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Cross-platform normalization of microarray and RNA-seq data

for machine learning applications

Jeffrey A Thompson, Jie Tan, Casey S Greene

Large, publicly available gene expression datasets are often analyzed with the aid of

machine learning algorithms. Although RNA-seq is increasingly the technology of choice, a

wealth of expression data already exist in the form of microarray data. If machine learning

models built from legacy data can be applied to RNA-seq data, larger, more diverse

training datasets can be created and validation can be performed on newly generated

data. We developed Training Distribution Matching (TDM), which transforms RNA-seq data

for use with models constructed from legacy platforms. We evaluated TDM, as well as

quantile normalization and a simple log2 transformation, on both simulated and biological

datasets of gene expression. Our evaluation included both supervised and unsupervised

machine learning approaches. We found that TDM exhibited consistently strong

performance across settings and that quantile normalization also performed well in many

circumstances. We also provide a TDM package for the R programming language.
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ABSTRACT14

Large, publicly available gene expression datasets are often analyzed with the aid of machine learning

algorithms. Although RNA-seq is increasingly the technology of choice, a wealth of expression data

already exist in the form of microarray data. If machine learning models built from legacy data can

be applied to RNA-seq data, larger, more diverse training datasets can be created and validation can

be performed on newly generated data. We developed Training Distribution Matching (TDM), which

transforms RNA-seq data for use with models constructed from legacy platforms. We evaluated TDM,

as well as quantile normalization and a simple log2 transformation, on both simulated and biological

datasets of gene expression. Our evaluation included both supervised and unsupervised machine

learning approaches. We found that TDM exhibited consistently strong performance across settings and

that quantile normalization also performed well in many circumstances. We also provide a TDM package

for the R programming language. A TDM R package is available at: https://github.com/greenelab/TDM

(doi:10.5281/zenodo.32852).
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INTRODUCTION17

A wealth of gene expression data is being made publicly available by consortia such as The Cancer18

Genome Atlas (TCGA) (Cancer Genome Atlas Network et al., 2012). Such large datasets provide the19

opportunity to discover signals in gene expression that may not be apparent with smaller sample sizes,20

such as prognostic indicators or predictive factors, particularly for subsets of patients. However, discerning21

the signal in such large datasets frequently relies on the application of machine learning algorithms to22

identify relationships in high-dimensional data, or to cope with the computational complexity.23

These approaches often construct a model that captures relevant features of a dataset, and the model24

can be used to make predictions about new data, such as how well a patient will respond to a particular25

treatment (Geeleher et al.), or whether their cancer is likely to recur (Kourou et al., 2014). Therefore, the26

model is usually constructed using a large, diverse dataset and is then applied to incoming cases to make27

predictions about them.28

Increasingly, investigators are measuring gene expression with RNA-seq. Despite its higher cost,29

several advantages of RNA-seq over DNA microarrays are typically cited (Wang et al., 2010):30

• RNA-seq does not require a priori knowledge of gene sequence.31

• RNA-seq is able to detect single nucleotide variations (Atak et al., 2013).32
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• RNA-seq has a much higher dynamic range.33

• RNA-seq provides quantitative expression levels.34

• RNA-seq provides isoform-level expression measurements.35

While RNA-seq represents a substantial technological advance, microarrays are still widely used36

because they are less expensive, are more consistent with historical data, and robust statistical methods37

exist for working with them. Perhaps more importantly, there are a tremendous number of historical38

microarray experiments that have already been performed. ArrayExpress, a publicly available database of39

experiments maintained by the European Bioinformatics Institute (EBI) (Rustici et al.), contains more40

than 60000 experiments and 1.8 million assays. As the transition to RNA-seq continues, the massive41

collection of microarray data constitute a rich resource of gene expression data. Therefore, training a42

classifier on large datasets created from microarrays and testing that classifier on samples measured with43

