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Microorganisms are the most abundant, diverse, and functionally important organisms on 24	
  

Earth. Over the past decade, microbial ecologists have produced the largest ever 

community datasets. However, these data are rarely used to uncover law-like patterns of 26	
  

commonness and rarity, test theories of biodiversity, or explore unifying explanations for 

the structure of microbial communities. Using a global-scale compilation of >20,000 28	
  

samples from environmental, engineered, and host-related ecosystems, we test the power of 

competing theories to predict distributions of microbial abundance and diversity-30	
  

abundance scaling laws. We show that these patterns are best explained by the synergistic 

interaction of stochastic processes that are captured by lognormal dynamics. We 32	
  

demonstrate that lognormal dynamics have predictive power across scales of abundance, a 

criterion that is essential to biodiversity theory. By understanding the multiplicative and 34	
  

stochastic nature of ecological processes, scientists can better understand the structure and 

dynamics of Earth’s largest and most diverse ecological systems. 36	
  

 
A central goal of ecology is to explain and predict patterns of biodiversity across 38	
  

evolutionarily distant taxa and scales abundance 1-4. Over the past century, this endeavor has 

focused almost exclusively on macroscopic plants and animals (i.e., macroorganisms), giving 40	
  

little attention to the most abundant and taxonomically, functionally, and metabolically diverse 

organisms on Earth, i.e., microorganisms 1-4. However, global-scale efforts to catalog microbial 42	
  

diversity across environmental, engineered, and host-related ecosystems has created an 

opportunity to understand biodiversity using a scale of data that far surpasses the largest 44	
  

macrobial datasets 5. While commonness and rarity in microbial systems has become 

increasingly studied over the past decade, such patterns are rarely investigated in the context of 46	
  

unified relationships that are predictable under general principles of biodiversity. 
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One of the most frequently documented patterns of microbial diversity in recent years is 48	
  

the “rare biosphere”, which describes how the majority of taxa in an environmental sample are 

represented by few gene sequences 6, 7. While the rare biosphere has become a primary pattern of 50	
  

microbial ecology 6-8, it also reflects the universally uneven nature of one of ecology’s 

fundamental patterns, i.e., the species abundance distribution (SAD) 9. The SAD is among the 52	
  

most intensively studied patterns of commonness and rarity, and is central to biodiversity theory 

and the study of patterns in abundance, distribution, and diversity across scales of space and time 54	
  

(i.e., macroecology) 9. However, microbiologists have largely overlooked the connection of the 

SAD to theories of biodiversity and macroecology and the ability for some of those theories to 56	
  

predict other intensively studied patterns such as the species-area curve or distance-decay 

relationship 10. 58	
  

Since the 1930’s, ecologists have developed more than 20 models that predict the SAD 3. 

While some of these models are purely statistical and only predict the shape of the SAD (e.g., 60	
  

Gamma, Inverse Gamma), others encode the principles and mechanisms of competing theories 2-

4, 9. Of all existing SAD models, none have been more successful than the distributions known as 62	
  

the lognormal and log-series, which often serve as standards against which other models are 

tested 2. The lognormal is characterized by a right-skewed frequency distribution that becomes 64	
  

approximately normal under log-transformation; hence the name “lognormal. Historically, the 

lognormal is said to emerge from the multiplicative interactions of stochastic processes 11. 66	
  

Examples of these “lognormal dynamics” are the multiplicative nature of growth and the 

stochastic nature of population dynamics. Another example is the stochastic nature of individual 68	
  

dispersal and the energetic costs that are multiplied across geographic distance. While most 

ecological processes likely have multiplicative interactions 11, many theories of biodiversity 70	
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(e.g., neutral theory, stochastic geometry, stochastic resource limitation theory) include a 

stochastic component 2, 12-13. Lognormal dynamics should become increasingly important for 72	
  

large communities, a result of the central limit theorem and law of large numbers 11. Yet despite 

being one of the most successful models of the SAD among communities of macroorganisms, 74	
  

the lognormal does not seem to be predicted by any general theory of biodiversity and is only 

rarely used in microbial studies 14-18. 76	
  

Like the lognormal, the log-series has also been successful in predicting the SAD 19. 

