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Abstract 

An ecological theory of microbial biodiversity has yet to be developed. This 

shortcoming leaves patterns of abundance, distribution, and diversity for the most 

abundant and diverse organisms on Earth without a predictive framework. However, 

because of their high abundance and complex dynamics, microbial communities may be 

underpinned by lognormal dynamics, i.e., synergistic interactions among complex 

stochastic variables. Using a global-scale compilation of 20,456 sites from a diverse set 

of natural and host-related environments, we test whether a lognormal model predicts 

microbial distributions of abundance and diversity-abundance scaling laws better than 

other well-known models, including the most successful macroecological theory of 

biodiversity, i.e., maximum entropy theory of ecology. We found that the lognormal 

explains the greatest percent variation in abundance, that the success of the lognormal 

increased with abundance while other models decreased, and that the lognormal was the 

only model to reproduce recently documented diversity-abundance scaling laws. Our 

unifying ecological theory of microbial biodiversity explains and predicts 

macroecological patterns based on dynamics that capture the complex large number 

dynamics of microbial life. 
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Introduction 

 
A central goal of ecology is to discover, predict, and unify patterns of biodiversity 

across evolutionarily distant taxa and scales of space, time, and abundance (Brown, 1995; 

Hubbell, 2001; McGill, 2010; Harte, 2011). The aim of this goal is to provide a coherent 

understanding of the dynamics that shape biodiversity and the means to predict the 

assembly, structure, and response of ecological communities. Over the past century, this 

endeavor has disproportionately focused on macroscopic plants and animals, giving little 

attention to the most abundant and taxonomically, functionally, and metabolically diverse 

organisms on Earth, i.e., microorganisms. However, this trend is beginning to change as 

global-scale sampling efforts and repositories of molecular survey data allow studies of 

microbial biodiversity to rival or surpass the scale of the largest macroecological datasets 

(e.g., Locey and Lennon, 2016). Yet patterns of abundance, distribution, and diversity in 

microbial systems are rarely studied as relationships that are predictable and unified 

under principles of biodiversity theory. 

Studies of microbial biodiversity have documented patterns of commonness and 

rarity across space, time, and taxa for over a decade (e.g., Horner-Devine et al., 2004; 

Sogin et al., 2006; Locey and Lennon, 2016). Among these, the tendency for most taxa to 

account for a minority of relative abundance, i.e., the microbial “rare biosphere” is the 

most ubiquitous (Sogin et al., 2006; Lynch and Neufeld, 2015). While the rare biosphere 

is primarily studied with respect to the biology of microorganisms (Reid and Buckley, 

2011), the underlying pattern reflects the universally uneven nature of the species 

abundance distribution (SAD) (McGill et al., 2007). Nearly 20 theories of biodiversity 

have been developed in attempt to predict the SAD. Of these, the more general theories 
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predict additional patterns that are well documented in microbial ecology. For example, 

the decreasing similarity in compositional diversity with increasing geographic distance 

(Wang et al., 2013; Zinger et al., 2014) and the rate at which taxa are discovered with 

increasing area (Horner-Devine et al., 2004; Green and Bohannan, 2006). These patterns 

often differ between microbes and macrobes, yet microbial ecologists rarely ask whether 

these differences support different ecological theories, whether any standing theories 

explain multiple patterns of microbial biodiversity, and what new predictions could be 

made by knowing how patterns of microbial biodiversity are related. 

Microbial ecologists have used classic models of biodiversity for over a decade to 

predict the SADs of microorganisms (e.g., Dunbar et al., 2002; Gans et al., 2005). These 

models include the Broken-stick, lognormal, Zipf, and log-series (Fig 1). Among these, 

the lognormal has been the most widely used and discussed (Curtis et al., 2002; Dunbar 

et al., 2002; Bohannan and Hughes, 2003; Schloss and Handelsman, 2006; Pedrós-Alió 

and Manrubia, 2016). The lognormal is underpinned by multiplicative interactions and 

stochastic processes, both of which characterize population, community, and trophic 

