
Using Machine Translation for Converting Python 2 to Python 3 Code

Karan Aggarwal, Mohammad Salameh, and Abram Hindle
Department of Computing Science

Univeristy of Alberta
Edmonton, Canada

{kaggarwa,msalameh,abram.hindle}@ualberta.ca

Abstract

In this paper, we have tried to use Statis-
tical machine translation in order to con-
vert Python 2 code to Python 3 code. We
use data from two projects and achieve a
high BLEU score. We also investigate the
cross-project training and testing to ana-
lyze the errors so as to ascertain differ-
ences with previous case. We have de-
scribed a pilot study on modeling pro-
gramming languages as natural language
to build translation models on the lines
of natural languages. This can be fur-
ther worked on to translate between ver-
sions of a programming language or cross-
programming-languages code translation.

1 Introduction

Statistical machine translation(SMT) techniques
have been successfully used for the translation
task between natural languages. In this paper, we
construct the translation model of translating pro-
gramming languages - from python 2 to python
3. We are trying to investigate the application of
SMT techniques, as done traditionally in natural
languages to the programming languages.

Python 2 is quite similar to the Python 3 except
for a few syntactical differences. We use code data
from two projects - Django and NLTK written in
python 2. From this data, we constructed a cor-
pus of python 2 methods and their corresponding
python 3 methods.

We also address one more question - does us-
ing these techniques produces different results for
models trained on one project and tested for trans-
lation on other project. In order to do that, we train
the translation model on the Django and test it on
the NLTK. Thirdly, we also test this model on the
test data in the first case - consisting of Django
and NLTK code to see comparative results.

We achieved an improvement of 1.29 over the
baseline of 98.07 BLEU score obtained with sim-
ple rule based baseline system. Moreover, in the
second case of training on Django and testing
on NLTK, we get an improvement of 1.1 over the
baseline score of 97.36 BLUE score. In the third
case, we get an improvement of 1.23 over the base-
line score of 98.07.

2 Related Works

Not much work has been done in the area to
best of our knowledge. Hindle et al. (2012) have
constructed a simple n-grams model to model
the programming languages as natural language.
They have proposed to use natural processing
techniques, and statistical machine translation ap-
proach for tasks like code summarization.
Haiduc et al. (2010) have worked on summariz-
ing the source code by using Latent Semantic In-
dexing and Vector Space Model to generate sum-
maries for a java code. Recent works as Nguyen
et al. (2013), and Movshovitz-Attias and Cohen
(2013) have used n-grams language models to
show the predictability of the software, and using
that to generate the project documentation for the
source code. However, we found no works which
use statistical machine translation techniques for
the related tasks.

3 Background

In this section we describe briefly the differences
between python 2 and python 3, and about the ma-
chine translation system.

3.1 Differences between Python 2 and Python
3

There are some differences in Python 2 and Python
3, though not major. Python 3 was introduced in
2009 while Python 2 had been ongoing since early
2000s. Some major changes are replacing print
statement in python 2 with print function in python

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1459v1 | CC-BY 4.0 Open Access | rec: 29 Oct 2015, publ: 29 Oct 2015

Figure 1: Three instances from the bilingual dataset. Image on the Left shows code in python 2 whereas
image on right shows the code in python 3. Differences in both the codes is highlighted with colors.

3, treating all the strings as unicode in Python 3,
removal of long datatype in python 3 and using
list() with the range function.

3.2 Machine Translation System

The basic task of the machine translation systems
is to maximize the probability of a translated sen-
tence in target language given the sentence in the
original language. For our problem, we can write
this as :

P (py3|py2) = P (py2|py3)P (py3) (1)

The probablility P (py2|py3), is constructed
by using sentence alignments in the translation
model, where as P (py3) is calculated using the
language model constructed from python 3 code
base. Figure 2 shows the workflow for the con-
struction and evaluation on this translation model.

4 Methodology

In this section we describe our methodology - con-
struction of the dataset, preprocessing steps, and
baseline system.

4.1 Dataset Construction

As the translation system requires aligned sen-
tences as input, we used the methods in the python
code to align with the corresponding method in
the python 3 code. This is so because, one line
of code in python 2 can be aligned to two lines of
code in python 3 code. Hence, it becomes difficult
to align them programatically. Methods represent
a semantic unit which can treated independently
just like the individual sentences in the natural lan-
guages. We firstly collected two python 2 projects
- Django and NLTK. Using an automated tool,
2to3 by Peterson (2014), we get the correspond-
ing code base in the python 3. Then, we parsed
the code to extract the methods from the original
python 2 code base and the corresponding python

Training Set Translation Baseline
Django+NLTK 99.36% 98.07%
Django tested on
NLTK

98.46% 97.36%

Django tested on
Django+NLTK

99.30% 98.07%

Table 1: BLEU score results on the different train-
ing and testing data.

3 code base. So that, we get a bilingual corpus of
the methods in the python 2 and their correspond-
ing methods in python 3. We extracted 8114 and
4820 methods from the code base of Django and
NLTK respectively. Figure 1 shows the three in-
stances of this bilingual dataset.

