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Abstract: Scaling laws underpin unifying theories of biodiversity and are among the most 

predictively powerful relationships in biology. However, scaling laws developed for plants and 8 

animals often go untested or fail to hold for microorganisms. As a result, it is unclear whether 

scaling laws of biodiversity will span evolutionarily distant domains of life that encompass all 10 

modes of metabolism and scales of abundance. Using a global-scale compilation of ~35,000 sites 

and ~5.6·106 species, including the largest ever inventory of high-throughput molecular data and 12 

one of the largest compilations of plant and animal community data, we demonstrate similar 

rates of scaling in commonness and rarity across microorganisms and macroscopic plants and 14 

animals. We document a universal dominance scaling law that holds across 30 orders of 

magnitude, an unprecedented expanse that predicts the abundance of dominant ocean bacteria. In 16 

combining this scaling law with the lognormal model of biodiversity, we predict that Earth is 

home to upwards one trillion (1012) microbial species. Microbial biodiversity seems greater than 18 

ever anticipated yet predictable from the smallest to the largest microbiome. 

 20 
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 22 
 The understanding of microbial biodiversity has rapidly transformed over the past 

decade. High throughput sequencing and bioinformatics have expanded the catalog of microbial 24 

taxa by orders of magnitude, while the unearthing of new phyla is reshaping the tree of life (1-3). 

At the same time, discoveries of novel forms of metabolism have provided insight into how 26 

microbes persist in virtually all aquatic, terrestrial, engineered, and host-associated ecosystems 

(4, 5). However, this period of discovery has uncovered few, if any, general rules for predicting 28 

microbial biodiversity at scales of abundance that characterize, for example, the ~1014 cells of 

bacteria that inhabit a single human or the ~1030 cells of bacteria and archaea estimated to inhabit 30 

Earth (6, 7). Such findings would aid the estimation of global species richness and reveal 

whether theories of biodiversity hold across all scales of abundance and whether so-called law-32 

like patterns of biodiversity span the tree of life. 

 A primary goal of ecology and biodiversity theory is to predict diversity, commonness, 34 

and rarity across evolutionarily distant taxa and scales of space, time, and abundance (8-10). This 

goal can hardly be achieved without accounting for the most abundant, widespread, and 36 

metabolically, taxonomically, and functionally diverse organisms on Earth, i.e., microorganisms. 

Yet tests of biodiversity theory rarely include both microbial and macrobial datasets. At the same 38 

time, the study of microbial ecology has yet to uncover quantitative relationships that predict 

diversity, commonness, and rarity at the scale of host microbiomes and beyond. These 40 

unexplored opportunities leave the understanding of biodiversity limited to the most conspicuous 

taxa and largely unresolved for microorganisms. This lack of synthesis has also resulted in the 42 

independent study of two phenomena that likely represent a single universal pattern, i.e., highly 

uneven distributions of abundance that underpin biodiversity theory and that are ubiquitous 44 
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among communities of plants and animals (11), and the universal pattern of microbial 

commonness and rarity known as the microbial “rare biosphere” (12). 46 

 Scaling laws provide a promising path to the unified understanding and prediction of 

biodiversity. Also referred to as power-laws, the forms of these relationships, y ≈ xz, predict 48 

linear rates of change under logarithmic transformation, i.e., log(y) ≈ zlog(x) and hence, 

proportional changes across orders of magnitude. Scaling laws reveal how physiological, 50 

ecological, and evolutionary constraints hold across genomes, cells, organisms, and communities 

of greatly varying size (13-15). Among the most widely known are the scaling of metabolic rate 52 

(B) with body size (M), B = BoM3/4 (13) and the rate at which numbers of species (S) scale with 

area (A), S = cAz (16). These scaling laws are predicted by powerful ecological theories, though 54 

evidence suggests that they fail for microorganisms (17-19). Beyond area and body size there is 

an equally general constraint on biodiversity, i.e., the number of individuals (N). Often referred 56 

to as total abundance, N can range from less than 10 individuals in a given area to the nearly 1030 

cells of bacteria and archaea on Earth (6, 7). This expanse outstrips the 22 orders of magnitude 58 

that separate the mass of a Prochlorococus cell (3·10-16 kg) from a blue whale (1.9·105 kg), and 

the 26 orders of magnitude that result from measuring Earth’s surface area at a spatial grain 60 

equivalent to bacteria (5.1·1026 µm2). 