dynamics (MacArthur, 1960; Sih et al., 1998; Hubbell, 2001). In terms of the SAD, 

multiplicative interactions of random variables produce right-skewed histograms of 

species abundances that are approximately normal under log-transformation, hence the 

name “lognormal” (May, 1975). This outcome becomes increasingly likely for large 

communities where species partition multiple resources, a result of the central limit 

theorem and law of large numbers (Putnam, 1993). In this way, larger more 

heterogeneous communities should conform to a lognormal distribution. Additionally, the 

lognormal is the only biodiversity model that has been modified to estimate the number 
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of microbial species from local to global scales (Curtis et al., 2002). Altogether, the 

lognormal appears to be an appropriate model on which a macroecological theory of 

microbial biodiversity could be developed. 

In contrast to the frequent use and success of the lognormal model in microbial 

ecology, an expansive and unifying ecological theory has recently proven to be 

overwhelmingly successful in predicting several patterns of biodiversity among 

macroscopic plants and animals. The maximum entropy theory of ecology (METE) holds 

that the expected forms of ecological patterns are those that can occur in the greatest 

number of ways for a given set of constraints (Harte, 2011). Using the number of species 

(S) and total number of individuals (N) as the only empirical inputs, METE often explains 

≥ 90 % of variation in abundance within and among communities of plants and animals 

(White et al., 2012; Baldridge et al., 2015). This success has made METE the most 

highly supported model of the species abundance distribution (SAD), the central pattern 

from which other patterns are predicted, e.g., species-area relationship, distance-decay 

relationship, spatial-abundance distribution, (Harte, 2011; Xiao et al., 2015). Though 

METE is a relatively young theory, the form of the SAD that METE predicts is actually 

the log-series distribution, one of the oldest and most successful SAD models in ecology 

(Fisher et al., 1943). Despite its successes, METE has not been tested on microbial 

community or microbiome datasets. 

Here, we test whether lognormal dynamics explain microbial SADs and diversity-

abundance scaling relationships better than METE and two other classic SAD models that 

have seen some success in microbial ecology, i.e., the Broken-stick model and the Zipf 

distribution (Gans et al., 2005; Dumbrell et al., 2010) (Fig 1). We also test the hypothesis 
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that the explanatory power of the lognormal increases with N, reflecting the tendency for 

large and heterogeneous communities to resemble the lognormal distribution (Putnam, 

1993). In addition, we examine whether the lognormal is able to predict additional 

patterns of biodiversity by testing its ability, as well as that of other models, to reproduce 

the empirical diversity-abundance scaling relationships that have been recently described 

(Locey and Lennon, 2016). We conduct these tests using the largest compilation of 

microbial community data to date, including the Earth Microbiome Project, the Human 

Microbiome Project, and molecular surveys downloaded from MG-RAST. We discuss 

our findings in the context of a lognormal theory of microbial biodiversity and the 

tendency for microbial communities and microbiomes to exemplify lognormal dynamics. 

 

METHODS 

Data 

We used one of the largest compilations of microbial community and microbiome 

data to date, consisting of bacterial and archaeal community sequence data from 15,535 

unique geographic sites. These data were compiled in a previous study (i.e., Locey and 

Lennon, 2016) and include 14,962 sites from the Earth Microbiome Project (EMP) 

(Gilbert et al., 2014), 4,303 sites from the Data Analysis and Coordination Center 

(DACC) for the National Institutes of Health (NIH) Common Fund supported Human 

Microbiome Project (HMP) (Turnbaugh et al., 2007), as well as 1,319 non-experimental 

sequencing projects consisting of processed 16S rRNA amplicon reads from the Argonne 

National Laboratory metagenomics server MG-RAST (Meyer et al., 2008). Additional 

information pertaining to the datasets can be found elsewhere (Locey and Lennon, 2016).  
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A common convention in lieu of traditional species classification for microbial 

community sequence data is to cluster 16S rRNA amplicon reads into Operational 

Taxonomic Units (OTUs) based on a sequence similarity cutoff. It has been previously 

demonstrated that the cutoff for percent sequence similarity (95%, 97%, 99%) in 

determining taxonomic units does not change the general shape of the SAD (Locey and 

