A peer-reviewed version of this preprint was published in PeerJ on 18 April 2016.

View the peer-reviewed version (peerj.com/articles/1642), which is the preferred citable publication unless you specifically need to cite this preprint.

Structure and stability of recombinant bovine odorant-binding protein: III. Peculiarities of the wild type bOBP unfolding in crowded milieu

Olga V Stepanenko, Denis O Roginskii, Olesya V Stepanenko, Irina M Kuznetsova, Vladimir N Uversky, Konstantin K Turoverov

Contrarily to the majority of the members of the lipocalin family, which are stable monomers with the specific OBP fold (a β-barrel consisting of a 8-stranded anti-parallel β-sheet followed by a short α-helical segment, a ninth β-strand, and a disordered C-terminal tail) and a conserved disulfide bond, bovine odorant-binding protein (bOBP) does not have such a disulfide bond and forms a domain-swapped dimer that involves crossing the α-helical region from each monomer over the β-barrel of the other monomer. Furthermore, although natural bOBP isolated from bovine tissues exists as a stable domain-swapped dimer, recombinant bOBP has decreased dimerization potential and therefore exists as a mixture of monomeric and dimeric variants. In this article, we investigated the effect model crowding agents of similar chemical nature but different molecular mass on conformational stability of the recombinant bOBP. These experiments were conducted in order shed light on the potential influence of model crowded environment on the unfolding-refolding equilibrium. To this end, we looked at the influence of PEG-600, PEG-4000, and PEG-12000 in concentrations of 80, 150, and 300 mg/mL on the equilibrium unfolding and refolding transitions induced in the recombinant bOBP by guanidine hydrochloride.
Structure and Stability of Recombinant Bovine Odorant-Binding Protein: III. Peculiarities of the Wild Type bOBP Unfolding in Crowded Milieu

Olga V. Stepanenko,1 Denis O. Roginskii,1 Olesya V. Stephanenko,1 Irina M. Kuznetsova,1 Vladimir N. Uversky,1,2,* and Konstantin K. Turoverov1,3,*

1Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia;
2Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA;
3Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

*To whom correspondence should be addressed: VNU, Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, Florida 33612, USA, E-mail: vuversky@health.usf.edu; KKT, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg 194064, Russia, E-mail: kkt@incras.ru

Running title: Unfolding of bOBP in crowded environments
ABSTRACT

Contrarily to the majority of the members of the lipocalin family, which are stable monomers with the specific OBP fold (a β-barrel consisting of a 8-stranded anti-parallel β-sheet followed by a short α-helical segment, a ninth β-strand, and a disordered C-terminal tail) and a conserved disulfide bond, bovine odorant-binding protein (bOBP) does not have such a disulfide bond and forms a domain-swapped dimer that involves crossing the α-helical region from each monomer over the β-barrel of the other monomer. Furthermore, although natural bOBP isolated from bovine tissues exists as a stable domain-swapped dimer, recombinant bOBP has decreased dimerization potential and therefore exists as a mixture of monomeric and dimeric variants. In this article, we investigated the effect model crowding agents of similar chemical nature but different molecular mass on conformational stability of the recombinant bOBP. These experiments were conducted in order shed light on the potential influence of model crowded environment on the unfolding-refolding equilibrium. To this end, we looked at the influence of PEG-600, PEG-4000, and PEG-12000 in concentrations of 80, 150, and 300 mg/mL on the equilibrium unfolding and refolding transitions induced in the recombinant bOBP by guanidine hydrochloride.

Key words: odorant-binding protein; domain swapping; disulfide bond; unfolding-refolding reaction; ligand binding; conformational stability; macromolecular crowding
INTRODUCTION

Classical odorant binding proteins (OBPs) are intriguing members of the large lipocalin family, which, due to their ability to interact with different odorants (small hydrophobic molecules of various nature and structure that have to travel from air to olfactory receptors in neurones through the aqueous compartment of nasal mucus (Buck & Axel 1991; Pevsner et al. 1988; Pevsner & Snyder 1990; Snyder et al. 1989)), play important but yet not completely understood role in olfaction (Pelosi 1994). Typically, OBPs are monomeric carrier proteins characterized by a specific 3-D fold, known as a prototypic OBP-fold that represents a β-barrel composed by a 8-stranded anti-parallel β-sheet followed by a short α-helical segment, a ninth β-strand and disordered C-terminal tail (Bianchet et al. 1996; Flower et al. 2000). The internal cavity of the OBP β-barrel is the binding site that can interact with the odorant molecules belonging to different chemical classes (Vincent et al. 2004).