 Here, we consider whether N may be one of the most powerful constraints on 62 

commonness and rarity, and one of the most expansive variables across which aspects of 

biodiversity could scale. While N imposes an obvious constraint on the number of species (i.e., S 64 

≤ N), empirical and theoretical studies suggest that S scales with N at a rate of 0.25 to 0.5 (i.e., S 

≈ Nz, 0.25 ≤ z ≤ 0.5) (20-22). Importantly, this relationship pertains to samples from different 66 

systems and not to cumulative patterns, e.g., collector’s curves, which are based on resampling 
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(20-22). Recent studies have also shown that N constrains universal patterns of commonness and 68 

rarity by imposing a numerical constraint on how abundance varies among species, across space, 

and through time (23-24). Most notably, greater N leads to increasingly uneven distributions and 70 

greater rarity. Hence, we expect greater N to correspond to an increasingly uneven distribution 

among a greater number of species, an increasing portion of which should be rare. However, the 72 

strength of the relationships, whether they differ between microbes and macrobes, and whether 

they conform to scaling-laws across orders of magnitude are virtually unknown. 74 

 If aspects of diversity, commonness, and rarity scale with N, then local-to-global scale 

predictions of microbial biodiversity could be within reach. Likewise, if these relationships are 76 

similar for microbes and macrobes, then we may be closer to a unified understanding of 

biodiversity than previously thought. To answer these questions, we compiled the largest 78 

publicly available microbial and macrobial datasets, to date. These data include 20,376 sites of 

bacterial, archaeal, and microscopic fungal communities and 14,862 sites of tree, bird, and 80 

mammal communities. We focused on taxonomic aspects of biodiversity including species 

richness (S), similarity in abundance among species (evenness), the concentration of N among 82 

relatively low-abundant species (rarity), and the number of individuals belonging to the most 

abundant species (absolute dominance, Nmax). We use the resulting relationships to predict Nmax 84 

and S in large microbiomes, and to make empirically supported and theoretically underpinned 

estimates for the number of microbial species on Earth. 86 

 

 88 
Results and Discussion 

 As predicted, greater N led to an increase in species richness, dominance, and rarity, and 90 

a decrease in species evenness. Rarity, evenness, and dominance scaled across eight orders of 

magnitude in N at rates that differed little, if at all, between microbes and macrobes (Fig. 1). We 92 
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found that richness (S) scaled at a greater rate for microbes (z = 0.38) than macrobes (z = 0.24), 

but still near the expected range of 0.25 ≤ z ≤ 0.5 (Fig. 1). However, for a given N, microbes had 94 

greater rarity, less evenness, and more species than macrobes (Fig. 1). As a result, microbes and 

macrobes are similar in how commonness and rarity scale with N, but differ in ways that support 96 

the exceptional nature of the microbial rare biosphere. The most unifying relationship we 

observed was a nearly isometric (i.e., 0.9 < z < 1.0) scaling of dominance (Nmax). When extended 98 

to global scales, this dominance scaling law closely predicts the abundance of dominant ocean 

bacteria. Using the lognormal model of biodiversity theory, published estimates of global 100 

microbial N, and published and predicted values of Nmax, we predict that Earth is occupied by 

1011 to 1012 microbial species. This estimate is also supported by the scaling of S with N. 102 

 

Scaling relationships point to an exceptional rare biosphere. Across microbial and macrobial 104 

communities, increasing N led to greater rarity, greater absolute dominance, less evenness, and 

greater species richness (Fig. 1, See SI Appendix, Figs. S5 to S9). Bootstrapped multiple 106 

regressions revealed that the significance of differences between microbes and macrobes with 

regard to rarity and evenness, were dependent on sample size. Larger samples suggested 108 

significant differences but were less likely to pass the assumptions of multiple regression (see 

Methods, See SI Appendix, Fig. S5). Though based on disparate types of data (i.e., counts of 110 

individual organisms vs. environmental molecular surveys), absolute dominance scaled at similar 

rates for microbes and macrobes (Fig. 1). Each relationship was best fit by a power-law as 112 

opposed to linear, exponential, or semi-log relationships (See SI Appendix, Table S1). 

 Since being first described nearly a decade ago (25), the rare biosphere has become an 114 

intensively studied pattern of microbial commonness and rarity (12). While its general form 

reiterates the ubiquitously uneven nature of ecological communities, our results suggest that 116 
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microbial communities are exceptional in degrees of rarity and unevenness. While artifacts 

sometimes associated with molecular surveys may inflate disparities in abundance or generate 118 

false singletons, our findings suggest that relationships of rarity, dominance, evenness, and 

richness were robust to the inclusion or exclusion of singletons and different percent cutoffs in 120 

sequence similarity (See SI Appendix, Figs. S8-S9). Naturally, the inclusion of unclassified 

sequences led to higher taxonomic richness. As a result of this large-scale comparison, we 122 

suggest that the rare biosphere is driven by the unique biology and ecology of microorganisms. 

