
Ten simple rules for digital data storage

Data is the central currency of science, but the nature of scientific data has changed

dramatically with the rapid pace of technology. This change has led to the development of

a wide variety of data formats, dataset sizes, data complexity, data use cases, and data

sharing practices. Improvements in high throughput DNA sequencing, sustained

institutional support for large sensor networks, and sky surveys with large-format digital

cameras have created massive quantities of data. At the same time, the combination of

increasingly diverse research teams and data aggregation in portals (e.g. for biodiversity

data, GBIF or iDigBio) necessitates increased coordination among data collectors and

institutions. As a consequence, “data” can now mean anything from petabytes of

information stored in professionally-maintained databases, through spreadsheets on a

single computer, to hand-written tables in lab notebooks on shelves. All remain important,

but data curation practices must continue to keep pace with the changes brought about by

new forms and practices of data collection and storage.
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Introduction 1

Data is the central currency of science, but the nature of scientific data has changed 2

dramatically with the rapid pace of technology. This change has led to the 3

development of a wide variety of data formats, dataset sizes, data complexity, data use 4

cases, and data sharing practices. Improvements in high throughput DNA sequencing, 5

sustained institutional support for large sensor networks [1,2], and sky surveys with 6

large-format digital cameras [3] have created massive quantities of data. At the same 7

time, the combination of increasingly diverse research teams [4] and data aggregation 8

in portals (e.g. for biodiversity data, GBIF.org or iDigBio) necessitates increased 9

coordination among data collectors and institutions [5,6]. As a consequence, “data” 10

can now mean anything from petabytes of information stored in 11

professionally-maintained databases, through spreadsheets on a single computer, to 12

hand-written tables in lab notebooks on shelves. All remain important, but data 13

curation practices must continue to keep pace with the changes brought about by new 14

forms and practices of data collection and storage. 15

While much has been written about both the virtues of data sharing [7,8] and best 16

practices to do so [9,10], data storage has received comparatively less attention. 17

Proper storage is a prerequisite to sharing, and indeed inadequate storage contributes 18

to the phenomenon of data decay or “data entropy”: data, whether publicly shared or 19

not, becomes less accessible through time [11–14]. Best practices for data storage often 20

begin and end with, “use a community standard repository.” This is a good advice; 21

however, data storage policies are highly variable between repositories [15]. A data 22

management plan utilizing best practices across all stages of the data life cycle will 23

facilitate transition from local storage to repository [16]. Similarly it can facilitate 24

transition from repository to repository if funding runs out or needs change. Good 25
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storage practices are important even (or especially) in cases where data may not fit 26

with an existing repository, where only derived data products (versus raw data) are 27

suitable for archiving, or in the case where an existing repository may have lax 28

standards. 29

Therefore, this manuscript describes 10 simple rules for digital data storage that 30

grew out of a long discussion among instructors for the Software and Data Carpentry 31

initiatives [17,18]. Software and Data Carpentry instructors are scientists from diverse 32

backgrounds who have encountered a variety of data storage challenges and are active 33

in teaching other scientists best practices for scientific computing and data 34

management. Thus, this paper represents a distillation of collective experience, and 35

hopefully will be useful to scientists facing a variety of data storage challenges. 36

Rule 1: Anticipate how your data will be used 37

One can avoid most of the troubles encountered during the analysis, management, and 38

release of data by having a clear roadmap of what to expect before data acquisition 39

starts. For instance: 40

• How will the raw data be received? Are they delivered by a machine or software, 41

or typed-in? 42

• What is the format expected by the software used for analysis? 43

• Is there a community standard format? 44

• How much data will be collected? 45

The answers to these questions can range from simple cases (e.g., sequencing data 46

stored in the FASTA format, which can be used “as is” throughout the analysis), to 47

experimental designs involving multiple instruments, each with its own output format 48

and conventions. Knowing the state in which the data needs to be at each step of the 49

analysis can help (i) identify software tools to use in converting across data formats, 50

(ii) orient technological choices about how and where the data should be stored, and 51

(iii) rationalize the analysis pipeline, making it more amenable to re-use [19]. 52

Also key is the ability to estimate the storage volume needed to store the data, 53

both during and after the analysis. The required strategy will differ for datasets of 54

varying size. Smaller datasets (e.g. a few megabytes in size) can be managed locally 55

with a simple data management plan, whereas larger datasets (e.g. gigabytes to 56

petabytes) will in almost all cases require careful planning and preparation (Rule 10). 57

Early consideration and planning should be given to the metadata of the project. 58

A plan should be developed early as to what metadata will be collected, and how it 59

will be maintained and stored (Rule 7). 60

Rule 2: Know your use case 61

Well-identified use cases make data storage easier. Ideally, prior to beginning data 62

collection, researchers should be able to answer the following questions: 63

• Should the raw data be archived (Rule 3)? 64

• Should the data used for analysis be prepared once, or re-generated from the raw 65

data each time (and what difference would this choice make for storage, 66

computing requirements, and reproducibility)? 67

• Can manual corrections be avoided in favor of programmatic or self-documenting 68