Though commonly used since the 1940’s, the log-series is the form of the SAD that is predicted 78	
  

by one of the most recent, successful, and unified theories of biodiversity, i.e., the maximum 

entropy theory of ecology (METE) 4. In ecological terms, METE states that the expected form of 80	
  

an ecological pattern is that which can occur in the greatest number of ways for a given set of 

constraints, i.e., the principle of maximum entropy 4, 20. METE uses only the number of species 82	
  

(S) and total number of individuals (N) as its empirical inputs to predict the SAD. Using the most 

comprehensive global-scale data compilations of macroscopic plants and animals, METE 84	
  

outperformed the lognormal and often explained > 90% of variation in abundance within and 

among communities 21, 22. The success of METE has made the log-series the most highly 86	
  

supported model of the SAD 4. But despite its success, METE has not been tested with microbial 

data and it is unknown whether METE can predict microbial SADs, a crucial requirement for a 88	
  

macroecological theory of biodiversity 23. 

The lognormal, log-series, and other models of biodiversity have competed to predict the 90	
  

SAD for several decades. However, few studies have gone beyond the SAD to test multiple 

models using several patterns of commonness and rarity. For example, recently discovered 92	
  

relationships show how aspects of commonness and rarity scale across as many as 30 orders of 
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magnitude, from the smallest sampling scales of molecular surveys to the scale of all organisms 94	
  

on Earth 5. Such scaling laws are among the most powerful relationships in biology, revealing 

how one variable (e.g., S) changes in a proportional way across orders of magnitude in another 96	
  

variable (e.g., N). However, the mechanisms that give rise to these scaling laws were not 

reported and it remains to be seen whether any biodiversity theory can predict and unify them. It 98	
  

also remains to be seen whether the model that best predicts the SAD would also best explain 

how aspects of commonness and rarity scale with N. 100	
  

In this study we ask whether the lognormal and log-series can reasonably predict 

microbial SADs and whether either model can reproduce recently discovered diversity-102	
  

abundance scaling relationships 5. We used a compilation of 16S ribosomal RNA (rRNA) 

community-level surveys from over 20,000 unique locations, ranging from glaciers to 104	
  

hydrothermal vents to hospital rooms. We contextualize the results of the lognormal and the log-

series against two other well-known SAD models; one that predicts a highly uneven form, i.e., 106	
  

the Zipf distribution, and one that predicts a highly even form, i.e., the Broken-stick. Because 

general theories of biodiversity should make accurate predictions regardless of the size of a 108	
  

sample, community, or microbiome, we tested whether the performance of these four long-

standing models are influenced by a primary constraint on the form of the SAD, i.e., sample 110	
  

abundance (N). We discuss our findings in the context of greater unification across domains of 

life, paradigms of biodiversity theory, and in the context of how lognormal dynamics may 112	
  

underpin microbial ecological processes. 

 114	
  

RESULTS 
 116	
  
Predicting distributions of microbial abundance 
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The lognormal explained nearly 94% of the variation within and among microbial SADs, 118	
  

compared to 91% for the Zipf distribution and 64% for log-series predicted by METE (Fig. 2 and 

Table 1). The performance of the Simultaneous Broken-stick (hereafter referred to as the 120	
  

Broken-stick) was too poor to be evaluated. While close to the predictive power of the 

lognormal, the Zipf distribution greatly over-predicted the abundance of the most abundant taxa 122	
  

(Nmax). In some cases, the predicted Nmax was greater than the empirical value for sample 

abundance (N). The Zipf distribution was also sensitive to the exclusion of singleton OTUs and 124	
  

percent cutoff in sequence similarity (Table S3 Fig. S3). In this way, the Zipf reasonably predicts 

the abundance of intermediately abundant taxa, but often fails for the most dominant and rare 126	
  

taxa 22, 24 (Tables S1 and S2). In contrast to the other models, the lognormal produced unbiased 

predictions for the abundances of dominant and rare taxa, regardless of cutoffs in percent 128	
  

similarity and the exclusion of singleton OTUs (Figs. S1, S2; Tables S1, S2). 