Examples are the ability of small populations to persist in suboptimal environments via resilient 124 

life stages, the ability of microbes to disperse long distance and colonize new habitats, the 

capacity of microbes to finely partition niche axes, and the greater ability of asexual organisms to 126 

maintain small population sizes (12). 

 128 
Predicted scaling of species richness (S). Scaling exponents (z) for the relationship of species 

richness (S) to N fell near or within the predicted range (i.e., 0.25 < z < 0.5) (20-22) (Fig. 1; 130 

Table 1). Despite variation in the relationship among datasets (SI Appendix, Fig. S7 A-I), the 

error structure across datasets was largely symmetrical (See SI Appendix, Fig. S5). Across 132 

datasets, z-varied more greatly for macrobes (0.07 to 1.23) than microbes (0.20 to 0.46), which 

more closely resembled the expected relationship (Table 1; See SI Appendix, Fig. S7). However, 134 

pooling all data to make use of the full range of N and to average out idiosyncrasies across 

datasets provided a stronger overall relationship, and produced an exponent (z = 0.51), nearly 136 

identical to that observed in other empirical studies (20-22). 

 138 
An expansive dominance scaling law. While greater N naturally leads to greater absolute 

dominance (Nmax) (26), this relationship is rarely explored and, to our knowledge, has not been 140 
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studied as a scaling law. We found that Nmax scaled with N at similar and nearly isometric rates 

(i.e. 0.9 < z < 1.0) for microbes and macrobes across eight orders of magnitude (Fig.1; R2 = 142 

0.94). Based on the strength of this result, we tested whether this scaling law holds at greater 

scales of N. We used published estimates for N and Nmax from the human gut (27, 28), the cow 144 

rumen (29, 30), the global ocean (non-sediment), and Earth (6, 7, 31, 32). In each case, we found 

that Nmax fell within the 95% prediction intervals of the dominance scaling law (Fig. 2). Though 146 

derived from datasets where N < 108, the dominance scaling law predicted the global abundance 

of some of the most abundant bacteria on Earth (SAR11, Prochlorococcus marinus) within an 148 

order of magnitude of prior estimates (31, 32). As a result, this dominance scaling law appears to 

span an unprecedented 30 orders of magnitude in N, extending to the upper limits of abundance 150 

in nature. The only other biological scaling law that approaches this expanse is the ¾ power 

scaling of metabolic power to mass, which holds across 27 orders of magnitude (33). 152 

 

Predicting global microbial S using N and Nmax. Knowing the number of species on Earth is 154 

among the greatest challenges in biology (34-37). Historically, scientists have estimated global 

richness (S) by extrapolating rarefaction curves and rates of accumulation, and often without 156 

including microorganisms (36, 37, 38). Though estimates of global microbial S exist, they range 

from 104 to 109 and rely on cultured organisms, precede large-scale sequencing projects, and are 158 

often based on the extrapolation of statistical estimators (e.g., rarefaction, Chao). These 

approaches also lack the theoretical underpinnings that distinguish extrapolations of statistical 160 

estimates from predictions of biodiversity theory. As an alternative approach to estimating S, we 

leveraged our scaling relationships with well-established biodiversity theory. 162 

 Based on the scaling of S with N (Fig. 1), we would expect a global microbial S of 2.12 ± 

0.138 ·1011 species. However, this risky type of exercise would extrapolate 26 orders of 164 
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magnitude beyond the available data (Fig. 2). Instead, we used the dominance scaling law and 

one of the most successful models of biodiversity (i.e., the lognormal distribution) to make a 166 

theoretically underpinned prediction of global microbial S (35, 39). The lognormal predicts that 

the distribution of abundance among species is approximately normal when species abundances 168 

are log-transformed (20). An extension of the central limit theorem, the lognormal arises from 

the multiplicative interactions of many random variables (20, 39). Though historically used to 170 

predict patterns of commonness and rarity, the lognormal was later derived to predict S using N 

and Nmax (35). This led to predictions of S for habitats ranging in size from a milliliter of water to 172 

an entire lake, and speculations of S for the entire ocean. 