White, 2013). However, it is less common for investigators to evaluate how the percent 

cutoff affects the fit of SAD models (Woodcock et al., 2007; Dumbrell et al., 2010). To 

assess the effect of sequence similarity on the fit of SAD models we analyzed the same 

collection of MG-RAST data with different percent cutoffs. This collection was analyzed 

at minimum percent sequence similarities of 95, 97, and 99% to the closest reference 

sequence in MG-RAST’s M5 rRNA database, with a maximum e-value (probability of 

observing an equal or better match in a database of a given size) of 10-5, and a minimum 

alignment length of 50 base pairs, and (Flores et al., 2011; Wang, et al., 2014; Chu et al., 

2010; Fierer et al., 2012; Yatsunenko et al., 2012; Amend et al., 2010). 

 

Description of SAD models 

In this section, we provide a general overview of the different SAD models and how they 

were used in our analyses.  

 

Lognormal — The lognormal distribution arises as a consequence of the central limit 

theory and the multiplicative interaction of random variables. It is one of the most 

popular models of species abundance. The general shape of the lognormal can be 

envisioned as right skewed frequency distribution with an internal mode. However, 
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because the lognormal is a continuous distribution, it has the undesirable characteristic of 

allowing fractional abundances, e.g., a species with 1.5 individuals. Instead of using the 

canonical lognormal of Preston (1948), modern macroecology studies use a Poisson-

based sampling model of the lognormal, i.e., the Poisson lognormal (Magurran and 

McGill, 2007). The Poisson lognormal assumes that the true species abundance 

distribution for the community is lognormal but that sampling errors prevent samples 

from being truncated versions of the entire community. This sampling error is captured 

by assuming a Poisson random sampling of individuals from a lognormal community, 

which produces integer value abundances while accounting for sampling error. By 

accounting for variance due to sampling, the Poisson lognormal solves the issue of 

applying Preston’s lognormal to empirical SADs (see Pedrós-Alió and Manrubia, 2016) 

 We used the maximum likelihood estimate of the Poisson lognormal as our 

species abundance model of lognormal dynamics. The likelihood estimate of the 

parameter (λ) of the Poisson lognormal must be derived using numerical maximization of 

the likelihood surface and can be computationally intensive (Magurran and McGill, 

2007). Once λ is found, the probability mass function for the Poisson lognormal 

(hereafter lognormal) is derived using: 

𝑝 𝑛 =   
𝜆!𝑒!!

𝑛 𝑝!"(!)!"
!

!
 

where 𝑝!" is the lognormal probability. 

 

METE — The SAD prediction from the maximum entropy theory of ecology (METE) 

(Harte 2011) is based on two empirical inputs: species richness (S) and total abundance 

(N) of individuals (or sequence reads) in a sample. Four constraints are produced from 
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these empirical inputs and an inferred rate of community-level metabolism (E): the 

average number of individuals per species (N/S), the average per species metabolic flux (ε 

= E/S), and the constraints that no species has more than N individuals or a greater total 

metabolic rate than E. The energetic constraint ε is integrated out, leaving the predicted 

SAD independent of ε, meaning that METE predicts only one form of the SAD for a 

given combination of N and S. The predicted SAD is based on a joint conditional 

probability distribution that describes the distribution of individuals (n) over species and 

of metabolism (ε) over individuals within a species (Harte et al., 2008; Harte, 2011). 

Entropy of the SAD is then maximized according to the method of Lagrange multipliers. 

The SAD is then derived by integrating out energy and dropping terms that are 

vanishingly small. METE predicts the shape of the SAD by calculating the probability 

that the abundance of a species is n given S and N: 

Φ(𝑛 ∣ 𝑆,𝑁) =
1

𝑙𝑜𝑔(𝛽!!)
𝑒!!"