 130	
  

Predictive power across scales of sample abundance (N) 

The performance of SAD models across scales of N is rarely, if ever, examined. While the log-132	
  

series has been successful among communities of macroscopic plants and animals 21, 22, N for the 

vast majority of these samples was less than a few thousand organisms 21, 22. In contrast, the log-134	
  

series predicted by METE has yet to be tested using microbial data, i.e., where N often represents 

millions of sampled 16S rRNA gene reads. 136	
  

 We found that the lognormal performed well across all orders of magnitude in N with no 

indication of weakening at higher orders of magnitude. The performance of METE’s log-series, 138	
  

however, was much more variable and often provided fits to microbial SADs that were too poor 

to interpret. As a result, the form of the SAD predicted by the most successful theory of 140	
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biodiversity for macroorganisms (i.e., METE), failed across orders of magnitude in microbial N. 

This was the case for SADs from different systems and within SADs that were resampled to 142	
  

smaller N (Fig. 3, Fig. S3). While the Zipf distribution also provided reasonable fits that 

improved with increasing N, the Broken Stick increasingly failed for greater N. This latter result 144	
  

supports previously documented patterns of decreasing species evenness with increasing N 5,25; a 

trend that the lognormal captures without apparent bias. 146	
  

 

Diversity-Abundance Scaling Laws 148	
  

Recently, aspects of taxonomic diversity have been shown to scale with N at rates that 

were similar for molecular surveys of microorganisms and individual counts of macroorganisms 150	
  

5. These aspects of diversity include dominance (i.e., the abundance of the most abundant OTU; 

Nmax), evenness (i.e., similarity in abundance among OTUs), and rarity (i.e., concentration of 152	
  

taxa at low abundances). We found that the lognormal best reproduced these diversity-abundance 

scaling relationships 5 (Table 2 and Fig. 4). While the Zipf approximated the rate at which Nmax 154	
  

scaled with N, it greatly over-predicted the y-intercept and hence, the actual value of Nmax (Fig. 

4). Additionally, neither the log-series predicted by METE nor the Broken-stick came close to 156	
  

reproducing the observed diversity-abundance scaling relationships (Fig. 4, Table 2). 

 158	
  

DISCUSSION  

In this study, we asked whether widely known and successful models of biodiversity 160	
  

could predict microbial SADs and also unify SADs with recently discovered diversity-abundance 

scaling laws. We found that the lognormal provided the most accurate predictions for nearly all 162	
  

patterns in our study. This is in sharp contrast to studies of macroorganisms where the log-series 
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distribution predicted by the maximum entropy theory of ecology (METE) was overwhelmingly 164	
  

supported 21, 22. Such discrepancies in model performance suggest there are fundamental 

differences between macroorganisms and microorganisms that point to the importance of 166	
  

lognormal dynamics. Specifically, that multiplicative processes (e.g., growth) and stochastic 

outcomes (i.e., population fluctuations) produce a central limiting pattern within large and 168	
  

heterogeneous communities where species partition multiple resources 11. Instead of identifying a 

particular process (e.g., dispersal limitation, resource competition), we propose that lognormal 170	
  

dynamics underpin the fundamental nature of microbial communities 11,12. 

 There are fundamental differences in how ecologists study communities of microscopic 172	
  

and macroscopic organisms. In our study, we accounted for some of the artifacts that could 

potentially contribute to the highly uneven microbial SADs. For example, we tested for the 174	
  

effects of percent similarity cutoffs that are used for defining an OTU, along with the influence 

of singletons and sample size. However, there are other caveats that deserve attention. First, 176	
  

ecologists sample microbial communities at spatial scales that greatly exceed the scales of their 

interactions 26. As a result, samples of microbial communities probably lump together many 178	
  

ecologically distinct taxa that do not partition the same resources or occupy the same 

microhabitats. If microbial studies commonly lump together species that belong to different 180	
  

ecological communities, then this may in fact lead to the emergence of a power-law SAD (e.g., 

the Zipf) 27. We expect that the increasing performance of the Zipf with greater N, is evidence of 182	
  

a power-law SAD arising from the mixture of lognormal microbial communities. While the 

connection between the lognormal and the Zipf needs further study, a macroecological theory of 184	
  

microbial biodiversity should allow for this dynamic. 
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 Finally, in rejecting the log-series as a model for microbial SADs, we are not rejecting 186	
  

METE altogether. We are instead rejecting the log-series as METE’s primary form of the SAD 4. 