 To our knowledge, the lognormal is the only general biodiversity model that has been 174 

derived to predict S using only N and Nmax as inputs. We used the lognormal to predict microbial 

S in two ways. First, we used published estimates of N and predicted the values of Nmax via our 176 

dominance scaling law (Fig. 2). Second, we made predictions of S using published estimates of 

both N and Nmax
 6,7,31,32. Assuming that global microbial N ranges from 9.2·1029 to 3.2·1030  (6, 7), 178 

the lognormal predicts 3.23 ± 0.227 ·1012 species when Nmax is predicted from the dominance 

scaling law (see Methods). However, using published estimates for Nmax ranging from 2.9·1027 to 180 

2.4·1028 (31, 32), the lognormal model predicts a value of global microbial S that is on the same 

order of magnitude as the richness-abundance scaling relationship, i.e., 3.9 ± 0.054·1011 species 182 

(Fig. 3). The general agreement between the lognormal model and the richness scaling 

relationship is encouraging given the magnitude of these predictions.  184 

 Our predictions of S for large microbiomes are among the most rigorous to date, resulting 

from intersections of empirical scaling, ecological theory, and the largest ever molecular surveys 186 

of microbial communities. However, several caveats should be considered. First, observed S for 
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the Earth Microbiome Project (EMP) differed greatly depending on whether we used closed or 188 

open reference data (see Methods), where S was ~6.9·104 and 5.6·106, respectively. In our main 

study, we used the closed reference data owing to the greater accuracy of that approach and 190 

because 42% of all taxa in the open reference EMP dataset were only detected twice or less. 

Consequently, choices such as how to assign OTUs and which primers or gene regions to use, 192 

need to be made cautiously and deliberately. Second, estimates of S will be much greater than 

observed when many species are detected only once or twice, as with the EMP. Statistical 194 

estimators of S such as rarefaction, jackknife, Chao, ACE, etc., are driven by singletons and 

doubletons (26). Third, it is difficult to estimate the portion of species missed when only a 196 

miniscule fraction of all individuals are sampled. For example, the intersection of the lognormal 

model and the richness scaling relationship suggests that S for an individual human gut could 198 

range from 105 to 106 species (Fig. 3). However, S of human gut samples is often on the order of 

103, while N is often less than 106. Yet these are vanishingly small fractions of the gut 200 

microbiome, even when many samples are compiled together. For example, compiling all 4,303 

samples from the Human Microbiome Project (HMP) dataset yields only 2.180·107 reads; hardly 202 

sufficient for detecting 105 to 106 species among 1014 cells. Consequently, detecting the true S of 

microbiomes with large N is a profound challenge that requires many large samples. 204 

Conclusion 

 We estimate that Earth is inhabited by 1011 to 1012 microbial species. This prediction is 206 

based on ecological theory reformulated for large-scale predictions, a new and perhaps most 

expansive ecological scaling-law, a richness scaling relationship with empirical and theoretical 208 

support, and the largest molecular surveys compiled to date. The profound magnitude of our 

prediction for Earth’s microbial diversity stresses the need for continued investigation. We 210 
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expect the dominance scaling law we uncovered to be valuable in predicting richness, 

commonness, and rarity across all scales of abundance. To move forward, biologists will need to 212 

push beyond current computational limits and increase their investment in collaborative 

sampling efforts to catalog Earth’s microbial diversity. For context, ~104 species have been 214 

cultured, less than 105 species are represented by classified sequences, and the entirety of the 

Earth Microbiome Project has cataloged less than 107 species, 29% of which were only detected 216 

twice. Powerful relationships like those documented here and a greater unified study of 

commonness and rarity will greatly contribute to finding the potentially 99.999% of microbial 218 

taxa that remain undiscovered. 

Materials and Methods 220 

Data. Our macrobial datasets comprised 14,862 different sites of mammal, tree, and bird 

communities. We used a compilation of data that included species abundance data for 222 

communities distributed across all continents except Antarctica (40). This compilation is based, 

in part, on five continental- to global-scale surveys: USGS North American Breeding Bird 224 

Survey (41) (2,769 sites), citizen science Christmas Bird Count (42) (1,412 sites), Forest 

Inventory Analysis (43) (10,356 sites), Alwyn Gentry's Forest Transect Data Set (44) (222 sites), 226 

and one global-scale data compilation, the Mammal Community Database (45) (103 sites). We 

limited our CBC dataset to sites where N was no greater than 104, i.e., the reported maximum N 228 

for the BBS. Above that, estimates of N are not likely based on counts of individuals. No site is 

represented more than once in our data. Greater detail can be found elsewhere (appendix of 40). 230 