(e.g., Jupyter notebook) approaches? 69
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• How will changes to the data be tracked, and where will these tracked changes 70

be logged? 71

• Will the final data be released, and if so, in what format? 72

• Are there restrictions or privacy concerns associated with the data (e.g. for 73

survey results with personally identifiable information (PII), threatened species, 74

or confidential business information)? 75

• Will institutional validation be required prior to releasing the data? 76

• Does the funding agency mandate data deposition in a publicly available archive, 77

and if so, when, where, and under what license? 78

• Does the target journal mandate data deposition? 79

None of these questions have universal answers, nor are they the only questions to 80

ask before starting data acquisition. But knowing the what, when, and how of your 81

use of the data will bring you close to a reliable roadmap on how to handle data from 82

acquisition through publication to archive. 83

Rule 3: Keep raw data raw 84

Since analytical and data processing procedures improve or otherwise change over 85

time, having access to the ‘raw’ (unprocessed) data can facilitate future re-analysis 86

and analytical reproducibility. As processing algorithms improve and computational 87

power increases, new analyses will be enabled that were not possible at the time of the 88

original work. If only derived data are stored, it can be difficult to impossible for other 89

researchers to confirm analytical results, to assess the validity of statistical models, or 90

to directly compare findings across studies. 91

Therefore, data should always be kept in raw format whenever possible (within the 92

constraints of technical limitations). In addition to being the most appropriate way to 93

ensure transparency in analysis, having the data stored and archived in their original 94

state gives a common point of reference for derivative analyses. What constitutes 95

sufficiently “raw” data is not always clear (e.g., ohms off a temperature sensor or 96

images off an Illumina sequencing flowcell are generally not archived after the initial 97

processing). Yet the spirit of this rule is that data should be as “pure” as possible 98

when they are stored. If derivations occur, they should be documented by also 99

archiving relevant code and intermediate datasets. 100

A cryptographic hash (e.g., SHA or MD5) of the raw data should be generated and 101

distributed with the data. These hashes ensure that the data set has not suffered any 102

silent corruption/manipulation while being stored or transfered (see 103

Internet2 Silent Data Corruption). For large enough datasets the likelihood of silent 104

data corruption is high. This technique has been widely used by many Linux 105

distributions to distribute images and has been very effective with minimal effort. 106

Rule 4: Store data in open formats 107

To maximize accessibility and long-term value, it is preferable to store data in formats 108

whose specifications are freely available. The appropriate file type will depend on the 109

data being stored (e.g. numeric measurements, text, images, video), but the key idea is 110

that accessing data should not require proprietary software, hardware, or purchase of 111

a commercial license. Proprietary formats change, maintaining organizations go out of 112

business, and changes in license fees make access to data in proprietary formats 113

unaffordable to end-users. Examples of open data formats include comma-separated 114

values (CSV) for tabular data, hierarchical data format (HDF) [20] and NetCDF [21] 115

for hierarchically structured scientific data, portable network graphics (PNG) for 116
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images, KML (or other Open Geospatial Consortium (OGC) format) for spatial data, 117

and extensible markup language (XML) for documents. Examples of closed formats 118

include DWG for AutoCAD drawings, Photoshop document (PSD) for bitmap images, 119

Windows Media Audio (WMA) for audio recording files, and Microsoft Excel (XLS) 120

for tabular data. Even if day-to-day processing uses closed formats (e.g., due to 121

software requirements), data being stored for archival purposes should be stored in 122

open formats. This is generally not prohibitive; most closed-source software enables 123

users to export data to an open format. 124

Rule 5: Data should be stored in an easily-usable 125

format 126

Not only should data be stored in an open format (Rule 4), but it should also be 127

stored in a format that computers can easily use for processing. This is especially 128

crucial as datasets become larger. Easily-usable data is best achieved by using 129

standard data formats that have open specifications (e.g., CSV, XML, JSON, HDF5), 130

or by using databases. Such data formats can be handled by a variety of programming 131

languages, as efficient and well-tested libraries for parsing them are typically available. 132