RNA-seq would be useful because new data could be generated with the most advanced technology and44

still be used for validation.45

Machine learning models benefit from large, diverse training datasets in order to build generalizable46

models. However, most algorithms operate under the assumption that the training and test data will47

be drawn from the same distribution. When the distribution of training and test datasets differ, it can48

result in reduced fit of the model. This is referred to as dataset shift. Although some methods exist for49

machine learning under certain types of dataset shift (some of these are reviewed by (Moreno-Torres50

et al.)), there are no general solutions for the type of dataset shift that occurs between different gene51

expression platforms. In this case,52

Ptrain(y|x) 6= Ptest(y|x)∧Ptrain(x) 6= Ptest(x) (1)

where y is the class of the example and x is an expression value. This is in the category of “other types53

of dataset shift” mentioned by Moreno-Torres et al. for which there is no known general solution. It refers54

to the fact that the probability of the dependent variable may not be the same in the training and test set55

for a given value of an independent variable and that the probability of that value occurring is different in56

both datasets.57

Normalization and batch correction techniques, such as quantile normalization, help to deal with58

some dataset shifts (Bolstad et al.). Although quantile normalization was developed specifically for59

microarrays it has also come to be widely used for RNA-seq (Wei et al., 2014; Norton et al., 2013), as60

well as cross-platform normalization (Li et al., 2015; Forés-Martos et al., 2015). The only method we are61

aware of that has been expressly designed for comparing microarrays and RNA-seq (apart from our own)62

is the recently published Probe Region Expression estimation Based on Sequencing (PREBS) (Uziela63

and Honkela, 2015). This method estimates RNA-seq expression values at microarray probe regions in64

order to make the data more compatible. However, the increase in comparability means discarding the65

expression information contained in other reads. Additionally, because this method requires access to raw66

reads, it cannot be used on public data where there may be privacy concerns. Thus PREBS cannot be67

as widely applied to publicly available data as our method or quantile normalization, which only need68

estimated transcript abundances and do not require transcripts and probes to match.69

Given the differences in dynamic range between microarrays and RNA-seq and the fact that mi-70

croarrays represent relative expression and RNA-seq quantitative counts, it may appear that the data are71

incommensurable. Indeed, in some cases the effect sizes for certain treatments can be dependent on the72

platform used (Wang et al., 2014). However, a number of papers have compared expression values from73

tissue samples for which both microarray and RNA-seq data have been collected. In each case, it was74

found that microarray and RNA-seq data are well correlated (Wang et al., 2014; Mooney et al.; Malone75

and Oliver), although this correlation was stronger for the more highly expressed genes. Therefore, the76

potential for machine learning being applied cross platform should exist, given sufficient similarity in the77

data distributions.78

Aside from other normalization techniques that might be used, microarray data are generally analyzed79

after log transformation, so that values represent fold-change and statistical tests requiring normality can80

be used. Therefore, one possible approach to integrating microarray and RNA-seq data in a machine81
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learning pipeline would be to simply log transform the RNA-seq data. In this work, we demonstrate that82

this approach is insufficient to achieve consistent predictions.83

In this paper, we describe Training Distribution Matching (TDM), an approach that normalizes RNA-84

seq data to allow models trained on microarray data to be tested on RNA-seq. We consider this approach85

in conjunction with two existing approaches: quantile normalization, and simple log transformation of86

the RNA-seq data. We compare performance on both simulated data and two different gene expression87

datasets from TCGA that contain both microarray and RNA-seq expression data. Finally, we examine88

how these methods perform using a model trained on a distinct microarray breast cancer dataset.89

The intuition behind TDM is to transform the RNA-seq data so that its distribution is closer to the90

training data but to leave between-sample relationships intact. It aims to correct the dataset shift between91

the microarray and RNA-seq data, using a light touch.92

We evaluated all three approaches using both unsupervised and supervised machine learning methods.93

For an unsupervised approach we used PAM (Kaufman and Rousseeuw, 1990) and for a supervised94

approach we used LASSO logistic regression (Tibshirani, 1996).95

Interestingly, both TDM and quantile normalization perform well, suggesting that legacy datasets may96

be quite useful for such analyses. However, TDM tends to hold up better than quantile normalization in97

cases of increased noise in the data.98

1 METHODS99

The basis of our approach is to adjust the distribution of RNA-seq data to improve recognition for features100

learned from microarrays. Most machine learning algorithms that are applicable to expression data assume101

the test data are drawn from the same probability distribution as the training data. If a normalization102

approach makes the distributions similar but does not preserve internal data dependencies, then the model103

will fit poorly.104

Our Training Distribution Matching (TDM) approach transforms test data to have approximately the105

same distribution of expression values as the training data, without changing the rank order of most genes106

in terms of expression levels. In other words, our method is not intended to improve the rank correlation107

of the datasets, since this can mean changing the biological significance of the data (particularly for108