 We used 20,376 sites of communities of bacteria, archaea, and microscopic fungi. 14,615 

of these were from the Earth Microbiome Project (EMP) (1) obtained on 22 August, 2014. 232 

Sample processing, sequencing and amplicon data are standardized and performed by the EMP 
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and all are publicly available at www.microbio.me/emp. The EMP data consist of open and 234 

closed reference datasets. The QIIME tutorial (http://qiime.org/tutorials/otu_picking.html) 

defines closed-reference as a classification scheme where any rRNA reads that do not hit a 236 

sequence in a reference collection are excluded from analysis. In contrast, open-reference refers 

to a scheme where reads that do not hit a reference collection are subsequently clustered de novo 238 

and represent unique but unclassified taxonomic units. Our main results are based on closed-

reference data due to the greater accuracy of that approach and because 13% of all taxa in the 240 

open reference EMP dataset were only detected once while 29% are only detected twice. 

 We also used 4,303 sites from the Data Analysis and Coordination Center (DACC) for 242 

the National Institutes of Health (NIH) Common Fund supported Human Microbiome Project 

(HMP) (46). These data consisted of samples taken from 15 or 18 locations (including the skin, 244 

gut, vagina, and oral cavity) on each of 300 healthy individuals. The V3-V5 region of the 16S 

rRNA gene was sequenced for each sample. We excluded sites from pilot phases of the HMP as 246 

well as time-series data. See http://hmpdacc.org/micro_analysis/microbiome_analyses.php for 

details on HMP sequencing and sampling protocols. We also included the 139 “prokaryote 248 

enriched” samples from 68 pelagic and mesopelagic locations, representing all major oceanic 

regions (except the Arctic), gathered by the Tara Oceans expedition (47).  250 

 We included 1,319 non-experimental PCR-targeted rRNA amplicon sequencing projects 

from the Argonne National Laboratory metagenomics server MG-RAST (48). Represented in 252 

this compilation were samples from arctic aquatic systems (130 sites; MG-RAST id: mgp138), 

hydrothermal vents (123 sites; MG-RAST id: mgp327) (49), freshwater lakes in China (187 254 

sites; MG-RAST id: mgp2758) (50), arctic soils (44 sites; MG-RAST id: mgp69) (51), temperate 

soils (84 sites; MG-RAST id: mgp68) (52), bovine fecal samples (16 sites; MG-RAST id: 256 
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mgp14132), human gut microbiome samples not part of HMP (529 sites; MG-RAST id: 

mgp401) (53), a global-scale dataset of indoor fungal systems (128 sites) (54), and freshwater, 258 

marine, and intertidal river sediments (34 sites; MG-RAST id: mgp1829). Using MG-RAST 

allowed us to choose common parameter values for sequence similarity (i.e. 97% for species-260 

level) and taxa assignment including a maximum e-value (probability of observing an equal or 

better match in a database of a given size) of 10-5, a minimum alignment length of 50 base pairs, 262 

and minimum percent sequence similarities of 95, 97, and 99% to the closest reference sequence 

in MG-RAST’s M5 rRNA database (48-55). Below, we analyze MG-RAST datasets with respect 264 

to these cutoffs and reveal no significant effect on scaling relationships. Among the taxa not 

included in our analyses are reptiles, amphibians, fish, large mammals, invertebrates, and 266 

protists. These taxa were absent because large datasets to do not exist for their communities or 

because redistribution rights could not be gained for publication. 268 

Quantifying dominance, evenness, rarity, and richness. We calculated or estimated aspects of 

diversity (dominance, evenness, rarity, richness) for each site in our data compilation. All 270 

analyses can be reproduced or modified for further exploration by using code, data, and 

following directions provided here: https://github.com/LennonLab/ScalingMicroBiodiversity. 272 