𝑛  

where 𝛽 is defined by the equation  

𝑁
𝑆 =

𝑒!!"!
!!!

𝑒!!"/𝑛!
!!!

 

This approach to predicting the MaxEnt form of the SAD yields the log-series 

distribution of Fisher et al. (1943). The log-series is one of the two most successful SAD 

models, the other being the lognormal. 

 

Broken-stick — The simultaneous Broken-stick (hereafter Broken-stick) model of 

MacArthur (1960) predicts the SAD as the simultaneous breaking of a stick of length N at 

S -1 randomly chosen points. The lengths of segments represent the predicted abundance 
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of species. The Broken-stick predicts one of the most even forms of the SAD. Like the 

prediction of METE, the Broken-stick has a general statistical equivalent, i.e., an 

exponential distribution that, for discrete cases, is the geometric distribution (Cohen, 

1968; Heip et al., 1998): 

𝑓(𝑘) = (1− 𝑝)!!!𝑝 

 

Zipf distribution — The Zipf-distribution (Zipf, 1949) is based on a power-law for 

frequencies of ranked data and is characterized by one free parameter (α), where the 

frequency of the kth rank abundance is inversely proportional to k, i.e., p(k) ≈ kα, with α 

often ranging between -1 and -2 (Gans, 2005; Newman, 2006). In contrast to the Broken-

stick, the Zipf distribution predicts one of the most uneven forms of the SAD and can be 

shown to predict both more singletons than METE as well as greater dominance (i.e., the 

abundance of the most abundant species). The Zipf distribution predicts the frequency of 

elements of rank k out of N elements with parameter α as: 

𝑓(𝑘;𝛼,𝑁) =
1/𝑘!

(1/𝑛!)!
!!!

 

Testing SAD predictions 

Our SAD predictions are based on the rank-abundance form of the SAD, i.e., a 

vector of species abundances ranked from most to least abundant (Fig. 1). The 

predictions of each model (i.e., METE, lognormal, Broken-stick, Zipf) yields the same 

value of S (i.e., number of species) that is given in the empirical input. This means that 

the observed and predicted SADs can be directly compared (rank-for-rank) using 

regression analyses to reveal the percent variation explained by each model. 
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We generated the predicted forms of the SAD using the code of White et al. 

(2012) (https://github.com/weecology/white-etal-2012-ecology) and the public repository 

macroecotools (https://github.com/weecology/macroecotools). To prevent bias in our 

results due to the overrepresentation of a particular dataset, we performed 1,000 bootstrap 

iterations using a sample size of 200 SADs drawn randomly from each dataset. The 

sample size was determined based on the number of SADs that the numerical estimator 

used to generate the Zipf distribution was able to solve for the smallest dataset (i.e. 239 

SADs from MG-RAST). We then calculated the modified coefficient of determination 

(r2
m) around the 1:1 line (as per White et al., 2012; Locey and White, 2013, Xiao et al., 

2015) with the following equation. 

𝑟!! = 1−
∑(𝑙𝑜𝑔!"(𝑜𝑏𝑠!)− 𝑙𝑜𝑔!"(𝑝𝑟𝑒𝑑!))!

∑(𝑙𝑜𝑔!"(𝑜𝑏𝑠!)− 𝑙𝑜𝑔!"(𝑜𝑏𝑠!))!
 

Negative values are possible because the relationship is not a fitted one, i.e., estimating 

variation around a line with a constrained slope of 1.0 and a constrained intercept of zero 

(White et al., 2012; Locey and White, 2013; Xiao et al., 2015). 