Bovine OBP (bOBP) has a unique dimeric structure, which is different from the monomeric OBP fold found in the majority classical OBPs (see Figure 1) (Bianchet et al. 1996). Each protomer in the bOBP dimer forms a β-barrel via interaction with the α-helical region of another protomer by means of the domains swapping mechanism (Bianchet et al. 1996; Tegoni et al. 1996). The domain swapping mechanism, being described for several dimeric and oligomeric proteins, is known to play important structural and functional roles (Bennett et al. 1995; van der Wel 2012). It is believed that the domain swapping causes the increase in the interface area and thereby affects the overall protein stability (Bennett et al. 1994; Liu & Eisenberg 2002). In some cases it has been shown that the formation of the quaternary structure by means of domain swapping was responsible for the appearance of novel functions in corresponding protein monomers, functions, which were not originally present in the monomeric forms of those
66 proteins (Liu & Eisenberg 2002). Furthermore, early stages of the amyloid fibril formation are believed to be associated with the formation of domain-swapped oligomers (van der Wel 2012).

Our previous studies revealed that there is a noticeable difference between the recombinant bOBP and a natural form of this protein isolated from tissues (Stepanenko et al. 2014b). Here, recombinant bOBP forms a stable native-like conformation with the decreased dimerization potential and therefore exists as a mixture of monomeric and dimeric variants (Stepanenko et al. 2014b). It is likely that the formation of the domain-swapped dimer by the bOBP represents a complex process that requires particular organization of the secondary and tertiary structures of the bOBP monomers. We hypothesized that the recombinant bOBP has perturbed packing of its α-helical region and some β-strands, and that these perturbations in packing of the secondary structure elements might affect the formation of native domain-swapped dimer (Stepanenko et al. 2014b).

Our previous analysis also revealed that the native dimeric form of the recombinant bOBP is formed under the mildly denaturing conditions (i.e., in the presence of 1.5 M guanidine hydrochloride (GdnHCl)) (Stepanenko et al. 2014b). This process requires noticeable reorganization of the bOBP structure and is accompanied by the formation of a stable, more compact intermediate state which is maximally populated at 0.5 M GdnHCl. Cooperative unfolding of the recombinant bOBP is induced by the increase of the GdnHCl concentration above 1.5 M, whereas this protein is completed by ~3M GdnHCl (Stepanenko et al. 2014b). Despite its disturbed fold, the recombinant bOBP is characterized by high conformational stability, which is comparable with that of the native (isolated from tissue) bOBP (Mazzini et al. 2002), pOBP (Staiano et al. 2007; Stepanenko et al. 2008), and other β-rich proteins (Stepanenko et al. 2012; Stepanenko et al. 2013; Stepanenko et al. 2014a). This high conformational stability
is indicated by the fact that the recombinant bOBP unfolding is characterized by the half-transition point of > 2 M GdnHCl (Stepanenko et al. 2014b). We have also established that the unfolding of the recombinant bOBP is a completely reversible process, whereas the preceding process of its dimerization is the irreversible event (Stepanenko et al. 2014b).

One of the open challenges in the fields of protein science is the elucidation of the effects of natural cellular environment on protein structure and function, and on the processes of protein folding, unfolding, and aggregation. This challenge is defined (at least in part) by the so-called macromolecular crowding phenomenon, which originates from a known fact that the living cell contains very high concentrations of biological macromolecules (proteins, nucleic acids, polysaccharides, ribonucleoproteins, etc.), which can range from 80 to 400 mg/mL (Rivas et al. 2004; van den Berg et al. 1999; Zimmerman & Trach 1991). This crowded environment is characterized by the restricted amounts of free water (Ellis 2001; Fulton 1982; Minton 1997; Minton 2000b; Zimmerman & Minton 1993; Zimmerman & Trach 1991) and by the limited amount of the space available for a query protein due to the volume occupied by crowders (Minton 2001; Zimmerman & Minton 1993). In fact, it is estimated that the volume occupancy inside the cell is in a range of 5–40% (Ellis & Minton 2003). Therefore, it is expected that in such a crowded milieu, the average spacing between macromolecules should be smaller than the size of the macromolecules themselves (Homouz et al. 2008), and that the macromolecular crowding should have significant effects on various biological processes that depend on the available volume (Minton 2005; Zimmerman & Minton 1993).

In the laboratory practice, the potential effects of macromolecular crowding on various biological macromolecules and different biological processes are typically analyzed using
solutions containing high concentrations of a model “crowding agent”, such as polyethylene glycol (PEG), Dextran, Ficoll, or inert proteins (Chebotareva et al. 2004; Hatters et al. 2002; Kuznetsova et al. 2014; Kuznetsova et al. 2015; Minton 2001). Studies in this field revealed that the efficiency of crowding agents might depend on the ratio between the hydrodynamic dimensions (or occupied volumes) of the crowder and the test molecule, with the most effective conditions being those where the crowder and the test molecule occupy similar volumes (Chen et al. 2011; Minton 1993; Tokuriki et al. 2004). Typically, high concentrations of inert crowders have significant effects on conformational stability and structural properties of some proteins (Christiansen et al. 2010; Engel et al. 2008; Kuznetsova et al. 2014; Mittal & Singh 2013), and may affect various biological processes, such as protein folding, binding of small molecules, enzymatic activity, protein-nucleic acid interactions, protein-protein interactions, protein chaperone activity, pathological protein aggregation, and extent of amyloid formation (Chebotareva et al. 2015a; Chebotareva et al. 2015b; Hatters et al. 2002; Kuznetsova et al. 2014; Kuznetsova et al. 2015; Minton 2000a; Morar et al. 2001; Shtilerman et al. 2002; Uversky et al. 2002). For example, we recently conducted a large-scale analysis of the effect of two traditional macromolecular crowders, PEG-8000 and Dextran-70, on the urea-induced unfolding of eleven globular proteins belonging to different structural classes (Stepanenko et al. 2015a). This analysis revealed that crowding agents do not have significant effects on the conformational stability of small, monomeric, positively charged proteins but stabilize oligomeric negatively charged proteins (Stepanenko et al. 2015a). Since different polymers were shown to have very different effects on the conformational stability of a given protein, it has been concluded that the excluded volume effect is not the only factor influencing the protein behavior in the crowded environments, and that the inequality of different crowders in affecting the conformational
stability of proteins can be explained by the ability of the crowding agents to change the solvent
properties of aqueous media (Stepanenko et al. 2015a).