In fact, METE appears capable of predicting both the lognormal and the Zipf 40. This is because 188	
  

in using METE, one tries to infer the most likely form of an ecological pattern for a particular set 

of variables (e.g., N, S) and constraints (e.g., N/S). Consequently, the forms of ecological patterns 190	
  

predicted by METE could change depending on the constraints and state variables used 40. For 

example, METE predicts that the SAD is a power law if it constrains the SAD to N/S while 192	
  

including a resource variable 40. However, METE has not been as fully developed to predict 

forms of the SAD other than the log-series and it remains to be seen whether METE can predict 194	
  

the form of the lognormal (i.e., Poisson lognormal) used in our study. If so, and if it can 

reconcile why a log-series SAD works best for macrobes and a lognormal works best for 196	
  

microbes, then METE may indeed be a unified theory of biodiversity. Until then, microbial 

communities and microbiomes appear to be shaped by the multiplicative interactions of 198	
  

stochastic processes that, while highly complex, inevitably lead to predictable patterns of 

biodiversity. 200	
  

 

 202	
  

 

METHODS 204	
  
Data 

We used one of the largest compilations of microbial community and microbiome data to 206	
  

date, consisting of bacterial and archaeal community sequence data over 20,000 unique 

geographic sites. These data were compiled in a previous study 5 and include 14,962 sites from 208	
  

the Earth Microbiome Project (EMP) 28, 4,303 sites from the Data Analysis and Coordination 
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Center (DACC) for the National Institutes of Health (NIH) Common Fund supported Human 210	
  

Microbiome Project (HMP) 29, as well as 1,319 non-experimental sequencing projects consisting 

of processed 16S rRNA amplicon reads from the Argonne National Laboratory metagenomics 212	
  

server MG-RAST 30.  All sequence data were previously processed using established pipelines to 

remove low quality sequence reads and chimeras 28-30. Additional information pertaining to the 214	
  

datasets can be found in the supplement and in previous studies 5. 

 216	
  

Description of SAD models 

In this study we ask whether the lognormal, log-series, and two other classic SAD models 218	
  

that have some success in microbial ecology, i.e., the Simultaneous broken-stick 12 and the Zipf 

distribution 31, 32 can reasonably predict microbial SADs (Fig. 1). We evaluated the performance 220	
  

of each model with and without singletons and across different percent cutoffs for sequence 

similarity used to cluster 16S rRNA reads into operational taxonomic units (OTUs). 222	
  

 

Lognormal — To avoid fractional abundances and to account for sampling error, we used a 224	
  

Poisson-based sampling model of the lognormal, i.e., the Poisson lognormal 33. We used the 

maximum likelihood estimate of the Poisson lognormal as our species abundance model of 226	
  

lognormal dynamics. The likelihood estimate of the single composite parameter λ (composed of 

the mean (𝜇) and standard deviation (𝜎)) of the Poisson lognormal is derived via numerical 228	
  

maximization of the likelihood surface 33. Once λ is found, the probability mass function for the 

Poisson lognormal (hereafter lognormal) is derived using: 230	
  

𝑝 𝑛 =   
𝜆!𝑒!!

𝑛 𝑝!"(!)!"
!

!
 

where 𝑝!" is the lognormal probability.  
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 232	
  

METE — The maximum entropy theory of ecology (METE) uses only two empirical inputs to 

predict the SAD: species richness (S) and total abundance (N) of individuals (or sequence reads) 234	
  

in a sample. To predict the SAD, METE assumes that the expected shape of the SAD is that 

which can occur in the highest number of ways, an assumption based on the principle of 236	
  

maximum entropy (MaxEnt) 20. Using METE, the shape of the SAD was predicted by calculating 

the probability that the abundance of a species is n given S and N: 238	
  

Φ(𝑛 ∣ 𝑆,𝑁) =
1

𝑙𝑜𝑔(𝛽!!)
𝑒!!"