RNA-seq data) and brings the validity of the results into question. Instead, it is intended to improve the109

recognizability of features. The distribution is adjusted for the test dataset as a whole, rather than by110

individual sample, to avoid over-normalization.111

It is to be expected that many genes will have a different rank order between datasets, regardless of112

the platforms used. However, by making the expression values generally more similar between datasets,113

the ability of a model to fit the data will be improved. Because microarray data are generally worked with114

as log2 transformed values, either the RNA-seq data must be log2 transformed as well, or the microarray115

data must not. In this work we have chosen to log2 transform the RNA-seq data, because microarray data116

are usually received in this form, but the package allows either decision to be made.117

1.1 The Training Distribution Matching (TDM) Algorithm for Cross-platform Normaliza-118

tion119

TDM is a normalization method that aims to make RNA-seq data comparable with microarray data120

without having a large effect on inter-observation dependencies. It is performed as described in Algorithm121

1.122

TDM establishes a relationship between the spread of the middle half of the the training data and the123

extremal values, then transforms the test data to have that same relationship. It determines the ratio of the124

spread above the third quartile to the IQR of the training data and then uses this to bound the maximum125

value in the testing data (i.e. it determines the number of IQRs that can be fit between the third quartile126

and the maximum value). The equivalent is done for the ratio of the spread below the first quartile and127

the IQR of the training data, but this value is not allowed below zero. Finally, each value is mapped into128

a range from the minimum of the training data to the maximum of the training data (in the inverse-log129

space) and log2 transformed.130

1.2 Quantile Normalization131

Quantile normalization makes it possible to ensure that two datasets are drawn from the same distribution.132

Given a reference distribution, a target distribution is normalized by replacing each of its values by the133
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Algorithm 1 TDM Algorithm – q3(S) yields the third quartile of a set S, q1(S) yields the first quartile of

S, iqr(S) yields the inter-quartile range of S, max(S) yields the maximum value in S, and min(S) yields

the minimum value in S. Testing and Training are sets containing all expression values for all respective

samples where each member is the expression value of a single gene for a single sample.

∆← 2max(Training)−2q3(Training)

2iqr(Training)

∆
′← 2q1(Training)−2min(Training)

2iqr(Training)

t← q3(Testing)+∆× iqr(Testing)
u← q1(Testing)−∆

′× iqr(Testing)
for x ∈ Testing do

if x > t then

x←t
else if x < u then

x←u
end if

if x < 0 then

x← 0

end if

x← x−u
t−u × (2max(Training)−2min(Training))+2min(Training)

end for

value of the variable with the same rank in the reference distribution. If the reference distribution contains134

multiple samples, the target and reference distributions will only be identical if the reference distribution135

is first quantile normalized across all samples.136

All quantile normalization was performed using the nomalize.quantiles.use.target137

method of the preprocessCore package (Bolstad, 2015) in the R statistical environment (R Core138

Team, 2015).139

1.3 Evaluation140

We evaluated the performance of our methods using both an unsupervised and a supervised machine141

learning algorithm. The unsupervised approach we chose was Partitioning Around Mediods (PAM). For142

PAM, we constructed a simulated dataset, so that we could observe the effect of TDM under controlled143

conditions. The supervised approach chosen for evaluation was LASSO multinomial logistic regression.144

