
Testing a new idea to solve the P = NP problem with
mathematical induction

Background. P and NP are two classes (sets) of languages in Computer Science. An open

problem is whether P = NP. This paper tests a new idea to compare the two language sets

and attempts to prove that these two language sets consist of same languages by

elementary mathematical methods and basic knowledge of Turing machine. Methods. By

introducing a filter function C(M,w) that is the number of configurations which have more

than one children (nondeterministic moves) in the shortest accept computation path of a

nondeterministic Turing machine M for input w, for any language L(M) ∈ NP, we can define

a series of its subsets, Li(M) = {w | w ∈ L(M) ∧ C(M,w) ≤ i}, and a series of the subsets of

NP as Li = {Li(M) | ∀M ∙ L(M) ∈ NP}. The nondeterministic multi-tape Turing machine is

used to bridge two language sets Li and Li+1, by simulating the (i+1)-th nondeterministic

move deterministically in multiple work tapes, to reduce one (the last) nondeterministic

move. Results. The main result is that, with the above methods, the language set Li+1,

which seems more powerful, can be proved to be a subset of Li. This result collapses Li ⊆ P

for all i ∈ N. With NP = ⋃i∈NLi, it is clear that NP ⊆ P. Because by definition P ⊆ NP, we have

P = NP. Discussion. There can be other ways to define the subsets Li and prove the same

result. The result can be extended to cover any sets of time functions C, if ∀f ∙ f ∈ C ⇒ f2 ∈

C, then DTIME(C) = NTIME(C). This paper does not show any ways to find a solution in P for

the problem known in NP.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

 1

Testing New Idea to Solve P=NP Problem with Mathematical Induction

HUANG, YU BIN

yubinhuang@yahoo.com

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 2

Abstract

Background. P and NP are two classes (sets) of languages in Computer Science. An open

problem is whether NPP  . This paper tests a new idea to compare the two language sets and

attempts to prove that these two language sets consist of same languages by elementary

mathematical methods and basic knowledge of Turing machine.

Methods. By introducing a filter function  wMC , that is the number of configurations which

have more than one children (nondeterministic moves) in the shortest accept computation path of

a nondeterministic Turing machine M for input w , for any language   NPML  , we can

define a series of its subsets, }),()(|{)(iwMCMLwwMLi  , and a series of the subsets

of NP as })(|)({ NPMLMMLL ii  . The nondeterministic multi-tape Turing machine is

used to bridge two language sets iL and 1iL , by simulating the  1i -th nondeterministic move

deterministically in multiple work tapes, to reduce one (the last) nondeterministic move.

Results. The main result is that, with the above methods, the language set 1iL , which seems

more powerful, can be proved to be a subset of iL . This result collapses PLi  for all Ni .

With  N


i iLNP , it is clear that PNP . Because by definition NPP  , we have NPP  .

Discussion. There can be other ways to define the subsets iL and prove the same result. The

result can be extended to cover any sets of time functions C , if CfCff  2
, then

   CNTIMECDTIME  . This paper does not show any ways to find a solution in P for the

problem known in NP .

Keywords: P versus NP, Computational Complexity, nondeterministic multi-tape Turing

machine

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 3

Testing New Idea to Solve P=NP Problem with Mathematical Induction

INTRODUCTION

P and NP are two classes (sets) of languages in Computer Science. An open problem is

whether NPP  . Stephen Cook provided the formal description of this problem1. For more

information please reference the textbook Theory of Computational Complexity2.

To compare two sets, the mathematical way to prove NPP  will be proving

NPLPLL  (since by definition NPP  , it can also be PLNPLL );

and NPP  equals NPLPLL  . However, a quick scan of Milestones3 of researches

reveals that:

1. Most of the approaches to prove NPP  attempt to prove PLNPLL  .

The concern of this approach is, for a certain problem with a well-known solution in

NP , giving a solution in P does not prove PLNPLL  . Because

NPLPLL  , anyone can construct unlimited different PL that satisfy

PLNPLL  . But this does not construct a proof of PLNPLL  .