𝑛  

where the single fitted parameter 𝛽 is defined by the equation  

𝑁
𝑆 =

𝑒!!"!
!!!

𝑒!!"/𝑛!
!!!

 

Where N/S is the average abundance of species. This approach to predicting the MaxEnt form of 240	
  

the SAD yields the log-series distribution 4, 19.  

 242	
  

Broken-stick — The Broken-stick model predicts a high similarity in abundance among species 

and hence, predicts one of the most even SADs of any model. The Broken-stick model predicts 244	
  

the SAD as the simultaneous breaking of a stick of length N at S - 1 randomly chosen points 12. 

The Broken-stick has also has a purely statistical equivalent, i.e., the geometric distribution 34, 35: 246	
  

𝑓(𝑘) = (1− 𝑝)!!!𝑝 

The Broken-stick has no free parameters and predicts only one form of the SAD for a given 

combination of N and S. Though rarely recognized, the geometric distribution is a maximum 248	
  

entropy solution when using N and S as “hard” constraints, i.e., the predicted SAD must have S 

species and a sum of N individuals. 250	
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Zipf distribution — The Zipf (i.e., the discrete Pareto distribution) distribution is a power-law 252	
  

model that predicts one of the most uneven forms of the SAD. This distribution is based on a 

power-law of frequency of ranked data and is characterized by one parameter (𝛾), where the 254	
  

frequency of the kth rank is inversely proportional to k, i.e., p(k) ≈   𝑘!, with 𝛾 often ranging 

between -1 and -2 31, 36-38 . The Zipf distribution predicts the frequency of elements of rank k out 256	
  

of N elements with parameter 𝛾 as: 

𝑓(𝑘; 𝛾,𝑁) =
1/𝑘!

(1/𝑛!)!
!!!

 

We calculated the maximum likelihood estimate of 𝛾 using numerical maximization, which was 258	
  

then used to generate the predicted form of the SAD. 

 260	
  

Testing SAD predictions 

Our SAD predictions were based on the rank-abundance form of the SAD, i.e., a vector 262	
  

of species abundances ranked from most to least abundant (Fig. 1). Because the predicted form 

of each model preserves S (i.e., number of species), we were able to directly compare (rank-for-264	
  

rank) the observed and predicted SADs using regression to find the percent of variation in 

abundance among species that is explained by each model. We generated the predicted forms of 266	
  

the SAD using previously developed code 21 (https://github.com/weecology/white-etal-2012-

ecology) and the public repository macroecotools (https://github.com/weecology/macroecotools). 268	
  

To prevent bias in our results due to the overrepresentation of a particular dataset, we 

performed 10,000 bootstrap iterations using a sample size of 200 SADs drawn randomly from 270	
  

each dataset. The sample size was determined based on the number of SADs that the numerical 

estimator used to generate the Zipf distribution was able to solve for the smallest dataset (i.e. 239 272	
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SADs from MG-RAST). We then calculated the modified coefficient of determination (r2
m) 

around the 1:1 line (as per previous tests of METE 21, 25, 39) with the following equation. 274	
  

 

𝑟!! = 1−
∑(𝑙𝑜𝑔!"(𝑜𝑏𝑠!)− 𝑙𝑜𝑔!"(𝑝𝑟𝑒𝑑!))!

∑(𝑙𝑜𝑔!"(𝑜𝑏𝑠!)− 𝑙𝑜𝑔!"(𝑜𝑏𝑠!))!
 

 276	
  

It is possible to obtain negative r2
m values because the relationship is not fitted but instead, is 

performed by estimating the variation around the 1:1 line with a constrained slope of 1.0 and a 278	
  

constrained intercept of 0.0 21, 25, 39. In addition, we have provided the mean, standard deviation, 

and kernel density estimates of the log-likelihood and parameter values for all models that 280	
  

contain a free parameter (Tables S5, Figures S5). 