1.3.1 Partitioning Around Mediods (PAM)145

PAM is a clustering algorithm that identifies “mediods” or examples in the dataset that represent the146

best centers for a user-defined number of clusters. The model that is built can be applied to new data to147

determine which mediod (and thus which cluster) the new data best fit to. It is similar to the k-means148

algorithm but tends to be more robust to outliers. Here we used the pam method from the cluster149

package (Maechler et al., 2015) in R.150

1.3.2 LASSO multinomial logistic regression.151

The supervised method we chose is LASSO multinomial logistic regression. For this method we relied on152

the glmnet package in the R (Friedman et al., 2010). A detailed description of the method can be found153

in (Tibshirani, 1996). We evaluated the performance on classification of either tumor subtype or class154

depending on the dataset. In each case, we used 100 fold cross-validation to train the model. We then155

assessed performance of normalization methods by applying the model constructed on one platform to156

a dataset from a distinct platform normalized with different approaches. This process was repeated 10157

times, with different random seeds.158

LASSO logistic regression builds a particularly efficient model of features, using only the variables159

that are the most informative (Liang et al.). It is a popular technique for selecting a sparse set of predictors160

in biological datasets (e.g. identifying the smallest set of genes that reliably predict if someone would161

benefit from a particular therapy). It can also be used for multinomial logistic regression, for cases in162

which multiple classifications are being considered. LASSO optimization is similar to normal regression,163

but it tends to reduce many of the coefficients of predictors to 0, leaving a relatively small set of predictors164
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that are best able to predict an example’s class, removing redundant predictors, and leading to a model165

that is easier to interpret than some other approaches. This makes it particularly useful for problems like166

the construction of biomarkers.167

1.4 Data168

1.4.1 Simulated Data169

The simulated data were generated using the program SynTReN (Van den Bulcke et al., 2006). This tool170

enables the generation of datasets that have a distribution similar to typical microarray data, with classes171

in the data that are differentially expressed due to some condition, and that contain correlations between172

gene pairs that more realistically simulate the complexity of biological data. We generated a dataset173

using the default settings with the following exceptions: we generated 500 genes, half of which would be174

background genes mostly unaffected by changing conditions; we asked for 400 samples; and we set 4175

experimental conditions to be encoded in the data. Each condition received 100 samples. An additional176

400 samples were created by duplicating these samples by taking the inverse log of them, rounding the177

results, and rescaling them to the range [0,1000000] to simulate the higher dynamic range of RNA-seq178

data. Although an imperfect simulation, most of what we wanted to capture is the effect of noise on179

datasets with matching samples but different dynamic ranges.180

Additional noisy datasets were created using the addNoise method from the sdcMicro package181

(Templ et al., 2015) in R on the simulated datasets by adding a percentage of gaussian noise from 0182

to 9.5% in increments of .5%. Each simulated RNA-seq dataset was normalized using TDM (with the183

simulated microarray data as a reference), quantile normalization (with the simulated microarray data as a184

target), or log transformation.185

1.4.2 Biological Data186

We used three biological datasets:187

• Dataset 1 – The first contains gene expression values for tumor and tumor-adjacent normal biopsies188

of breast cancer from TCGA (The Cancer Genome Atlas) measured by both microarray (Agilent189

244K platform) and RNA-seq (Illumina HiSeq platform). The microarray dataset contains 531190

cancer samples and 63 tumor-adjacent normal samples. However, only 516 of the cancer samples191

and 58 of the tumor-adjacent normal samples had complete subtype data for this work, so only192

those were retained. The RNA-seq data included 1095 cancer samples and 113 normal. However,193

only 844 tumor samples and 107 normal had complete subtype data. These samples overlap 509194

cancer and 60 normal samples from the microarray data. Therefore, they can be thought of as a low195

noise dataset for comparing results between microarray and RNA-seq. For these data, breast cancer196

subtype was used for classification (Cancer Genome Atlas Network et al., 2012).197

• Dataset 2 – The second biological dataset contains gene expression values for tumor and tumor-198

adjacent normal biopsies of colon and rectal cancer from TCGA measured on the same two199

platforms. The microarray dataset contains 220 cancer samples and 22 normal samples, all of which200

were retained. The RNA-seq data included 380 cancer samples and 50 tumor-adjacent normal201

samples. Of these, 330 cancer samples and 29 normal included complete tumor class data and did202

not overlap the microarray data. In this instance, the lack of overlap was used to create a higher203

noise dataset. For these data Cpg island methylator phenotype (CIMP) status (Sánchez-Vega et al.,204

2015) was used for classification.205

• Dataset 3 – The third biological dataset is based on a breast cancer compendium created in previous206

work (Tan et al., 2015). It again contains both microarray and RNA-seq data. However, the first207

microarray dataset is from METABRIC, a retrospective cohort built from tumor banks in the UK208

and Canada (Curtis et al., 2012) using the Illumina HT-12 v3 platform. Missing values were209

imputed in these data using KNNImputer from the Sleipner library (Huttenhower et al.) using210