2. Most of the approaches to declare NPLPLL  only prove that they fail to

find/prove a particular language NPL that is actually also in P . Furthermore,

even they prove that it is impossible to find PL , maybe the Turing machine

searching such language never halts or it is undecidable, this still does not prove that

PL does not exist.

3. Some other papers are not written with well-established computational models and,

hence, make difficult for the community to understand.

This paper tests a new idea3 to solve PLNPLL  using elementary methods

that compare two language sets, and prove P and NP are consists of same languages.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 4

METHOD

P and NP are two sets consist of infinite languages and each such language can have

infinite accepted inputs. However, Turing machines are all about countable numbers. And the

length of the accept computation paths of inputs are also countable integer numbers. These

numbers of lengths can be arbitrary big, but by definition never infinite. These hint that

elementary method such as mathematical induction can be helpful.

To apply mathematical induction, the languages or inputs should be associated with

integer numbers. To achieve this goal, as the new idea, we can introduce a filter function

 wMC , that is the number of configurations which have more than one children

(nondeterministic moves) in the shortest accept computation path of a nondeterministic Turing

machine M for input w . Without loss of generality, assume M is a one-tape Turing machine.

For any language   NPML  , we can then define:

1. A series of subsets of  ML , }),()(|{)(iwMCMLwwMLi  for all Ni ; and

2. A series of subsets of NP as  NPMLMMLL ii )(|)(for all Ni .

Apparently, PML )(0 and PL 0 .

To apply mathematical induction, the nondeterministic multi-tape Turing machine is used

to bridge two languages)(MLi and)(1 MLi , and two language sets iL and 1iL , defined by

iwMC ),(and 1),( iwMC . Given any)(1 MLw i whose values of),(wMC are at most

1i , we can construct a nondeterministic multi-tape Turing machine to simulate the M that

accepts all)(1 MLw i with at most i nondeterministic moves and same time complexity, by

simulating the  1i -th nondeterministic (multiple possible) move deterministically in multiple

work tapes.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 5

Because the square of a polynomial run time function is still a polynomial run time

function, we can construct a one tape nondeterministic Turing machine M  to simulate the

above nondeterministic multi-tape Turing machine which still has polynomial run time. Means

for any NPMLi )(1 , there exists M  ,)()(1 MLML ii  . Hence, we can get ii LML )(1 .

That means PLL ii 1 for any Ni . Finally, we can prove  N


i iLNP and PNP .

SYMBOL & DEFINITIONS



Empty set.

N

The set of non-negative integer numbers.

 N| ksk

A set whose items are sets ks .   },,{N| 10  kk sssks  .

 operator

The union operator of sets.

1.  ii i ssss 10N



 for all Ni ; or

2. iij i ssss  10


.

Language1

Let  be a finite alphabet (that is, a finite nonempty set) with at least two elements, and

let * be the set of finite strings over  . Then a language over  is a subset L of * .

Turing machine1

A (one-tape) Turing machine M consists of a finite state control (i.e., a finite program)

attached to a read/write head moving on an infinite tape. The tape is divided into squares, each

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 6

capable of storing one symbol from a finite alphabet  that includes the blank symbol b . Each

machine M has a specified input alphabet  , which is a subset of  , not including the blank

symbol b . At each step in a computation, M is in some state q in a specified finite set Q of

possible states. Initially, a finite input over  is written on adjacent squares of the tape, all other

squares are blank (contains b), the head scans the left-most symbol of the input, and M is in the

initial state 0q . At each step M is in some state q and the head is scanning a tape square

containing some tape symbol s , and the action performed depends on the pair  sq, and is

specified by the machine’s transition function (or program)  . The action consists of printing a

symbol on the scanned square, moving the head left or right one square, and assuming a new

state.

Formally, a Turing machine M is a tuple ,,, Q , where  ,  , Q are finite

nonempty sets with  and b . The state set Q contains three special states 0q ,

acceptq , and rejectq . The transition function  satisfies

  }1,1{},{:  QqqQ rejectaccept .

If    hsqsq ,,,  , the interpretation is that, if M is in state q scanning the symbol s ,

then q is the new state, s is the symbol printed, and the tape head moves left or right one

square depending on whether h is −1 or 1.