In the first article of this series we compared structural and functional properties of the
recombinant wild type bOBP and its mutants that cannot dimerize via the domain swapping
(Stepanenko et al. 2015b). The analysis revealed that none of the amino acid substitutions
introduced to the bOBP affected functional activity of the protein and that the ligand binding
leads to the formation of a more compact and stable state of the recombinant bOBP and its
mutant monomeric forms (Stepanenko et al. 2015b). Second article of the series was dedicated to
the analysis of conformational stabilities of the recombinant bOBP and its monomeric variants in
the absence and presence of the natural ligand (Stepanenko et al. 2015c). We showed that the
unfolding-refolding pathways of the recombinant bOBP and its monomeric forms are similar and
do not depend on the oligomeric status of the protein, suggesting that the information on the
unfolding-refolding mechanism is encoded in the structure of the bOBP monomers (Stepanenko
et al. 2015c). On the other hand that previous work indicated that the bOBP unfolding process is
significantly complicated by the domain-swapped dimer formation, and that the rates of the
unfolding-refolding reactions are controlled by the environmental conditions (Stepanenko et al.
2015c).

In this work, we investigated the peculiarities of the unfolding-refolding processes of the
recombinant bOBP in the presence of different concentrations of model crowding agents, such as
PEGs of different molecular masses. To this end, we looked at the influence of PEG-600, PEG-
4000 and PEG-12000 in concentrations of 80, 150, and 300 mg/mL on the conformational
stability of the recombinant bOBP against the GdnCl-induced unfolding.
MATERIAL AND METHODS

Materials

GdnHCl (Nacalai Tesque, Japan), ANS (ammonium salt of 8-anilinonaphtalene-1-sulfonic acid; Fluka, Switzerland) and crowding agents (PEG600, PEG4000 and PEG12000; Sigma-Aldrich, USA) were used without further purification. The protein concentration was 0.1 – 0.2 mg/mL. The experiments were performed in 20 mM Na-phosphate-buffered solution at pH 7.8.

Gene expression and protein purification

The plasmid pT7-7-bOBP which encodes bOBP with a poly-histidine tag were used to transform *Escherichia coli* BL21(DE3) host (Invitrogen) (Stepanenko et al. 2014b). The protein expression was induced by incubating the cells with 0.3 mM of isopropyl-beta-D-1-thiogalactopyranoside (IPTG; Fluka, Switzerland) for 24 h at 37 °C. The recombinant protein was purified with Ni+-agarose packed in HisGraviTrap columns (GE Healthcare, Sweden). The protein purity was determined through SDS-PAGE in 15% polyacrylamide gel (Laemmli 1970).

Fluorescence spectroscopy

Fluorescence experiments were performed using a Cary Eclipse spectrofluorimeter (Varian, Australia) with microcells FLR (10 x 10 mm; Varian, Australia). Fluorescence lifetime were measured using a “home built” spectrofluorimeter with a nanosecond impulse (Stepanenko et al. 2012; Stepanenko et al. 2014b; Turoverov et al. 1998) as well as micro-cells (101.016-QS 5 x 5 mm; Hellma, Germany). Tryptophan fluorescence in the protein was excited at the long-wave absorption spectrum edge (λ_ex = 297 nm), wherein the tyrosine residue contribution to the bulk
protein fluorescence is negligible. The fluorescence spectra position and form were characterized using the parameter \(A = I_{320} / I_{365} \), wherein \(I_{320} \) and \(I_{365} \) are the fluorescence intensities at the emission wavelengths 320 and 365 nm, respectively (Turoverov & Kuznetsova 2003). The values for parameter \(A \) and the fluorescence spectrum were corrected for instrument sensitivity.