 

Diversity-abundance scaling relationships 

Scaling relationships take the form of y = xz and reveal how one variable changes in a 

linear and proportional way across orders of magnitude in another variable. The primary 

feature of scaling relationships is the scaling exponent z, which becomes the slope of a 

linear relationship when axes are arithmetically scaled, i.e., log(y) = zlog(x) is equivalent 

to y = xz. Scaling relationships are mathematically simplistic and are among the most 

powerful statistical relationships in ecology. 
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 Recently, aspects of taxonomic diversity have been shown to scale with N (Locey 

and Lennon, 2016). These aspects include richness (i.e., the number of OTUs; S), 

dominance (i.e., the abundance of the most abundant OTU; Nmax), evenness (i.e., 

similarity in abundance among OTUs captured by the variance of the SAD), and rarity 

(i.e., concentration of abundance among low abundant taxa captured by the skewness of 

the SAD). Except for the scaling of S with N, these relationships suggested universal 

scaling behavior for microorganisms and macroscopic plants and animals. Additionally, 

the scaling of Nmax with N spans an unprecedented 30 orders of magnitude. However, the 

mechanisms that explain these scaling relationships have yet been reported and it is 

unknown whether any single biodiversity theory can explain, and hence unify, them. We 

used the values of Nmax, evenness, and rarity derived from the predicted SADs of each 

model. We could not assess the ability of the SAD models to predict richness, as all the 

models rely on S as an empirical input, returning an SAD with the same number of 

species as the empirical SAD. We then examined these values against the values of N in 

the observed SADs. We used simple linear regression on log-transformed axes to 

quantify the slopes of the scaling relationships, which become scaling exponents when 

axes are arithmetically scaled, i.e., log(y) = zlog(x) is equivalent to y = xz, where z is the 

slope and scaling exponent.	
  These scaling exponents were compared to the exponents 

reported in Locey and Lennon (2016). We calculated the percent difference between the 

diversity metrics reported by each SAD model and the mean of the exponents reported 

for the EMP, HMP, and MG-RAST datasets using the following equation: 

%  𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
|𝐸! − 𝐸!|
1
2 (𝐸! + 𝐸!)

∗ 100 
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Where 𝐸! and 𝐸! represent, respectively, quantities produced by an SAD model and 

predicted by the empirical scaling relationship. We then calculated the percent error using 

the following equation: 

%  𝐸𝑟𝑟𝑜𝑟 = |
𝐸! − 𝐸!
𝐸!

| ∗ 100 

Influence of total abundance on model performance 

The form of the SAD is mathematically constrained by the number of individuals 

sampled (i.e. N) (Locey and White, 2013). For example, as N increases, rarity will tend to 

increase while species evenness will tend to decrease (Locey and White 2013, Locey and 

Lennon, 2016). Because models of the SAD can predict characteristically different forms, 

the success of a model may depend on the scale of N. In this way, models that predict 

relatively even SADs, e.g., Broken-stick, should increasingly fail with larger N. In 

contrast, the lognormal should perform better with larger N because it arises as a 

consequence of the law of large numbers and the central limit theorem (May, 1975; 

Putnam, 1993) However, to the best of our knowledge, the performance of SAD models 

across scales of N has rarely if ever been examined. We used ordinary least-squares 

regression to assess the relationship between the performance of each SAD model 

(measured by r2
m) and N.  

 

Computing code 

We used open source computing code for obtaining the maximum-likelihood 

estimates for the Broken-stick, the lognormal, the prediction of METE (i.e. the log-series 

distribution), and the Zipf distribution (github.com/weecology/macroecotools, 

github.com/weecology/METE). This is the same code used in studies that showed 
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support for METE among communities of macroscopic plants and animals (White et al., 

2012; Baldridge et al., 2015; Xiao et al., 2015). If microbial SADs do not meaningfully 

differ from the SADs of these other taxa, then METE will perform better than the 

lognormal, the Zipf, and the Broken-stick. All analyses can be reproduced or modified for 

further exploration by using code, data, and following directions provided here: 

https://github.com/LennonLab/MicrobialBiodiversityTheory.  

 
RESULTS 

The sampling form of the lognormal, i.e., the Poisson lognormal, explained nearly 

97% of variation in abundance among microbial taxa, compared to 91% for the Zipf 

distribution and 60% for the log-series predicted by the maximum entropy theory of 

ecology (METE) (Fig 2, Table 1). The overall performance of the Broken-stick was too 

poor to be evaluated (r2
m = -0.60). Though close in predictive power, the results of the 

lognormal and the Zipf distribution differed in that the Zipf often greatly over-predicted 

the abundance of the most abundant taxa (Nmax). In some cases, the predicted Nmax of the 

Zipf distribution was greater than observed total abundance (N). In contrast, the 

lognormal was not biased towards over or under predicting both dominant and rare taxa. 