10 neighbors as recommended by (Troyanskaya et al.). These were filtered by median absolute211

deviation (MAD), keeping the 3000 genes with the highest MAD values. Of these genes, only 2520212

were included in the TCGA microarray breast cancer data mentioned above, and so the METABRIC213

data were further filtered to include those 2520 genes. The RNA-seq data were also from the first214

breast cancer dataset but were filtered to include only the same 2520 genes and to include only the215

overlapping samples with the microarray data. This dataset allows us to compare microarray and216
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Figure 1. The proportion of samples correctly classified in the simulated data at increasing levels of

noise. This is taken to be the proportion of samples clustered in a group for which the most common class

matches their own. The x-axis represents increasing noise in the data. As the noise increases, the TDM

transformed data consistently have the better performance than quantile normalized data. Log

transformation results in erratic performance with these data.

RNA-seq data across research consortia on a set of genes selected for high variance. Furthermore,217

it allows us to compare the performance of normalized RNA-seq data to microarray data for the218

same samples.219

RNA-seq and clinical data were obtained from the UCSC Cancer Browser (Goldman et al., 2013).220

2 RESULTS AND DISCUSSION221

We developed TDM, a new method of RNA-seq data normalization intended for prediction using machine222

learning models built on microarray data and improved clustering. TDM performed well compared to223

quantile normalization and log2 transformation on a range of data.224

2.1 For Unsupervised Clustering, TDM is More Robust to Noise with Simulated Data225

TDM outperformed quantile normalization on a clustering task using data simulating a matched set of226

400 samples with both microarray and RNA-seq data. The data contained 4 simulated conditions and227

mimic the difference in dynamic range between microarrays and RNA-seq at 20 different levels of global228

noise (see Section 1).229

Unsupervised clustering was performed using the PAM algorithm on the 400 samples with a230

microarray-like distribution. The accuracy of classification was assessed as the proportion of sam-231

ples that were placed in a cluster in which the majority of samples matched their own class (Fig. 1).232

With no additional noise, all methods performed the same. However, as noise increased, the TDM233

transformation resulted in a consistently more accurate clustering than quantile normalization. Log2234

transformation resulted in unstable performance. At some noise levels it had much better classification, at235

others it did not, suggesting that this result would not scale to a larger, and more realistic dataset.236

For additional insight into differences in clustering, we used principal coordinate analysis to visualize237

the similarity between samples in the data (Fig. 2). This was done at the 3% additional noise level (a238

point about midway between no noise and when the results start to level off in Fig. 1). The figure shows239

that TDM results in slightly better separation of the 4 clusters along the first 2 principal coordinates than240

the other two methods.241
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Figure 2. Principal coordinates of quantile (left), TDM (middle), and log2 (right) normalized simulated

data. The TDM normalized data result in slightly better separation along the two principal coordinates

than the quantile and log2 normalized data.
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2.2 Simulated Data Variability242

Between vs. within class variability impacts the utility of data normalization methods, because if the243

within class variability outweighs the between class variability, it will be challenging to detect the signal244

of that condition in the data (Hicks and Irizarry, 2015). The distribution of expression values for each245

condition in the simulated data is shown with violin plots (Fig. 3), which display an appreciable level246

of variability both within and between classes. Quantro is a recently developed method for generating247

an F-score that represents the ratio of the within class variability to between class variability in the data248

(Hicks and Irizarry, 2015) and is available as a package for R. In particular, it provides guidance as to249

when quantile normalization should be applied so as to remove technical variation while minimizing the250

loss of biological signal. When the between class variation is low, then quantro indicates that quantile251

normalization should be applied. If the between class variation is much higher than the within class252

variation, then one must decide if it is likely to be biologically driven. If the variability is likely to be253

mostly technical, then quantile normalization may be effective. The simulated data provide an opportunity254

to assess the variability on data with tightly controlled conditions in order to better understand TDM’s255

performance. We ran quantro on the simulated log2 transformed RNA-seq data. The quantro score256