The tryptophan fluorescence anisotropy was calculated using the equation \(r = (I_V^V - GI_H^V) / (I_V^V + 2GI_H^V) \), wherein \(I_V^V \) and \(I_H^V \) are the vertical and horizontal fluorescence intensity components upon excitation by vertically polarized light. \(G \) is the relationship between the fluorescence intensity vertical and horizontal components upon excitation by horizontally polarized light (\(G = I_V^H / I_H^H \)), \(\lambda_{em} = 365 \) nm (Turoverov et al. 1998). The fluorescence intensity for the fluorescent dye ANS was recorded at \(\lambda_{em} = 480 \) nm (\(\lambda_{ex} = 365 \) nm). Protein unfolding was initiated by manually mixing the protein solution (40 \(\mu l \)) with a buffer solution (510 \(\mu l \)) that included the necessary GdnHCl concentration and crowding agent concentration. The GdnHCl concentration was determined by the refraction coefficient using an Abbe refractometer (LOMO, Russia; (Pace 1986)). The dependences of different fluorescent characteristics bOBP on GdnHCl were recorded following protein incubation in a solution with the appropriate denaturant concentration at 4 °C for different times (see in the text). The protein refolding was initiated by diluting the pre-denatured protein (in 3.0 M GdnHCl, 40 \(\mu l \)) with the buffer or denaturant solutions at various concentrations (510 \(\mu l \)), containing crowding agent. The spectrofluorimeter was equipped with a thermostat that holds the temperature constant at 23 °C.

Circular dichroism measurements
The CD spectra were generated using a Jasco-810 spectropolarimeter (Jasco, Japan). Far-UV CD spectra were recorded in a 1-mm path length cell from 260 nm to 190 nm with a 0.1 nm step size. Near-UV CD spectra were recorded in a 10-mm path length cell from 320 nm to 250 nm with a 0.1 nm step size. For the spectra, we generated 3 scans on average. The CD spectra for the appropriate buffer solution were recorded and subtracted from the protein spectra.

RESULTS AND DISCUSSION

bOBP unfolding in the presence of PEG-600

Our analysis revealed that in the presence of low concentrations of PEG-600 (80 mg/mL), shapes of the curves describing the GdnHCl-induced unfolding of the recombinant bOBP were similar to the shapes of corresponding curves recorded in the absence of crowder. However, the half-transition points for the unfolding curves measured in the presence of PEG-600 were shifted towards the higher GdnHCl concentrations (see Figure 2A). Table 1 shows that the values of the parameter A and fluorescence anisotropy r measured for the recombinant bOBP in the presence of 80 mg/mL PEG-600 were somewhat higher than the corresponding values measured in the absence of crowder. The increase in the PEG-600 concentration to 150 mg/mL resulted in the more pronounced increase in the parameter A and fluorescence anisotropy r values. Figure 2B shows that when the 150 mg/mL of PEG-600 are added to the solution of the recombinant bOBP, the pre-transition region of the unfolding curve flattens and the transition happens at higher GdnHCl concentrations than the unfolding in the presence of the 80 mg/mL PEG-600.

Curiously, the curves describing the recombinant bOBP refolding from the completely unfolded state and recorded in the presence of 80 or 150 mg/mL of PEG-600 did not coincide
with the equilibrium unfolding curves recorded under the similar conditions. However, these refolding curves were close to the curves describing unfolding and refolding of the recombinant bOBP alone (i.e., in the absence of crowding agent; see Figure 2A and 2B).

Figure 2C shows that the curves describing equilibrium unfolding and refolding of the recombinant bOBP in the presence of 300 mg/mL PEG-600 coincide and the corresponding transitions gained sigmoidal shape. Furthermore, these transitions happened at significantly higher GdnHCl concentrations, then transitions recorded in the presence of 80 or 150 mg/mL of this crowder (see also Figure 6). Table 1 shows that the parameter A and fluorescence anisotropy r values determined in solutions containing 300 mg/mL PEG-600 are further increased. Мы так же наблюдали незначительное уменьшение величины времени жизни флуоресценции bOBP при повышении концентрации PEG-600 от 80 до 300 mg/mL (Table 1). We also observed a slight decrease in the fluorescence lifetime of recombinant bOBP with increasing concentration of PEG-600 from 80 to 300 mg/mL (Table 1). These data, together with the observed changes in parameter A and fluorescence anisotropy r values, testify for some compaction of the protein globule in the presence of the crowding agent, which resulted in shorter distances between the quenching groups of the protein and its tryptophan residues.

Interestingly, the ANS fluorescence intensity remained substantially unchanged when this hydrophobic fluorescent dye was added to the protein solution in the presence of denaturant and PEG-600 at all concentrations tested (Figure 2). It is likely that these data reflect the fact that the presence of this crowding agent prevents direct ANS-protein interactions.

bOBP unfolding in the presence of PEG-4000 and PEG-12000
Addition of the increasing concentrations of PEG-4000 and PEG-12000 was accompanied by the increase in the values of the parameter \(A \) and fluorescence anisotropy \(r \), as well as the value of fluorescence lifetime (see Table 1). It is worth noting that the value of fluorescence lifetime for recombinant bOBP in the presence of 80 mg/mL of PEG-4000 was significantly lower that the corresponding value of this parameter measured for bOBP in the presence of 80 mg/mL of PEG-12000, and especially in the presence of 80 mg/mL of PEG-600. However, at increasing the PEG-4000 and PEG-12000 concentration to 300 mg/mL, the value of the fluorescence lifetime of recombinant bOBP increased to the values measured for bOBP in the presence of 300 mg/mL of PEG-600. These data suggest that the crowding agents with different molecular weights have different effects on structure of the protein.