4.2 Preprocessing
Preprocessing involves removing all the com-
ments in the code, replacing the special characters
like ’ |’ with OR , which is used as a separator
character by the translation tool. We need to add
spaces before and after some characters like - ’(’,
’)’ , ’”’ etc. as they need to treated as different
tokens as opposed to say tokens like ’print(’.

4.3 Baseline System
We use rule based implementation for devising a
baseline system. We used the following rules to
construct the baseline system - replacing print
with print(), replacing raw input with input,
range(x) with list(range(x)) etc. in the python 2
dataset to get our approximate translation.

5 Results and analyses

We use Giza++ and Moses tools for the sentence
alignment and building the translation model re-
spectively. This gives us the python 3 language
model as well as the translation model. The
python 3 language model is a simple n-grams
model with n = 1,2, 3 , 4 and 5.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1459v1 | CC-BY 4.0 Open Access | rec: 29 Oct 2015, publ: 29 Oct 2015

Figure 2: Work flow of the translation system

5.1 Experiment

For the first experiment, we set aside 1000 meth-
ods each for testing and development data. For the
second experiment also we set aside 1000 meth-
ods from Django for development data, and 1000
methods from NLTK the testing data.
Similarly, for the third experiment we set 1000
methods from Django for development data and
take the same test data as the first experiment
(without overlap with development or training
data). All these datasets were constructed ran-
domly.

5.2 Results

The results are shown in Table 1. We can see
that, with the machine translation approach, we
achieve a score of 99.37, an improvement of 1.29
or 1.31%over the baseline BLEU score of 98.07
when training , development as well as test data is
from both the projects.
When instead we use training data from Django
and test it on the data from the NLTK we see an
improvement of 1.1 or 1.12% points with BLEU
score of the 98.46 over the baseline system’s score
of 97.36. In the third experiment, with the training
data from Django and testing data same as the
first experiment, we get a BLEU score of 99.30.

5.3 Analysis

Given these high BLEU scores, we can say that
python 2 and python 3 code are quite similar ex-
cept few major differences. The improvement
shown by the translation system is significant,
though not huge, given the fact that languages are
so similar.
A relatively lower performance in the second case
and third case can be explained by the difference

in the training data and the testing data, as two
projects use different packages. For example, the
NLTK project uses packages tkinder and urllib2
in python 2 code which have been revised to Tkin-
ter and urllib in python 3. They have not been used
in Django, so that the model trained on Djnago
is not able to translate their occurrences in the test
data containing NLTK methods referencing them.

The common errors in the translation were for
example , translated output was missing with
missing right bracket in print (x) or list(range(x))
frequently, and list (range(x)) was not being added
for the range(x) in translation sometimes. Oth-
ers included with the ot translating iteritem() to
item(), and adding list() at undesired places. This
can be primarily explained by the construction of
translation model using the n-grams model. It is
limited by 5- grams we have used while training
the model, whereas generally the print statements
are too long to take the whole of the print state-
ment into context to add the right bracket,and so is
for the list() function being omitted.

We can improve the performance by adding
a post processing step, combining with the rule
based systems.

6 Conclusion

In this paper, we have described a pilot study on
modeling programming languages as natural lan-
guage and using that for building translation mod-
els like the natural language. We successfully
demonstrate the use of conventional statistical ma-
chine translation models to translate code from
python 2 to python 3, which requires some post
processing.
We also demonstrated the differences in the inter-
project training and testing performance, conclud-

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1459v1 | CC-BY 4.0 Open Access | rec: 29 Oct 2015, publ: 29 Oct 2015

ing that project style differences do affect the
performance, albeit marginally. Hence, through
this study we demonstrate that programming lan-
guages can be treated as natural languages and
SMT models can be applied on them.

7 Future Work

Some future directions can be building bilingual
language corpuses like say between a project writ-
ten in Java as well as C++, which could then be
used to translate the code written in say Java to
C++. However, this would essentially require a
lost of overhead in terms of preprocessing as well
as post processing.
One important avenue to explore could be code
translation to its English text description or vice
versa, which would firstly involve creating reli-
able bilingual corpus. This could help in creating
code summarization systems, which could help
developers understand the code written by some-
one else.

8 Acknowledgements

We would like to thank Dr. Greg Kondrak, for his
help with experimental designs.

References
Sonia Haiduc, Jairo Aponte, Laura Moreno, and An-

drian Marcus. 2010. On the use of automated text
summarization techniques for summarizing source
code. In Reverse Engineering (WCRE), 2010 17th
Working Conference on, pages 35–44. IEEE.

Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel,
and Premkumar Devanbu. 2012. On the naturalness
of software. In Software Engineering (ICSE), 2012
34th International Conference on, pages 837–847.
IEEE.

Dana Movshovitz-Attias and William W Cohen. 2013.
Natural language models for predicting program-
ming comments.

Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh
Nguyen, and Tien N Nguyen. 2013. A statistical se-
mantic language model for source code. In Proceed-
ings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pages 532–542. ACM.

Benjamin Peterson. 2014. 2to3 tool for converting
python 2 code to python 3 code. https://docs.
python.org/2/library/2to3.html.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1459v1 | CC-BY 4.0 Open Access | rec: 29 Oct 2015, publ: 29 Oct 2015