We assume that the sets Q and  are disjoint.

Multi-tape Turing machine2[12]

A multi-tape Turing machine is similar to a one-tape Turing machine with the following

exceptions:

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 7

1. It has a finite number of tapes that extends infinitely to the both ends. Each tape is

equipped with its own head. All tape heads are controlled by a common finite control.

2. There are two special tapes: an input tape and an output tape.

a. The input tape is used to hold the inputs only; it is a read-only tape that

prohibits erasing and writing.

b. The output tape is used to hold the output string when the computation of a

function is concerned; it is a write-only tape.

3. The other tapes are called the work tapes. All work tapes are allowed to read, erase,

and write.

4. For a k-tape Turing machine, the transition function  satisfies

  kkk

rejectaccept QqqQ }1,1{},{: 

5. The initial setting of the input tape of the multi-tape Turing machine is the same as

that of the one-tape Turing machine, and all other tapes of the multi-tapes Turing

machine initially contain only blanks.

Configuration1

A configuration of M is a string xqy with
*x ,

y and Qq .

The interpretation of the configuration xqy is that M is in state q with xy on its tape,

with its head scanning the left-most symbol of y .

If C and C are configurations, then CC M  if xqsyC  and  ),,(, hsqsq  and

one of the following holds:

yqsxC  and 1h and y is nonempty.

bqsxC  and 1h and y is empty.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 8

ysaqxC  and 1h and axx  for some a .

ysbqC  and 1h and x is empty.

A configuration xqy halts if },{ rejectaccept qqq . Note that for each non-halting

configuration C there is a unique configuration 'C such that CC M  .

Discussion. The possible number of C is no more than the number of possible

transitions of  sq, , regardless of what x or y is.

Computation1

The computation of M on input
*w is the unique sequence 0C , 1C , ... of

configurations such that wqC 00  (or bqC 00  if w is empty) and 1 i

M

i CC for each i

with 1iC in the computation, and either the sequence is infinite or it ends in a halting

configuration. If the computation is finite, then the number of steps is one less than the number

of configurations; otherwise the number of steps is infinite.

Accept1

We say that M accepts w if and only if the computation is finite and the final

configuration contains the state acceptq .

The language accepted by M , denoted)(ML , has associated alphabet  and is defined

by }|{)(* wacceptsMwML  .

Deterministic Turing machine2[14]

Each configuration of a machine there is at most one move to make, and hence there is at

most one next configuration, this kind of the machines are defined as deterministic Turing

machine.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 9

Since each configuration of M may at most have one next configuration, the

computation of a deterministic Turing machine is a computation path. Such as:

final

MM

i

MM

initial CCC 

Nondeterministic Turing machine2[14]

If allow more than one moves for some configurations, and hence those configurations

have more than one next configurations, the machine is called a nondeterministic Turing

machine.

Since each configuration of M may have more than one next configurations, the

computation of a nondeterministic Turing machine M on an input w is, in general, a

computation tree. In the computation tree, each node is a configuration and all its next

configurations are its children. The root of the tree is the initial configuration.

We can still find the computation path accepts the given input by cutting all branches that

do not lead to the (shortest) final accept configuration. After that, it looks like:

final

MM

i

M

i

MM

initial CCCC   1

All configurations after the initial configuration can be one of the many possible

configurations. For example, if iC has more than one children, 1iC is the one of the children on

the path to finalC .

Polynomial run time1

We denote by  wtM the number of steps in the computation of M on input w . If this

computation never halts, then   wtM .

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 10

Note that, for deterministic Turing machine, the runtime is the length of the computation

path. For the nondeterministic Turing machine, the runtime is the shortest computation path in

the computation tree which accepts the given input.

For Nn we denote by  nTM the worst case run time of M ; that is,

  }|max{)(n

MM wwtnT  , where n is the set of all strings over  of length n .

We say that M runs in polynomial time if there exists k such that for all n ,

  knnT k

M  .

DTIME2[18]

We define  tDTIME to be the class of languages L that are accepted by deterministic

Turing machines M with    ntntM  for almost all 0n . We let

    Ct
tDTIMECDTIME


 .