Curiously, when the unfolding-refolding process of the recombinant bOBP was analyzed in the presence of 80 mg/mL of PEG-4000 or PEG-12000, the corresponding transitions curves coincided with each other and with curve describing the equilibrium unfolding-refolding processes in the recombinant bOBP alone (see Figure 3A and 4A). Subsequent increase in concentration of PEG-4000 and PEG-12000 to 150 mg/mL did not change the shape of corresponding curves, but lead to an insignificant and equal for both crowding agents shift of the unfolding transition to higher GdnHCl concentrations (see Figures 3B and 4B). Furthermore, the half-transition point for the bOBP unfolding in the presence of 150 mg/mL of PEG-4000 or PEG-12000 is observed at a significantly lower GdnHCl concentrations than in the presence of 150 mg/mL of PEG-600 (Figure 6).

Figure 3C shows that when PEG-4000 concentration was increased to 300 mg/mL the curve describing the equilibrium unfolding-refolding transitions of bOBP became sigmoidal and coincided with the corresponding curve describing equilibrium unfolding-refolding of this...
protein in the presence of 300 mg/mL PEG-600 (see also Figure 6). Although the GdnHCl-
induced unfolding curve of the recombinant bOBP in the presence of 300 mg/mL PEG-12000
was also sigmodal (see Figure 4C), the corresponding transition occurred at significantly lower
GdnHCl concentrations (Figure 6). The ANS fluorescence intensity in the presence of PEG-4000
or PEG-12000 shows almost no dependence on denaturant concentration (Figure 3 and 4). This
provides further support for the crowder-induced interruption of interaction between the ANS
molecules and the protein.

Curiously, similar to the results reported in our previous study (Stepanenko et al. 2015c),
analysis of the recombinant bOBP unfolding in the presence of various concentrations of
different crowders revealed that the GdnHCl dependence of various structural characteristics
depends on the incubation time of this protein in the presence of the denaturant (see Figures 2-4).
In fact, during the unfolding in crowded milieu, equilibrium values of the analyzed structural
characteristics of the recombinant bOBP were reached after the incubation of this protein in the
presence of the desired GdnHCl concentration for 72 hrs. This analysis also revealed the
presence of noticeable hysteresis between the curves describing the equilibrium unfolding and
refolding of bOBP when the corresponding measurements were conducted after incubation of the
corresponding solution for 1 hour before the measurements (see Figures 2-4).

Figure 5A shows that the tertiary structure of the recombinant bOBP was not affected by
low concentrations (80 mg/mL) of PEG-600, PEG-4000, and PEG-12000. However, although
the near-UV CD spectra of this protein measured in the presence of high concentrations of
crowding agents soon after mixing (~1h) were different from the corresponding spectrum
measured for bOBP alone (see Figure 5B and 5C), this structural difference disappeared after the
prolonged incubation of this protein under the corresponding conditions. The secondary structure
of the recombinant bOBP was not changed in the presence of PEG-600, PEG-4000 and PEG-12000, as evidenced by the coincidence of the values of the ellipticity in the far-UV spectrum region recorded for the protein alone or in the presence of all crowding agents at all concentrations tested (Figures 2-4).

The existence of some dependence of the bOBP structure on the time of incubation in the presence of crowders was further supported by the analysis of the intrinsic tryptophan fluorescence (see bottom panels in Figure 5). Increase in the incubation time of the recombinant bOBP in the presence of 80 or 150 mg/mL of crowding agents generates fluorescence spectra that practically coincide with the spectrum of intrinsic fluorescence of the protein alone. However, when concentration of the crowding agents was increased to 300 mg/mL, the intensity of the tryptophan fluorescence was noticeably enhanced. In fact, the intensities of the fluorescence spectra measured in the presence of high concentrations of PEG-4000 and PEG-12000 were slightly higher, and spectra measured in the presence of 300 mg/mL PEG-600 markedly exceeded the bOBP fluorescence intensity in the solution without crowding agents.

CONCLUSIONS

Our analysis revealed that effects of crowding agents on the structural properties of the recombinant bOBP and on the unfolding-refolding processes of this protein depend on the crowder concentration and size. Being added at low concentrations (80 mg/mL), PEG-600 significantly stabilizes the native state of the recombinant bOBP but did not influence the mechanism of the unfolding-refolding process. This is evidenced by the mismatch of the transition curves describing the bOBP unfolding and refolding. Low concentrations (80 mg/mL)
of PEG-4000 and PEG-12000 possess comparable effects – they do not affect the unfolding-refolding pathway but lead to moderate increase in the stability of recombinant bOBP to
denaturing effects of GdnHCl. It is likely that the PEG-4000 and PEG-12000 action can be
associated with a slight increase in the solution viscosity in the presence of these agents.

