysts to customize languages for the requirements of a393

specific analysis project or domain. For instance, supporting a simple analysis language like MetaR would394

not be possible without developing a MetaR compiler and an associated execution kernel for the notebook.395

Developing and using micro-languages together with the traditional languages supported by the notebooks396

is also not possible.397

Hence, the approach taken with MetaR is different from notebooks in two major ways. First, MetaR398

provides flexibility in designing new languages or micro-languages. It is not constrained by the syntax399

of a full programming language. Extending MetaR often consists in adding just one statement to an400

existing language. This promotes collaborative language design and development since many users can401

acquire sufficient skills to create one or two statements, reusing the building blocks provided by the402

host language (the steps needed to extend MetaR with a new language statement are described in the403

user manual Campagne and Simi [2015]). As long as a new statement generates valid R code, a MetaR404

Analysis that contains this statement will be executable.405

Second, the syntax of the MetaR languages is not limited to text scripts or programs. Language406

Workbench technology used to implement MetaR supports graphical notations and diagrams as well407

as text. These differences combine to make it easier to design and implement custom data analysis408

abstractions with the LWT approach than it is possible with current electronic notebooks. Interestingly,409

the R IPython kernel could be used to execute scripts generated from MetaR analyses, which would410

provide an interactive console similar to that offered in the IPython notebook inside the MPS LW.411

Reproducible Research and Education412

MetaR analysis and Composable R scripts can be executed seamlessly with an R environment installed413

inside a docker image (see Methods). Users can enable this feature by providing a few details about the414

installation of docker on their computer and checking the “Run with Docker” option in the MPS LW. This415

feature is particularly useful to facilitate reproducible research because docker images can be tagged with416

version numbers and always result in the same execution environment at the start of an analysis. This417

makes it possible to pre-install specific versions of R, CRAN and Bioconductor packages in a container418

and distribute this image with the MetaR analyses or R scripts that implement the analysis inside the419

container. While this is possible also with R, using docker on the command line, the customization of420

the MPS LW makes it seamless to run analyses with docker. We are not aware of a similar feature being421

supported by current R IDEs.422

We found this feature also particularly useful for training sessions where installation of a working423

R environment can be challenging on trainees’ laptops. Using docker, we simply request that trainees424
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pre-install Kitematic (available on Mac and Windows), or run docker natively on Linux and download425

the image we prepared with the packages used in the MetaR training sessions. The ability to run MetaR426

analysis in docker container results in a predictable installation of dependencies for training session and427

frees more of the instructor’s time to present data analysis techniques.428

METHODS429

We have used the MPS Language Workbench (http://jetbrains.com/mps), as also described430

in Campagne [2014] and Campagne [2015]. For an introduction to Language Workbench Technology431

(LWT) in the context of bioinformatics see Simi and Campagne [2014] and Benson and Campagne [2015]432

in the context of predictive biomarker model development.433

Language Design434

We designed the MetaR MPS languages through an iterative process, releasing the languages at least435

weekly to end-users at the beginning of the project and adjusting designs and implementations according436

to user feedback. Full language developments logs are available on the GitHub code repository (https:437

//github.com/CampagneLaboratory/MetaR) Campagne et al. [2015]. Briefly, we designed438

abstractions to facilitate specific analyses and implemented these abstractions with the structure, editor,439

constraints and typesystem aspects of MPS languages. Generated R code is produced from nodes of the440

languages using the org.campagnelab.TextOutput plugin. An illustration of the steps required to develop441

one language statement is available in Chapter 10 of the MetaR documentation booklet (see Campagne442

and Simi [2015]).443

Table Viewer444

We implemented a Table viewer as an MPS Tabbed Tool, using the MPS LW mechanisms for user445

interface extension (see Campagne [2015]). The table viewer provides the ability to inspect the data446

content of any table produced during an analysis, or any input table. When the cursor is positioned over a447

node that represent a FutureTable (created when running the R script generated from the MetaR Analysis),448

and the viewer is opened, it tries to load the data file that the analysis would create for this table. If the file449

is found, the content is displayed using a Java Swing Component in the MPS user interface of the Table450

Viewer tool.451

Language Execution452

MetaR analyses can be executed directly from within the MPS LW. This capability was implemented with453

Run Configurations (see Campagne [2015], Chapter 5).454

Execution in a Docker Container455

In order to facilitate reproducible execution, we implemented optional execution within a Docker container.456

A docker image was created to contain a Linux operating system and a recent distribution of the R language457

(provided in the rocker-base image), as well as several R packages needed when executing the MetaR458

statements. The Run Configuration was modified to enable execution inside a docker container when the459

user selects a checkbox ”execute inside docker container”. Information necessary to run with docker (i.e.,460

location of the docker executable, docker server connection settings and image name and tag) is collected461

under a tab in the MPS Preferences (Other Settings/Docker).462
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