 282	
  

Diversity-abundance scaling relationships 

To determine whether the SAD models tested here can explain previously reported 284	
  

diversity-abundance scaling relationships 5, we first calculated the values of Nmax, Simpson’s 

measure of species evenness, and the log-modulo of skewness as a measure of rarity derived 286	
  

from predicted SADs of each model, as in ref. 5. We examined these diversity metrics against the 

values of N in the observed SADs. We used simple linear regression on log-transformed axes to 288	
  

quantify the slopes of the scaling relationships, which become scaling exponents when axes are 

arithmetically scaled, i.e., log(y) = zlog(x) is equivalent to y = xz, where z is the slope and scaling 290	
  

exponent. These scaling exponents were compared to the reported exponents 5. We calculated the 

percent difference between the diversity metrics reported by each SAD model and the mean of 292	
  

the exponents reported for the EMP, HMP, and MG-RAST datasets. 
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 We could not assess the ability of the SAD models to predict the scaling relationship of S 294	
  

to N, as in ref. 5. This was because all of the SAD models used in our study return SADs with the 

same value of S as the empirical form. 296	
  

 

Influence of total abundance on model performance 298	
  

We used ordinary least-squares regression to assess the relationship between the 

performance of each SAD model and the number of sequences in a given sample (N). While the 300	
  

aim of our study was to capture the influence of sample sequence abundance (N) on SAD model 

performance, we also rarefied within SADs. We performed bootstrapped resampling on rarefied 302	
  

sets of SADs to determine the influence of subsampled N on model performance. This bootstrap 

sampling procedure consisted of sampling SADs at given fractions of sample N and then 304	
  

calculating the mean 𝑟!! , repeated 100 times for each model. SADs were sampled at 50%, 25%, 

12.5%, 6.25%, 3.125%, and 1.5625% percent of sample N. This subsampling analysis was 306	
  

computationally exhaustive and required SADs with N large enough to be halved 6 times and 

still large enough to be analyzed with SAD models. Likewise, we only used SADs for which 308	
  

predictions from each SAD model could be obtained at each scale of subsampled N. Altogether; 

we were able to use 10 SADs that met these criteria. 310	
  

 

 312	
  

Computing code 

We used open source computing code to obtain the maximum-likelihood estimates and 314	
  

predicted forms of the SAD for the Broken-stick, the lognormal, the prediction of METE (i.e. the 

log-series distribution), and the Zipf distribution (github.com/weecology/macroecotools, 316	
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github.com/weecology/METE). This is the same code used in studies that showed support for 

METE among communities of macroscopic plants and animals 22-24. All analyses can be 318	
  

reproduced or modified for further exploration by using code, data, and following directions 

provided here: https://github.com/LennonLab/MicrobialBiodiversityTheory. 320	
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Figure 1. Forms of predicted species abundance distributions (SAD) in rank-abundance form, 424	
  

i.e., ordered from the most abundant species (Nmax) to least the abundant on the x-axis. The grey 

line represents one SAD that was randomly chosen from our data. Each model was fit to the 426	
  

observed SAD; see Methods. The Simultaneous Broken-stick is known to produce an overly 

even SAD. The log-series often explains SADs for plant and animal communities but has gone 428	
  

untested among microbes 22. The Zipf distribution is a power law model that produces one of the 

most uneven forms of the SAD, often predicting more singletons and greater dominance (i.e., 430	
  

Nmax) than other models. Finally, the Poisson lognormal, a lognormal model with Poisson-based 

sampling error, tends to be similar to the unevenness of the Zipf distribution, but predicts more 432	
  

realistic Nmax. Importantly, each model used here predicts an SAD with the same richness of the 

observed SAD, which is often not the case in other studies that fail to use maximum likelihood 434	
  

expectations 41. 