Moderate concentrations (150 mg/mL) of crowding agents lead to further increase in the
conformational stability of the recombinant bOBP. Under these conditions, PEG-600 possesses
more pronounced stabilizing effects than PEG-4000 and PEG-12000 do. At the highest
concentrations of crowding agents analyzed in this study (300 mg/mL), their effects on bOBP
were somewhat changed. In fact, our data show that even in the absence of denaturant, there is a
substantial compaction of a protein globule and a shift of the conformational equilibrium towards
the native dimeric form of the bOBP. Furthermore, the bOBP unfolding curves measured in the
presence of high concentrations of crowding agents become sigmoidal, suggesting that the
unfolding of this protein under such conditions can be described as an all-or-none transition.
Curiously, these changes were essentially dependent on the size of crowding agents, with PEG-
12000 possessing smallest stabilizing effects.

Therefore, the effect of crowding agents on the structure and conformational stability of
the recombinant bOBP depends on two factors: (i) Size of the crowder, with the smaller
crowding agents being more effective in the stabilization of the bOBP native dimeric state; and
(ii) on the concentration of the crowding agents, with the higher crowder concentrations typically
possessing stronger stabilizing effects.
ACKNOWLEDGEMENTS

This work was supported by a grant from the Russian Science Foundation RSCF № 14-24-00131.

AUTHOR CONTRIBUTIONS

Olga VS, Olesya VS and DOR collected and analyzed data, contributed to discussion, and wrote the manuscript. Olga VS, IMK, and KKT conceived the idea, supervised the project, contributed to discussion, and reviewed/edited manuscript. VNU analyzed data, contributed to discussion, and wrote the manuscript.

DISCLOSURE

None declared.

REFERENCES

FIGURE LEGENDS

Figure 1. 3-D structure of bOBP. The individual subunits in the protein are in gray and pink. The tryptophan residues in the different subunits are indicated in blue and red as van der Waals spheres. The drawing was generated based on the 1OBP file (Tegoni et al. 1996) from PDB (Dutta et al. 2009) using the graphic software VMD (Hsin et al. 2008) and Raster3D (Merritt & Bacon 1977).

Figure 2. GdnHCl-induced unfolding – refolding of the recombinant bOBP alone (red circles; the data are from (Stepanenko et al. 2014b)) and in the presence of a crowding agent PEG-600 (squares) at low (80 mg/mL, A), medium (150 mg/mL, B) and high concentration (300 mg/mL, C). The protein conformational changes were followed by changes in the parameter A (λ_ex=297 nm), fluorescence anisotropy r at the emission wavelength 365 nm (λ_ex=297 nm), the ellipticity at 222 nm and the ANS fluorescence intensity at λ_em=480 nm (λ_ex=365 nm). Protein was incubated in a solution with the appropriate GdnHCl concentration at 4°C for 1 h (gray squares), 24 h (red circles), 96 h (green squares) and 7 days (dark yellow squares). The open symbols indicate unfolding, whereas the closed symbols represent refolding.

Figure 3. GdnHCl-induced unfolding – refolding of the recombinant bOBP alone (red circles; the data are from (Stepanenko et al. 2014b)) and in the presence of PEG-4000 (squares) at low (80 mg/L A), medium (150 mg/mL, B) and high (300 mg/L C)
concentration. The protein conformational changes were followed by the changes in the parameter A ($\lambda_{ex}=297$ nm), fluorescence anisotropy r at the emission wavelength 365 nm ($\lambda_{ex}=297$ nm), the ellipticity at 222 nm and the ANS fluorescence intensity at $\lambda_{em}=480$ nm ($\lambda_{ex}=365$ nm). Protein was incubated in a solution with the appropriate GdnHCl concentration at 4°C for 1 h (gray squares), 24 h (light green squares and red circles) and 72 h (green squares). The open symbols indicate unfolding, whereas the closed symbols represent refolding.

Figure 4. GdnHCl-induced unfolding – refolding of the recombinant bOBP alone (red circles; the data are from (Stepanenko et al. 2014b)) and in the presence of PEG-12000 (squares) at low (80 mg/mL, A), medium (150 mg/mL, B) and high concentrations (300 mg/mL, C). The protein conformational changes were followed by changes in the parameter A ($\lambda_{ex}=297$ nm), fluorescence anisotropy r at the emission wavelength 365 nm ($\lambda_{ex}=297$ nm), the ellipticity at 222 nm, and the ANS fluorescence intensity at $\lambda_{em}=480$ nm ($\lambda_{ex}=365$ nm). Protein was incubated in a solution with the appropriate GdnHCl concentration at 4°C for 1 h (gray squares), 24 h (light green squares and red circles) and 72 h (green squares). The open symbols indicate unfolding, whereas the closed symbols represent refolding.