NTIME2[19]

We define  tNTIME to be the class of languages L that are accepted by

nondeterministic Turing machines M with    ntntM  for almost all 0n . We let

    Ct
tNTIMECNTIME


 .

P2[21]

    N


k

knDTIMEpolyDTIMEP

NP2[21]

    N


k

knNTIMEpolyNTIMENP

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 11

),(wMC

For any input  MLw , in the computation tree of the nondeterministic Turing machine

M which accepts  ML , let),(wMC be the number of configurations in the accept

computation path for w which have more than one children in the computation tree.

)(MLi

For any language   NPML  , we can define a series of subsets of)(ML as:

}),()(|{)(iwMCMLwwMLi  , Ni

By definition we have:   NPMLi  , for any Ni .

Apparently we have:        MLMLMLML i  10 and   PML 0 .

iL

Let iL be the set of  MLi of all   NPML  .

Apparently we have: PL 0 .

PROPOSITIONS

Proposition 1.     N


i i MLML

Proof. Assume     N


i i MLML . It means there must exist at least one  MLw but

 MLw i for all Ni . According to the definition of  MLi , for this w ,   N, wMC . So for

input w , the Turing machine M will never halt. Means the Turing machine does not accept w .

 MLw . This establishes a contradiction. ■

Proposition 2.     }N|{ 


kMLML
kj j

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 12

Proof. It is clear that     }N|{
N




kMLML
kj ji i  . According to Proposition 1, we

have     }N|{ 


kMLML
kj j . ■

Proposition 3.  N


i iLNP

Proof. By definition, NPL
i i  N

 and     NPMLMLNP  | .

According to Proposition 2,     }N|{ 


iMLML
ij j , we have

    }N|{ 


iNPMLMLNP
ij j .

By definition,    MLML iij j 
 . So     N|  iNPMLMLNP i .

Because     NPMLMLL ii  | , we have  N


i iLNP .

Therefore  N


i iLNP . ■

LEMMA

Lemma. For any multi-tape Turing machine M , there exists a one-tape Turing machine

M  computing the same function as M in time      2
ntOnt MM  .

Proof. See Reference [2], Page 12, Page 23 ■

THEOREMS

Theorem 1. ii LL 1

Proof. For any   11   ii LML . Let k be the maximum number of values that a  can

assume on some   Qsq, of the one tape nondeterministic Turing machine M . We can

construct a k work tape nondeterministic Turing machine M  that accepts the same language

)(1 MLi with at most i nondeterministic moves.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 13

The idea is to track and count every nondeterministic moves in the accept computation

tree of input w for M . Before the  1i -th nondeterministic move, the multi-tape Turing

machine works like M . At the time of the  1i -th nondeterministic move, the multi-tape

Turing machine will move deterministically and all, at most k , possible moves will be simulated

at the k work tapes. Because for every  MLw i 1 ,   1,  iwMC . After the  1i -th

nondeterministic move, both M and M  work deterministically until accept or reject the input

w .

Assume M is a tuple ,,, Q and M  is another tuple   ,,, Q . We have:

1.  . Two Turing machines have same tape symbols.

2. For any state Qq , creates state Qq j
 for ij 0 . jq is used by M  for states

after the j -th and before the  1j -th nondeterministic move.

3. For any kr 0 and any r number of Qq , denoted as Qqt  for all rt 0 ,

creates state Qqq r


10 ## . 10 ## 

rqq  is used by M  for states at and after the

 1i -th nondeterministic move.

4. For any deterministic move    lsqsq ,,,  , creates  1i different deterministic

transitions for M  :































kk

j

k

j llssqssq ,,,,,,,...,, for ij 0 . jq is the j

-th state created for Qq for M  . jq  is the j -th state created for Qq  for M  .

5. For each move of nondeterministic moves    lsqsq ,,,  , creates  1i

(nondeterministic) transitions for M  :






























 
kk

j

k

j llssqssq ,,,,,,,...,, 1 for

ij 0 . jq is the j -th state created for Qq for M  . 1

jq is the  1j -th state

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 14

created for Qq  for M  . Note the difference, a nondeterministic move will switch

M  using the next set of the states.