was approximately 2.01 which indicates that there is greater between class variability than within class257

variability and that quantile normalization may remove meaningful variability in the data if it is not mostly258

technical. As noise is added, the quantro score rises, eventually hitting 399.28 at 9.5% noise. This shows259

that as noise is added, the ratio of between class variability to within class variability rises. Of course,260

we know in this case that the difference in variability is technical, since we created it, but normally this261

information is not available, so quantro can provide useful guidance.262

2.3 Evaluation of TDM for Supervised Model Construction using LASSO-Logistic Re-263

gression264

For a supervised machine learning approach, we performed LASSO multinomial logistic regression to265

train models (on microarray datasets) for predicting tumor subtype in breast cancer and CIMP status in266

colon and rectal cancer, using the glmnet package (Friedman et al., 2010) in the R statistical environment.267

We then used the models to make predictions for RNA-seq datasets and the predictions were used to268

evaluate normalization techniques. We evaluated classification performance using the averaged values269

for each random seed for the total accuracy over all tumor subtypes/classes, balanced accuracy of each270

subtype/class, and Kappa statistic (classification rate after adjusting for those that could be expected by271

random chance).272

2.3.1 Classification of breast cancer subtype on TCGA-only breast cancer dataset (Dataset 1)273

TDM normalized data resulted in the highest mean total accuracy and Kappa on Dataset 1 (Fig. 4) across274

subtypes. The TDM normalized data had mean total accuracy of .63 and mean Kappa of .48. This was275

followed by quantile normalization with mean total accuracy of .57 and Kappa of .45. Log normalization276

had substantially lower mean total accuracy of .54 and Kappa of .45.277

Within each subtype, there was considerable variability as to which normalization led to the best278

balanced accuracy on these data (Fig. S1). Quantile normalization resulted in best classification of279

Normal, but TDM and log2 transformation were close. TDM resulted in best classification of LumA, and280

log2 transformation resulted in best classification of Her2, LumB (although again TDM was close), and281

Basal. It is worth nothing that the distribution of samples for each subtype varies (Fig. 7).282

2.3.2 Classification of CIMP status on TCGA-only colon/rectal cancer dataset (Dataset 2)283

TDM normalized data resulted in the highest total accuracy and Kappa on Dataset 2 (Fig. 5). The TDM284

normalized data had mean total accuracy of .64, as well as mean Kappa of .36. This was very closely285

followed by quantile normalization with mean total accuracy of .62, although it had a Kappa of .29. Log286

normalization had somewhat lower mean total accuracy of .57, but its Kappa tied for best at .36.287

Again, the normalization with the best balanced accuracy for specific tumor classes varied (Fig. S2).288

TDM resulted in best classification of CIMP (i.e. high positive CIMP status) and CIMPL (i.e. low positive289

CIMP status, although quantile normalization and log2 were about the same). Log2 transformation had290

the best classification for NCIMP (i.e. non-CIMP, although TDM was close) and Normal.291
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Figure 4. Results for Dataset 1: (a) TDM had the highest mean total accuracy on these data, followed

by quantile normalization. (b) TDM had the highest mean Kappa on these data, followed closely by

quantile normalization.

2.3.3 Classification of breast cancer subtype training on METABRIC and testing on TCGA292

(Dataset 3)293

TDM and quantile normalization performed almost the same on Dataset 3 (Fig. 6), with mean total294

accuracies of .83 and .84 respectively, and both outperformed log2 transformation, which had a mean295

total accuracy of 62. TDM and quantile normalization were more similar in classification to a separate296

dataset created from microarrays on the same samples, which had a mean total accuracy of .85, than they297

were to log2 transformation of RNA-seq data. TDM and quantile normalization both had high Kappa298

scores on these data at .76 and .77 respectively. Log2 transformation had a Kappa of .51 and the TCGA299

microarray data had a Kappa of .78.300

For breast cancer subtypes (Fig. S3), in each case quantile normalization and TDM had better balanced301

accuracy than log2 transformation (although it was close for Basal and LumB). The one subtype where302

the TCGA microarray performed substantially better was Her2.303

2.3.4 Summary of supervised machine learning applications304

TDM resulted in the best performance overall on these datasets. For Dataset 1 and Dataset 2 it had305