Figure 5. Changes in the near-UV CD spectra (upper panels) and the tryptophan fluorescence spectra (bottom panels) of bOBP alone (black lines) and in the presence of PEG-600 (green colors), PEG-4000 (red colors) and PEG-12000 (blue colors). The measurements were preceded by incubating the protein in a solution with crowding agent at 4°C for 1 h (PEG-600 – light-green, PEG-4000 – pink, PEG-12000 – light blue) and 72 – 96 h (PEG-
The concentrations of crowding agents were 80 mg/mL (\(A\)), 150 mg/mL (\(B\)) and 300 mg/mL (\(C\)).

Figure 6. GdnHCl-induced unfolding – refolding of the recombinant bOBP alone (gray circles; the data are from (Stepanenko et al. 2014b)) and in the presence of crowding agents PEG-600 (green colors), PEG-4000 (red colors) and PEG-12000 (blue colors). The protein conformational changes were followed by the changes in parameter \(A\) and fluorescence anisotropy at the emission wavelength 365 nm (\(\lambda_{ex}=297\) nm). The measurements were preceded by incubating the protein in a solution with the appropriate GdnHCl concentration at 4ºC for 72 – 96 h. The open symbols indicate unfolding, whereas the closed symbols represent refolding. Applied concentrations of crowding agents were 80 mg/mL (\(A\); squares, PEG-600 – light green, PEG-4000 – pink, PEG-12000 – light blue), were 150 mg/mL (\(B\); circles, PEG-600 – green, PEG-4000 – red, PEG-12000 – blue) and were 300 mg/mL (\(C\); triangles, PEG-600 – dark yellow, PEG-4000 – brown, PEG-12000 – dark blue). \(D\) panel represents all intrinsic fluorescence data for comparison purpose.
Table 1 (on next page)

Characteristics of intrinsic fluorescence of recombinant bOBP alone and in the different crowding agents.
Table 1. Characteristics of intrinsic fluorescence of recombinant bOBP alone and in the different crowding agents.

<table>
<thead>
<tr>
<th></th>
<th>λ_{max}, nm ($\lambda_{\text{ex}}=297$ nm)</th>
<th>Parameter A ($\lambda_{\text{ex}}=297$ nm)</th>
<th>r ($\lambda_{\text{ex}}=297$ nm, $\lambda_{\text{em}}=365$ nm)</th>
<th>τ, nm ($\lambda_{\text{ex}}=297$ nm, $\lambda_{\text{em}}=335$ nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bOBPwt in buffered solution*</td>
<td>335</td>
<td>1.21</td>
<td>0.170</td>
<td>4.37 ± 0.19</td>
</tr>
<tr>
<td>bOBPwt/PEG-600 80 mg/ml</td>
<td>333</td>
<td>1.35</td>
<td>0.191</td>
<td>4.40 ± 0.17</td>
</tr>
<tr>
<td>bOBPwt/PEG-600 150 mg/ml</td>
<td>332</td>
<td>1.40</td>
<td>0.195</td>
<td>4.09 ± 0.03</td>
</tr>
<tr>
<td>bOBPwt/PEG-600 300 mg/ml</td>
<td>334</td>
<td>1.43</td>
<td>0.196</td>
<td>4.22 ± 0.03</td>
</tr>
<tr>
<td>bOBPwt/PEG-4000 80 mg/ml</td>
<td>334</td>
<td>1.29</td>
<td>0.194</td>
<td>3.68 ± 0.25</td>
</tr>
<tr>
<td>bOBPwt/PEG-4000 150 mg/ml</td>
<td>334</td>
<td>1.31</td>
<td>0.197</td>
<td>3.94 ± 0.10</td>
</tr>
<tr>
<td>bOBPwt/PEG-4000 300 mg/ml</td>
<td>335</td>
<td>1.37</td>
<td>0.20</td>
<td>4.19 ± 0.10</td>
</tr>
<tr>
<td>bOBPwt/PEG-12000 80 mg/ml</td>
<td>335</td>
<td>1.28</td>
<td>0.192</td>
<td>3.96 ± 0.04</td>
</tr>
<tr>
<td>bOBPwt/PEG-12000 150 mg/ml</td>
<td>335</td>
<td>1.32</td>
<td>0.203</td>
<td>4.16 ± 0.07</td>
</tr>
<tr>
<td>bOBPwt/PEG-12000 300 mg/ml</td>
<td>335</td>
<td>1.40</td>
<td>0.203</td>
<td>4.20 ± 0.50</td>
</tr>
</tbody>
</table>

* The data are from (Stepanenko et al. 2014b)
3-D structure of bOBP.

Figure 1. 3-D structure of bOBP. The individual subunits in the protein are in gray and pink. The tryptophan residues in the different subunits are indicated in blue and red as van der Waals spheres. The drawing was generated based on the 1OBP file (Tegoni et al. 1996) from PDB (Dutta et al. 2009) using the graphic software VMD (Hsin et al. 2008) and Raster3D (Merritt & Bacon 1977).
GdnHCl-induced unfolding – refolding of the recombinant bOBP alone and in the presence of PEG-600.