Neither the percent cutoff for sequence similarity used to cluster 16S rRNA reads into 

OTUs, nor the inclusion or exclusion of singleton OTUs had a substantial effect on the 

explanatory power of the various models (Fig S1, S2; Table S1, S2).  

The lognormal best reproduced empirical diversity-abundance scaling 

relationships (Locey and Lennon, 2016) (Table 2). In each case, the lognormal closely 

approximated the values of the exponents for how rarity, evenness, and dominance have 

been found to scale with N. While the Zipf rivaled the lognormal in predicting microbial 
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SADs, it was only able to more closely approximate the scaling of absolute dominance 

(Nmax) with N. The lognormal and Zipf were also the only models to explain the variation 

in dominance among sites (Fig 3). Neither the percent difference in the Nmax relationship 

of the log-series predicted by METE nor the Broken-stick model came close to 

reproducing those scaling relationships or explaining the variation in dominance. Finally, 

models that closely reproduced the empirical dominance scaling law (i.e., lognormal, 

Zipf) were also able to make reasonable predictions of Nmax (Fig 4). 

The total number of reads (N) influenced the success of SAD models, where 

increasing N led to decreasing performance of the Broken-stick and log-series, and 

increasing performance of the lognormal and Zipf (Fig 3). In contrast, the performance of 

the lognormal and the Zipf increased with N, with the relationship being strongest for the 

lognormal (Fig 3). These results reflect how N numerically constrains the form of the 

SAD and how the SAD is likely to assume a lognormal form as N increases, a 

consequence of the central limit theorem and law of large numbers, i.e., lognormal 

dynamics (Putnam, 1993).  

 
DISCUSSION  

 

Overview 

In this study, we sought a unifying explanation for common patterns of microbial 

biodiversity. These include recently documented diversity-abundance scaling 

relationships (i.e. Locey and Lennon, 2016) and the highly uneven forms of abundance 

distributions that characterize the microbial “rare biosphere”. We focused on the two 

most historically accurate models of community structure (i.e., the lognormal and the log-
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series), both of which have a history of use in microbial ecology (Curtis et al., 2002; 

Bohannan and Hughes, 2003; Schloss and Handelsman, 2006; Dumbrell et al., 2010). We 

also included two other well-known models (i.e., Broken-stick and Zipf) that predict 

qualitatively disparate forms the species abundance distribution (SAD), but have only 

been tested on relatively small microbial datasets from few sites (e.g., Gans et al., 2005; 

Dumbrell et al., 2010). In contrast to recent overwhelming support among communities 

of macroscopic plants and animals for the log-series distribution predicted by the 

maximum entropy theory of ecology (METE) (White et al., 2012; Baldridge et al., 2015), 

the lognormal provided the most accurate predictions for nearly all patterns in this study. 

Likewise, results from the lognormal provide the first explanation for the diversity-

abundance scaling relationships, suggesting that the lognormal is able to capture general 

ecological features of microbial communities (Locey and Lennon, 2016).  

 

A unifying theory of microbial biodiversity 

 Altogether, our findings point to a unifying lognormal theory of microbial 

biodiversity. This conclusion is supported by the ability of the lognormal model to make 

local-to-global-scale predictions of microbial richness using total abundance (N) and the 

abundance of the most abundant taxon (Nmax) (e.g., Curtis et al., 2002; Locey and 

Lennon, 2016). These predictions of a lognormal theory of microbial biodiversity span 

many orders of magnitude in total abundance and are based on how microbial 

communities exemplify the dynamics that underpin the lognormal distribution. In 

community ecology, the classic explanation of the lognormal states that it arises from the 

multiplicative interactions of many random variables (May, 1975; Putnam, 1993). In 
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short, the synergistic outcome of stochastic events among large numbers of individuals 

results in a predictable distribution of abundance. As ecological dynamics are often 

stochastic and multiplicative (MacArthur, 1960; Sih et al., 1998; Hubbell, 2001) and as 

microbial communities inherently represent large number ecological systems, a 

lognormal theory of microbial biodiversity is an appropriate and promising starting point 

for unifying patterns of microbial commonness and rarity across scales of abundance. 