 436	
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Figure 2. Relationships between predicted abundance and observed abundance for each SAD 

model. All species of all examined SADs are plotted, with hotter colors (e.g. red) reveal a greater 438	
  

density of species abundances. The black diagonal line is the 1:1 line, around which a perfect 

prediction would fall. The box within each subplot is a histogram of the per-SAD modified r-440	
  

squared (r2
m) values from a range of zero to one, with left-skewed histograms suggesting a better 

fit of the model to the data. The value at the top-left of each sub-plot is the mean r2
m value for 442	
  

10,000 bootstrapped samples (see methods). Each dot represents the observed abundance versus 

the predicted abundance for each species in the data. 444	
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Figure 3. The relationship of model performance (via modified r2
m) to the total number of 16S 

rRNA reads (N)	
  for each SAD. The modified r-square value r2
m is the variation in the observed 464	
  

SAD that is explained by the predicted SAD (as in Fig. 2). The performance of the Broken-stick 

model and of the log-series distribution predicted by the maximum entropy theory of ecology 466	
  

(METE) decreases for greater N. With the exception of a small group of point, the lognormal 

provides r2
m values of 0.95 or greater across scales of N. The Zipf provide better explanations of 468	
  

microbial SADs with increasing N. The grey dashed horizontal line is placed where the r2
m 

equals zero. The r2
m

 can take negative values because it does not represent a fitted relationship, 470	
  

i.e., the y-intercept is constrained to 0 and the slope is constrained to 1. Results from the simple 

linear regression can be found in Table S1 472	
  

 
 474	
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Figure 4. Predictions of absolute dominance (i.e., greatest species abundance within an SAD, 

Nmax) using the dominance scaling relationships of each model (Table 1) and the r2
m of the 476	
  

relationship. Because of the negative r2
m values for the Broken-stick and the log-series, only the 

lognormal and the Zipf are capable of providing meaningful predictions of Nmax. This figure 478	
  

demonstrates the differences in Nmax produced by models (i.e., lognormal and Zipf) that perform 

well at predicting the SAD and closely approximate the dominance scaling exponent (Table 2). 480	
  

Hotter colors indicate a higher density of data points, i.e., results from SADs. 

	
  482	
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Table 1. Comparison of the performance of species abundance distribution (SAD) models for 484	
  

microbial datasets. The mean site-specific r-square (r2
m) and standard error (𝜎!!! ) for each model 

from 10,000 bootstrapped samples of 200 SADs: Broken-stick, the log-series predicted by the 486	
  

Maximum Entropy Theory of Ecology (METE), the lognormal, and the Zipf power law 

distribution. The lognormal and the Zipf provide the best predictions for how abundance varies 488	
  

among taxa. The lognormal and the Zipf are also characterized by lower standard errors than the 

Broken-stick and the log-series.  490	
  

 

	
  492	
  
 

  494	
  

Model r2
m ‡ ¯r2

m

Lognormal 0.94 0.0044

Zipf 0.91 0.0031

Log-series 0.64 0.014

Broken-stick ≠0.32 0.034

1
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Table 2. In general, the lognormal comes closest to reproducing the scaling exponents of 

diversity-abundance scaling relationships 5. These scaling relationships pertain to absolute 496	
  

dominance (Nmax), Simpson’s metric of species evenness, and skewness of the SAD.  The percent 

difference and percent error is given between the scaling exponents predicted from each SAD 498	
  

model and the mean of the scaling exponents for the EMP, HMP, and MG-RAST reported in 

Table 1 of 5, i.e., where the mean for Nmax was 1.0, the mean for evenness was -0.48, and the 500	
  

mean for skewness was 0.10. The p-values were < 0.0001 for all scaling exponents. 

 502	
  

	
  
	
  504	
  
 

Model Diversity metric Slope % Di�erence

Lognormal N

max

1.0 1.5

Evenness ≠0.48 42.0

Skewness 0.10 23.0

Zipf N

max

1.0 0.28

Evenness ≠0.53 53.0

Skewness 0.086 41.0

Log-series N

max

0.86 16.0

Evenness ≠0.16 66.0

Skewness 0.048 92.0

Broken-stick N

max

0.73 32.0

Evenness ≠0.022 170.0

Skewness 0.014 160.0
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