6. For nondeterministic moves       rrr lsqlsqsq ,,,,,,, 000  where kr 0 ,

creates one deterministic transition for M  :


































  


k

r

k

rr

k

i lllsssqqssq ,,,,,,,,,,##,...,, 00000 . Here, the 0s and 0l are

written repeatedly to show that, if 1 kr , reuse 0s and 0l for the rest of the work

tapes and work heads. So all work tapes and work heads have definitions (things to

do).

7. For any combination















  


k

rr sssqq ,,,,,## 000
 where kr 0 and

Qqq r
 ##0  ,

a. Creates


































  


  


k

r

k

rr

k

rr lllsssqqsssqq ,,,,,,,,,,##,,,,,## 00000000

if and only if there exists deterministic move    ttttt lsqsq ,,,  for all

rt 0 .

b. Creates 





























kk

rreject

k

rr sssqsssqq 
  


  
 ,1,,,,,,,,,,,## 00000 if there

exists at least one rt 0 , deterministic move    ttttt lsqsq ,,,  does

not exist (no definition or only nondeterministic moves available).

8. The initial state of M  is initialq that is the one created for initialq of M .

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 15

9. For any Qqaccept  , the Qq jaccept


, where jacceptq ,
 is the j -th state created for M 

for acceptq .

10. State rqq  ##0  is an accept state of M  if and only if there exists t that tq is an

accept state of M .

11. For any Qqreject  , the Qq jreject


, where jrejectq ,
 is the j -th state created for M 

for rejectq .

12. State rqq  ##0  is a reject state of M  if and only if for all t that tq is a reject state

of M .

13. M  first copy the input tape to all the work tapes.

It is clear that M  accepts same language as M . For every  MLw , the length of the

shortest computation path of the accept computation tree are the same. Regardless the initial

 nO work to copy input tape to all work tapes, M and 'M have same polynomial run time

complexity.

Because   NPMLi 1 for 0i , there exists r such that for all n ,

    rnnTnT r

MM   . According to the Lemma, there exists an one tape nondeterministic

Turing machine M  accepts  MLi
 with    r

M nOnT 2 , which is also in polynomial run

time.

Notice that M  only need at most i nondeterministic moves to accept the input. So for

any  MLi 1 , we have an one tape nondeterministic Turing machine M  in polynomial run time

accepts the same language with at most i nondeterministic moves. Means    MLML ii
1 .

By definition of iL , for any   NPML  ,   ii LML 1 .

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 16

Therefore, ii LL 1 . ■

Theorem 2. PLi  for all Ni .

Proof. Because of PL 0 , and Theorem 1, if PLi  , PLL ii 1 , according to

mathematical induction, PLi  for all Ni . ■

Theorem 3. PNP

Proof. According to Theorem 2, we have PLi  for all Ni . Hence we have

 NN 


ii i PL . According to Proposition 3, we have  N


i iLNP , means  N


i
PNP .

Because PP
i


 N

, PNP . ■

Theorem 4. NPP 

Proof. It is trivial that NPP  . According to Theorem 3, PNP . Hence NPP  . ■

DISCUSSION

Notice that there are unlimited ways to define the subsets of NP which satisfy

 N


i iLNP . With the conclusion of NPP  , all of such PLi  . This paper only give one

way to define such iL and prove all such PLi  . There may be other ways to define iL and

PLi  is also provable.

The result can be extended to cover any sets of time functions C , if

CfCff  2
, then    CNTIMECDTIME  .

This paper does not give a way to find a solution in P for a problem in NP .

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

P = NP 17

References

[1] COOK, STEPHEN. "THE P VERSUS NP PROBLEM.". Web.

<http://www.claymath.org/sites/default/files/pvsnp.pdf>

[2] DU, DING-ZHU and KO, KER-I. THEORY OF COMPUTATIONAL COMPLEXITY. New

York: JOHN WILEY & SONS, INC., 2000. Print.

[3] The P-versus-NP page. Web

http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1455v1 | CC-BY 4.0 Open Access | rec: 27 Oct 2015, publ: 27 Oct 2015