 Rarity: Here, rarity quantifies the concentration of species at low abundance (26). Our 

primary rarity metric was the skewness of the frequency distribution of arithmetic abundance 274 

classes (Rskew), which are almost always right-skewed distributions (26). Due to the inability to 

take the logarithm of a negative skew, Rskew was given a modulo transformation. The log-modulo 276 

transformation adds a value of one to each measure of skewness and converts negative values to 

positive values, making them all positive and able to be log-transformed. We also quantified 278 

rarity using log-transformed abundances (Rlog-skew) (26). We present results for Rlog-skew in the 
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Supplement (See SI Appendix, Fig. S4). Dominance: Dominance refers to the abundance of the 280 

most abundant species, the simplest measures of which is the abundance of the most abundant 

species (absolute dominance; Nmax) (26). Relative dominance is also a common measure, and is 282 

known the Berger-Parker index (Nmax/N = DBP). We focus on Nmax in the main body because of 

the previously undocumented scaling with N and the ability to predict S using N, Nmax, and the 284 

lognormal model. We also calculated dominance as the sum of the relative abundance of the two 

most abundant taxa (i.e., McNaughton’s dominance) and as Simpson’s diversity, which is more 286 

accurately interpreted as an index of dominance (26). We present results for dominance metrics 

other than Nmax in the Supplement (See SI Appendix, Fig. S3). 288 

 Evenness: Species evenness captures similarity in abundance among species (26, 56). We 

used five evenness metrics that perform well according to a series of statistical requirements 290 

(56), including lacking a strong bias towards very large or very small abundances, independence 

of richness (S), and scaling between 0 (no evenness) and 1 (perfect evenness). These metrics 292 

included Smith and Wilson’s indices (Evar, EQ), Simpson’s evenness (E1/D), Bulla’s index (O), 

and Camargo’s index (E’) (26, 56). We present results for E1/D in the main results and results for 294 

other four metrics in the Supplement (See SI Appendix, Fig. S2). Richness: Richness (S) is the 

number of species observed or estimated from a sample. Estimates of S are designed to account 296 

for rare species that go undetected in unbiased surveys (26). We present results for observed S in 

the main body along with results for six estimators of S (Chao1, ACE, jackknife, rarefaction, 298 

Margelef, McHennick) in the Supplement (See SI Appendix, Fig. S1). 

Approximating ranges of Nmax for large microbiomes. Cow rumen: The most dominant 300 

taxonomic unit (based on 97% sequence similarity in 16S rRNA reads) in the cow rumen is 

typically a member of the Provotella genus and has been reported to account for about 1.5 to 2.0 302 
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% of 16S rRNA gene reads in a sample (29, 30). Assuming there are about 1015 microbial cells in 

the cow rumen (29, 30), and if these percentages are reflective of community wide relative 304 

dominance (DBP), then Nmax of the cow rumen would be in range of 1.5·1014 and 2·1014. Human 

gut: Deep sequencing of the human gut reveals that the most dominant taxon (based on 97% 16S 306 

rRNA sequence similarity) accounts for 10.6% to 12.2% of 16S rRNA gene reads in a sample (6, 

28). Assuming these percentages are reflective of the microbiome, at large, and that there are 308 

about 1014 microbial cells in the human gut (5, 28, 46), then Nmax would be in range of 1.06·1013 

and 1.22·1013. Global ocean (non-sediment) and Earth: The most abundant microbial species on 310 

Earth has yet been determined. Perhaps, the best genus-level candidates (based on 97% 16S 

rRNA sequence similarity) are the marine picocyanobacteria Synechococcus and 312 

Prochlorococcus with estimated global abundances of 7.0 ± 0.3·1026 and 2.9 ± 0.1·1027, 

respectively (32). Members of the SAR11 clade (i.e., Pelagibacterales), have an estimated global 314 

abundance of 2.0·1028 and may also be candidate for the most abundant microorganisms on 

Earth (31). We used SAR11 as the upper limit for the most dominant microbial species on Earth, 316 

i.e., the most abundant species cannot be more abundant than the most dominant order-level 

clade. We used 6.7·1026 to 3.0·1027, as the range for Nmax of the non-sediment global ocean, and 318 

used 2.9·1027 to 2.0·1028, as the range for Nmax of Earth. We used the range of 3.6·1028 to 

1.2·1029 as lower and upper range for the number of microbial cells in the open ocean (7) and 320 

9.2·1029 to 3.2·1030 (6) as the lower and upper range for the number of microbial cells on Earth. 

Predictions of S for large microbiomes and Earth. We used the method of Curtis et al. (35) to 322 

predict global microbial richness (S) using the lognormal species abundance model of (39). 