The success of the lognormal increased with greater N (Fig. 2). In contrast, the 

success of the log-series predicted by METE decreased with greater N. As a result, the 

most successful ecological theory of biodiversity for macroscopic plants and animals fails 

at relatively small magnitudes of microbial abundance. This finding is particularly 

important because a successful theory of biodiversity for microorganisms must have 

predictive power across communities and microbiomes of vastly different size. In fact, 

the scales of abundance across which a successful theory must hold would include the 

~25 orders of magnitude in N that could not be accounted for in this study, but that 

characterize abundances of microbial life from gut microbiomes to all of Earth (Whitman 

et al., 1998; Kallmeyer et al., 2012). To our knowledge, models based on lognormal 

dynamics are the only biodiversity models that have shown this degree of promise (Curtis 

et al., 2002; Locey and Lennon, 2016), though both the lognormal and the Zipf 

successfully reproduced the dominance-abundance scaling law. 

In predicting the form of the abundance distribution, the success of the Zipf often 

rivaled that of the lognormal and, like the lognormal, the performance of the Zipf 

increased with N. These similarities have a sound and ecologically relevant explanation. 

Specifically, the type of power-law behavior that characterizes the Zipf may emerge from 
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the mixing of lognormal distributions (Allen et al., 2001). That is, communities that are 

well explained by the Zipf distribution could actually be composed of smaller 

communities that are each characterized by a lognormal distribution. This dynamic 

readily applies to microbial communities and microbiomes, where environmental samples 

lump together taxa that may not interact. Consequently, a theory of microbial biodiversity 

based on lognormal dynamics allows for the emergence of power-law behavior such as 

diversity-abundance scaling laws and the success of the Zipf distribution. 

Lognormal distributions emerge as a central limiting pattern that results from the 

multiplicative interactions of many random variables and the law of large numbers 

(MacArthur, 1960; Putnam, 1993). In community ecology, the lognormal has been 

envisioned to characterize large or heterogeneous communities of species that respond to 

many complex variables and independent processes. However, a lognormal theory of 

microbial biodiversity invokes an even more ecologically meaningful interpretation, i.e., 

one that captures the macroecology of microorganisms. In a microbiome of immense 

abundance, stochastic dynamics within and among taxa that partition many different 

resources is a prime example of a large-number ecological system operating under 

lognormal dynamics (Putnam, 1993). The natural complexity of microbiomes, the 

capacity for microorganisms to grow on a large numbers of resources, their high 

abundances and diversity, and the contribution of stochasticity (e.g., Epstein, 2009; 

Stegen et al., 2012) further emphasizes that lognormal dynamics underpin the assembly 

and structure of microbial communities and microbiomes. 
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Table 1. Comparison of the performance of species abundance distribution (SAD) 

models for microbial datasets. The mean site-specific r-square (r2
m) and standard error 

(𝜎!!! ) for each model from 1,000 bootstrapped samples of 200 SADs: Broken-stick, the 

log-series predicted by the Maximum Entropy Theory of Ecology (METE), the 

lognormal, and the Zipf power law distribution. The lognormal and the Zipf provide the 

best predictions for how abundance varies among taxa, and are also characterized by 

lower standard errors than the Broken-stick and the log-series.  