the highest total accuracy and Kappa. For Dataset 3, quantile normalization had a very slightly higher306

total accuracy and Kappa than TDM, but only by about 1/2 of a percentage point and both were clearly307

better than log2 transformation. For analyses where an independent microarray dataset was available,308

cross platform (microarray to RNA-seq) performance was comparable to within platform (microarray to309

microarray) performance for both quantile normalization and TDM.310

2.4 Discussion311

RNA-seq data transformed by the TDM algorithm outperformed those transformed by log2 transformation312

or quantile normalization in most instances. The performance of quantile normalization could be sensitive313

to differing distributions of classes in training and test data. However, Fig. 7 shows that the distribution314

is roughly the same in each for all three biological datasets. Therefore, the difference in performance315

is probably attributable to noise. On the simulated data, TDM was consistently more robust against316
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Figure 5. Results for Dataset 2: (a) TDM had the highest mean total accuracy, although it was only

slightly better than quantile normalization. (b) TDM’s Kappa was substantially higher than that achieved

by log2 transformation and both had Kappas higher than that achieved by quantile normalization.

noise, and these results support that assessment on biological data as well. Nevertheless, overall, quantile317

normalization performed only slightly worse than TDM. In particular, if the data are filtered to remove318

genes with low variance before training, our results support the use of either quantile normalization or319

TDM to obtain results with high accuracy. The implementation of such a step is dependent on the machine320

learning method used, and the goals of the study.321

A factor in deciding to use quantile normalization will be the source of variance. Hicks et al. showed322

that when there is large variability across classes in the data and small within class variation that quantile323

normalization should not always be used (Hicks and Irizarry, 2015). At least some of the variance in324

these data may be attributable to the combination of colon and rectal cancer into a single dataset or due to325

difference in the distribution of subtypes and classes. In such a case, over-normalizing the data may also326

remove the signal. TDM provides an alternative: bring the values in the data more closely in line, while327

preserving inter-observation dependencies. This allows machine learning methods to better identify the328

signal that overcomes the noise of technical variability.329

The results on Dataset 3, where both array and sequencing-based data were available, provide support330

for the use of the TDM algorithm for combining microarrays and RNA-seq in a single analysis. In this331

case, we had an additional microarray dataset measured on the same samples. TDM normalized data332

performed almost as well as an actual microarray dataset. This suggests that models built on data from333

one platform can be applied to another to generate meaningful predictions.334

3 CONCLUSIONS335

We developed TDM, a new method to normalize data so that models can be trained and evaluated without336

regard to platform. This will allow researchers to take advantage of the wealth of historical microarray337

data, including their own past experiments, as well as existing computationally derived models during338

the transition to next generation sequencing. We provide an R package for the transformation under the339

permissive open source BSD 3-clause license.340

Our TDM algorithm successfully adjusts for the dataset shift that results from measurement on341
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Figure 6. Results for Dataset 3: (a) TDM and quantile normalization had the highest mean total

accuracy for the normalized RNA-seq data when tested using a model trained on METABRIC. In fact,

they were only slightly worse than actual microarray data from TCGA using the same samples, while

log2 transformation performed markedly worse. (b) TDM and quantile normalization achieved a high

Kappa when tested using a model trained on METABRIC. They performed similarly to the TCGA

microarray data (MA) that was assayed on the same samples.
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divergent platforms, such as that caused by the different dynamic ranges of microarrays and RNA-seq.342

TDM transforms the test data to have a similar distribution to the training data, while preserving most343

observation dependencies within those data. Because expression data are long-tailed, the compression of344

data near the end of the tail is expected to have a minimal impact for most machine learning methods.345

The consistent results with both unsupervised and supervised learning approaches on a variety of data346

support these conclusions and the broad utility of TDM.347

4 DATA AVAILABILITY348

TDM is available as an R package (Thompson and Greene, 2015a): https://github.com/greenelab/TDM349

Code to apply TDM and alternative approaches to the datasets in this paper, analyze the results, and350

generate the figures is available in a parallel repository:351

(Thompson and Greene, 2015b): https://github.com/greenelab/TDMresults352
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Figure 7. The distribution of classes in the data is roughly the same between each training and testing

set.
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