Figure 2. GdnHCl-induced unfolding – refolding of the recombinant bOBP alone (red circles; the data are from (Stepanenko et al. 2014b)) and in the presence of a crowding agent PEG-600 (squares) at low (80 mg/mL, A), medium (150 mg/mL, B) and high concentration (300 mg/mL, C). The protein conformational changes were followed by changes in the parameter A ($\lambda_{\text{ex}}=297$ nm), fluorescence anisotropy r at the emission wavelength 365 nm ($\lambda_{\text{em}}=297$ nm), the ellipticity at 222 nm and the ANS fluorescence intensity at $l_{\text{em}}=480$ nm ($l_{\text{ex}}=365$ nm). Protein was incubated in a solution with the appropriate GdnHCl concentration at 4°C for 1 h (gray squares), 24 h (red circles), 96 h (green squares) and 7 days (dark yellow squares). The open symbols indicate unfolding, whereas the closed symbols represent refolding.
GdnHCl-induced unfolding – refolding of the recombinant bOBP alone and in the presence of PEG-4000.

Figure 3. GdnHCl-induced unfolding – refolding of the recombinant bOBP alone (red circles; the data are from (Stepanenko et al. 2014b)) and in the presence of PEG-4000 (squares) at low (80 mg/L \(A \)), medium (150 mg/mL, \(B \)) and high (300 mg/L \(C \)) concentration. The protein conformational changes were followed by the changes in the parameter \(A \) (\(\lambda_{ex} = 297 \) nm), fluorescence anisotropy \(r \) at the emission wavelength 365 nm (\(\lambda_{ex} = 297 \) nm), the ellipticity at 222 nm and the ANS fluorescence intensity at \(\lambda_{em} = 480 \) nm (\(\lambda_{ex} = 365 \) nm). Protein was incubated in a solution with the appropriate GdnHCl concentration at 4ºC for 1 h (gray squares), 24 h (light green squares and red circles) and 72 h (green squares). The open symbols indicate unfolding, whereas the closed symbols represent refolding.
GdnHCl-induced unfolding – refolding of the recombinant bOBP alone and in the presence of PEG-12000 s

Figure 4. GdnHCl-induced unfolding – refolding of the recombinant bOBP alone (red circles; the data are from (Stepanenko et al. 2014b)) and in the presence of PEG-12000 (squares) at low (80 mg/mL, A), medium (150 mg/mL, B) and high concentrations (300 mg/mL, C). The protein conformational changes were followed by changes in the parameter A ($\lambda_{ex}=297$ nm), fluorescence anisotropy r at the emission wavelength 365 nm ($\lambda_{ex}=297$ nm), the ellipticity at 222 nm, and the ANS fluorescence intensity at $\lambda_{em}=480$ nm ($l_{ex}=365$ nm). Protein was incubated in a solution with the appropriate GdnHCl concentration at 4ºC for 1 h (gray squares), 24 h (light green squares and red circles) and 72 h (green squares). The open symbols indicate unfolding, whereas the closed symbols represent refolding.
Structural properties of bOBP in crowded environment.

Figure 5. Changes in the near-UV CD spectra (upper panels) and the tryptophan fluorescence spectra (bottom panels) of bOBP alone (black lines) and in the presence of PEG-600 (green colors), PEG-4000 (red colors) and PEG-12000 (blue colors). The measurements were preceded by incubating the protein in a solution with crowding agent at 4°C for 1 h (PEG-600 – light-green, PEG-4000 – pink, PEG-12000 – light blue) and 72 – 96 h (PEG-600 – green, PEG4-000 – red, PEG-12000 –blue). The concentrations of crowding agents were 80 mg/mL (A), 150 mg/mL (B) and 300 mg/mL (C).
GdnHCl-induced unfolding - refolding of the recombinant bOBP alone and in the presence of various crowding agents.

Figure 6. GdnHCl-induced unfolding - refolding of the recombinant bOBP alone (gray circles; the data are from (Stepanenko et al. 2014b)) and in the presence of crowding agents PEG-600 (green colors), PEG-4000 (red colors) and PEG-12000 (blue colors). The protein conformational changes were followed by the changes in parameter A and fluorescence anisotropy at the emission wavelength 365 nm ($\lambda_{ex}=297$ nm). The measurements were preceded by incubating the protein in a solution with the appropriate GdnHCl concentration at 4ºC for 72 - 96 h. The open symbols indicate unfolding, whereas the closed symbols represent refolding. Applied concentrations of crowding agents were 80 mg/mL (A; squares, PEG-600 – light green, PEG-4000 – pink, PEG-12000 – light blue), were 150 mg/mL (B; circles, PEG-600 – green, PEG-4000 – red, PEG-12000 –blue) and were 300 mg/mL (C; triangles, PEG-600 – dark yellow, PEG-4000 – brown, PEG-12000 – dark blue). D panel represents all intrinsic fluorescence data for comparison purpose.