Curtis et al. (35) used the lognormal to estimate microbial S in a gram of soil, a milliliter of 324 

water, an entire lake, and then speculate on what S may be for a ton of soil (many small 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1451v3 | CC-BY 4.0 Open Access | rec: 31 Mar 2016, publ: 31 Mar 2016



 15 

ecosystems) and the entire ocean (many large ecosystems). The lognormal prediction of S is 326 

based on the ratio of total abundance (N) to the abundance of the most abundant species (Nmax), 

and the assumption that the rarest species is a singleton, Nmin = 1. Equation 1 from Curtis et al. 328 

(35): According to the log-normal model, in a communities with S(N) species, the number of 

taxa that contain N individuals is: 330 

𝑆 𝑁 =
𝑆𝑎
𝜋
  𝑒𝑥𝑝 − 𝑎  𝑙𝑜𝑔!(

𝑁
𝑁!
))!  

where a is an inverse measure of the width of the distribution whose standard deviation is σ2 (a = 

[2ln2 σ2]-1/2) and N0 is the most common (i.e., modal) abundance class. Equation 3 from Curtis et 332 

al (35): If it is assumed that the log-normal species abundance curve is not truncated and 

therefore is symmetric about N0, then it can be shown that, 334 

𝑁!"# =
𝑁!!

𝑁!"#
   

The second method for estimating the spread of the lognormal distribution, a, is by knowing or 

assuming Nmin. By using Equations 1 and 3 and the assumption that S(Nmin) = 1, S can be 336 

expressed in terms of a, Nmin, and Nmax. Curtis et al. (35) reason that S will not be sensitive to 

small deviations from the Nmin = 1 assumption and hence, that knowledge of Nmin, Nmax, and N 338 

allows Equation 11 to be solved numerically for Preston’s a parameter and, subsequently, for S 

to be predicted using their Equation 10: 340 

𝑆 𝑁 =
𝜋
𝑎   𝑒𝑥𝑝 𝑎  𝑙𝑜𝑔!(

𝑁!"#
𝑁!"#

))!  

The authors show that the above equation can be used to rewrite their Equation 5 as Equation 11: 

𝑁! =
𝜋𝑁!"#𝑁!"#

2𝑎   𝑒𝑥𝑝 𝑎  𝑙𝑜𝑔!(
𝑁!"#
𝑁!"#

))! 𝑒𝑥𝑝 (
ln(2)
2𝑎 )!  
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∙ 𝑒𝑟𝑓   𝑎  𝑙𝑜𝑔!
𝑁!"#
𝑁!"#

−
ln  (2)
2𝑎    + 𝑒𝑟𝑓   𝑎  𝑙𝑜𝑔!

𝑁!"#
𝑁!"#

+
ln  (2)
2𝑎     

Equation 11 can be numerically solved for a, which is then used in Equation 10 to solve for S. 342 

We coded Equations 1, 3, 10, and 11 into a Python script that can be used to recreate the results 

of Curtis et al. (35) under the functions “alpha2” to derive a and “s2” to estimate S. In predicting 344 

S, we accounted for variability in N and Nmax by randomly sampling within their published 

ranges (See SI Appendix, Fig. S14). This allowed us to generate means and standard errors, 346 

which are often lacking from large-scale predictions of S. 

 348 
Resampling and dependence on sample size and sequence similarity. We examined 

relationships of rarity, evenness, dominance, and richness to the number of individual organisms 350 

or gene reads (N) using 10,000 bootstrapped multiple regressions based on stratified random 

sampling of microbial and macrobial datasets. We examined the sensitivity of our results to 352 

sampling strategy, sample size, particular datasets, and the microbe/macrobe dummy variable, 

results of which can be found in the Supplement (See SI Appendix, Figs. S5 to S13). To use 354 

equal numbers of sites for macrobes and microbes in each multiple regression analysis, we used 

100 sites from each macrobial dataset for a total of 500 randomly chosen sites. To obtain 500 356 

sites from our microbial data, we used 50 randomly chosen sites from each microbial dataset 

having more than 100 sites, and 20 randomly chosen sites from smaller datasets. We used the 358 

mean values of coefficients and intercepts (accounting for whether differences between microbes 

and macrobes were significant at p < 0.05, alpha = 0.05) from multiple regressions to estimate 360 

the relationships of rarity, evenness, dominance, and richness to N. We examined whether 

scaling relationships for microbial data were sensitive to the percent cutoff in rRNA sequence 362 

similarity, which is used to bin taxa into species-level units. These analyses were restricted to 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1451v3 | CC-BY 4.0 Open Access | rec: 31 Mar 2016, publ: 31 Mar 2016



 17 

datasets obtained from MG-RAST but reveal no statistical differences due to whether sequences 364 

were binned based on 95, 97, and 99% similarity. 