 

 

 

 

  

Model r2
m ‡ ¯r2

m

Lognormal 0.97 0.0092

Zipf 0.91 0.0085

Log-series 0.60 0.0023

Broken-stick ≠0.60 0.0024

1
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Table 2. A comparison of how closely each model reproduces the scaling exponents from 

abundance-diversity scaling relationships in Locey and Lennon (2016). These scaling 

relationships pertain to absolute dominance (Nmax), Simpson’s metric of species evenness, 

and skewness of the SAD.  The percent difference and percent error is given between the 

scaling exponents predicted from each SAD model and the mean of the scaling exponents 

for the EMP, HMP, and MG-RAST reported in Table 1 of Locey and Lennon (2016), i.e., 

where the mean for Nmax was 1.0, the mean for evenness was -0.31, and the mean for 

skewness was 0.13. In general, the lognormal comes closest to simultaneously 

reproducing the empirical scaling exponents. The p-values were < 0.0001 for all scaling 

exponents. 

 

 

Model Diversity metric Slope % Di�erence

Lognormal N

max

1.0 1.4

Evenness ≠0.48 42.0

Skewness 0.10 23.0

Zipf N

max

1.0 0.42

Evenness ≠0.53 53.0

Skewness 0.086 41.0

Log-series N

max

0.85 15.0

Evenness ≠0.16 66.0

Skewness 0.049 91.0

Broken-stick N

max

0.73 32.0

Evenness ≠0.022 170.0

Skewness 0.014 16.0

1
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Figure 1. Demonstrations of typical shapes of species abundance distributions (SAD) in 

rank-abundance form, as predicted by our SAD models. The grey line represents a single 

empirical SAD randomly chosen from our data (see methods). To provide an example of 

all the models used, each model was fit to this observed SAD as described in the 

Methods. The Broken-stick is well known to produce an overly even SAD, while the log-

series is generally considered to be uneven enough to produce realistic SADs for plant 

and animal communities (White et al., 2012). In contrast, the Zipf distribution is among 

the most uneven SAD models, often predicting more singletons than other models. 

Finally, the lognormal, based on the Poisson sampling of a lognormal distribution to 

capture actual sampling effects, tends to be less even than the canonical lognormal and 

more similar to the unevenness of the Zipf distribution.  
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Figure 2. The relationship between the predicted abundance and the observed abundance 

of each rank for a single sample of each SAD model. The black diagonal line represents 

the 1:1 line. The box within each subplot is a histogram of the per-site modified r-squared 

(r2
m) values from a range of zero to one, with left-skewed histograms suggesting a better 

fit of the model to the data. The value at the top-left of each sub-plot is the mean r2
m 

value for 1,000 bootstrapped samples (see methods). Points are color-coded by the 

density of adjacent points. Hot colors (i.e., red) indicate a high density of adjacent points 

and cool colors (i.e., blue) indicate a low density of adjacent points.	
  Each dot represents 

the observed abundance versus the predicted abundance for each species in the data. 
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Figure 3. The relationship of model performance (via modified r2
m) to the total number 

of 16S rRNA reads (N)	
  for each SAD analyzed from a single sample.  Here, r2
m is the 

variation in the observed SAD that is explained by the predicted SAD (as in Fig 2). The 

performance of the Broken-stick model and the log-series distribution predicted by the 

maximum entropy theory of ecology (METE) decreases for greater N. In contrast, the 

lognormal and Zipf provide better explanations of microbial SADs with increasing N. 

The grey dashed horizontal line is placed where the r2
m equals zero. The r2

m
 can take 

negative values because it does not represent a fitted relationship, i.e., the y-intercept is 

constrained to 0 and the slope is constrained to 1. Results from the simple linear 

regression can be found in Table S1. 
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Figure 4. Predictions of absolute dominance (i.e., the abundance of the most abundant 

species, Nmax) using the dominance scaling relationships of each model (Table 1) and the 

r2
m of the relationship. Because of the negative r2

m values for the Broken-stick and the 

log-series, only the lognormal and the Zipf are capable of providing meaningful 

predictions of Nmax. This figure demonstrates the variability in Nmax produced by models 

that closely approximate the empirical scaling law. Points are color-coded by the density 

of adjacent points. Hotter colors indicate a higher density of points. 
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