Power-law behavior vs. other functional forms. We tested whether relationship of richness, 366 

evenness, rarity, and dominance were better fit by a power-law (log-log) than by linear, 

exponential, and semi-log relationships (See SI Appendix, Table. S1). The power-law model 368 

explained substantially greater variance or, in the one case where it was nearly tied in 

explanatory power, had a substantially lower AIC and BIC values than other models. 370 

Available code and data. We used freely available open source computing and version control 

tools. Analyses and figures can be automatically regenerated using Python scripts and data files 372 

in the public GitHub repository https://github.com/LennonLab/ScalingMicroBiodiversity. 

Analyses can be recreated step-by-step using the directions given in the repository. 374 
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Figure Legends 520 

Fig. 1. Microbial communities (blue dots) and communities of macroscopic plants and animals 

(red dots) are similar in the rates at which rarity, absolute dominance, and species evenness scale 522 

with the number of individuals or genes reads (N). However, for a given N, microbial 

communities have greater rarity, less evenness, and greater richness than those of 524 

macroorganisms. Coefficients and exponents of scaling equations are mean values from 10,000 

bootstrapped multiple regressions, with each regression based on 500 microbial and 500 526 

macrobial communities chosen by stratified random sampling. Each scatter plots represent a 

single random sample; hulls are 95% confidence intervals. 528 

Fig. 2. The dominance-abundance scaling law (dashed red line) predicts the abundance of the 

most abundant microbial taxa (Nmax) up to global scales. The pink hull is the 95% prediction 530 

interval for the regression based on 3,000 sites chosen via stratified random sampling (red heat 

map) from our microbial data compilation. Gray cross-hairs are ranges of published estimates of 532 

N and Nmax for large microbiomes including Earth6,7,31,32 (see Materials and Methods: 

Approximating ranges of Nmax for large microbiomes). The light gray dashed line is the 1:1 534 

relationship. The scaling equation and r2 only pertain to the scatter plot data. 

Fig. 3. The microbial richness-abundance scaling relationship (dashed red line) supports values 536 

of S predicted from the lognormal model using the published range of N and Nmax (grey dots), as 

well as ranges of Nmax predicted from the dominance scaling law (blue dots). The pink hull is the 538 

95% prediction interval for the regression based on 3,000 sites chosen via stratified random 

sampling (red scatter plot). The scaling equation and r-square value are based solely on the red 540 

scatter plot data. Standard errors around predicted S are too small to illustrate. 

 542 
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Table 1. Scaling relationships across datasets. with scaling exponents in bold and r-squared 556 

values in parentheses. Datasets are the Earth Microbiome Project (EMP), Human Microbiome 

Project (HMP), MG-RAST rRNA amplicon projects (MG-RAST), Tara Oceans Expedition 558 

(TARA), North American Breeding Bird Survey (BBS), Christmas Bird Count (CBC), Forest 

Inventory and Analysis (FIA), Gentry tree transects (GENTRY), and Mammal Community 560 

Database (MCDB). TARA was the only dataset where N ranged over less than an order of 

magnitude, leading results for TARA to be inconclusive. For most datasets, Nmax scaled almost 562 

isometrically with N. For all datasets except TARA, evenness decreased with N while rarity 

increased. For birds and all microbe datasets, S scaled near the predicted range of 0.25 to 0.5. 564 

Dataset Rarity Dominance Evenness Richness 

EMP (n = 14,615) 0.2 (0.30) 1.01 (0.67) -0.44 (0.42) 0.46 (0.42) 

MG-RAST (n = 1,283) 0.06 (0.20) 0.98 (0.97) -0.17 (0.32) 0.20 (0.45) 

HMP (n = 4,303) 0.14 (0.14) 1.02 (0.70) -0.33 (0.18) 0.29 (0.13) 

TARA (n = 139) -0.26 (0.02) 1.02 (0.13) 0.06 (0.00) 0.29 (0.13) 

BBS (n = 2,769) 0.16 (0.086) 1.0 (0.54) -0.32 (0.22) 0.32 (0.19) 

CBC (n = 1,412) 0.16 (0.39) 1.07 (0.90) -0.35 (0.44) 0.22 (0.48) 

FIA (n = 10,355) 0.07 (0.01) 1.34 (0.68) -0.45 (0.27) 0.07 (0.02) 

GENTRY (n = 222) 0.46 (0.27) 0.29 (0.038) -0.19 (0.05) 1.24 (0.46) 

MCDB (n = 103) 0.07 (0.07) 1.07 (0.91) -0.16 (0.20) 0.09 (0.19) 
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