These standard data formats also ensure interoperability, facilitate re-use, and reduce 133

the chances of data loss or mistakes being introduced during conversion between 134

formats. Examples of machine-readable open formats that would not be easy to 135

process include data included in the text of a Microsoft Word or PDF file, or scanned 136

images of tabular data from a paper source. 137

When data can be easily imported into familiar software, whether it be a scripting 138

language, a spreadsheet, or any other computer program that can import these 139

common files, data becomes easier to re-use. Computer source code, the human 140

readable software that uses data, provides metadata as well. This makes analysis more 141

transparent, since all assumptions about the structure of the data are implicitly stated 142

in the source code. This also enables extraction of the analyses performed, their 143

reproduction, and their modification. 144

To take full advantage of data, it can be useful for it to be structured in a way that 145

makes use, interpretation, and analysis easy. One such structure for data stores each 146

variable is a column, each observation as a row, and each type of observational unit is 147

a table (Fig. 1). The technical term for this structure is ‘Codd’s 3rd normal form’, but 148

has been made more accessible as the concept of tidy data [22]. When data is 149

organized in this way, the duplication of information is reduced and it is easier to 150

subset or summarize the dataset to include the variables or observations of interest. 151

Interoperability is facilitated when variable names are mapped to existing data 152

standards. For instance, for biodiversity data, the Darwin Core Standard provides a 153

set of terms that describe observations, specimens, samples, and related information 154

for a taxa. For earth science and ecosystem models and data, the 155

Climate Forecasting Conventions are widely adopted, such that a large ecosystem of 156

software and data products exist to reduce the technical burden of reformatting and 157

reusing large and complex data. Because each term in such standards are clearly 158

defined and documented, each dataset can use the terms consistently, this facilitates 159

data sharing across institutions, applications, and disciplines. 160

With machine-readable, standards-compliant data, it easier to build an Application 161

Programming Interface (API) to query the dataset and retrieve a subset of interest as 162

outlined in Rule 10. 163
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Rule 6: Data should be uniquely identifiable 164

The data used in a scientific publication should be uniquely identifiable to aid 165

reproducibility. Ideally, datasets should have a unique identifier such as a Digital 166

Object Identifier (DOI), Archival Resource Key (ARK), or a Persistant URL (PURL). 167

An increasing number of online services, such as Figshare, Zenodo, or DataOne are 168

able to provide these. Institutional initiatives also exist, and are known to your 169

librarians. 170

Datasets evolve over time. In order to distinguish between different versions of the 171

same data, each dataset should have a distinct name, which includes a version 172

identifier. A simple way to do this is to use date stamps as part of the dataset name. 173

Using the ISO 8601 standard avoids regional ambiguities: it mandates the date format 174

YYYY-MM-DD (i.e. from largest time unit to smallest). For example, the date “February 175

1st, 2015”, while written as 01-02-2015 in the UK and 02-01-2015 in the US, is the 176

unambiguous 2015-02-01 under this standard. 177

Semantic versioning is a richer approach to solving the same problem [23]. The 178

CellPack datasets are an example of this [24]. A semantic version number takes the 179

form: Major.Minor.Patch, e.g. 0.2.7. The major version numbers should be 180

incremented (or bumped) when a dataset scheme has been updated, or some other 181

change is made that is not compatible with previous versions of the data with the 182

same major version number. This means that an experiment using version 1.0.0 of 183

the dataset may not run on version 2.0.0 without changes to the data analysis. The 184

minor version should be bumped when a change has been made which is compatible 185

with older versions of the data with the same major version. This means that any 186

analysis that can be performed on version 1.0.0 of the data is repeatable with version 187

1.1.0 of the data. For example, adding a new year in a temporal survey will result in 188

a bump in the minor version. The patch version number is bumped when typos or 189

bugs have been fixed. For example version 1.0.1 of a dataset may fix a typo in 190

version 1.0.0. 191

Rule 7: Link relevant metadata 192

Metadata is the contextual information required to interpret data (Figure 1) and 193

should be clearly defined and tightly integrated with data. The importance of 194

metadata for context, reusability, and discovery has been written about at length in 195

guides for data management best practices [9,13,25]. 196

Metadata should be as comprehensive as possible, using standards and conventions 197

of a discipline, and should be machine-readable. Metadata should always accompany a 198

dataset, wherever it is stored, but the best way to do this depends on the format of 199

the data. Text files can contain meta-data in in well defined text files such as XML or 200

JSON). Some file formats are self-documenting, for example NetCDF, HDF5, and 201

many image files allow for embedded metadata [20,21]. In a relational database, 202

metadata tables should be clearly labeled and linked to the data. Ideally a schema will 203

be provided that also shows the linkages between data tables and metadata tables. 204

Another scenario is a set of flat text files–in this case a semantically versioned, 205

compressed archive should be created that includes metadata. 206

Whatever format is used for archiving, the goal should be to make the link between 207

metadata and data as clear as possible. The best approach is dependent on the 208

archiving plan used, but even if the dataset is archived solely for personal use, 209

metadata will provide crucial context for future reuse. 210
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Rule 8: Adopt the proper privacy protocols 211

In datasets where privacy is important, be sure to have a plan in place to protect data 212

confidentiality. You should consider the different data stakeholders when developing 213

privacy protocols for your data storage. These stakeholders include funding agencies, 214

human subjects or entities, collaborators, and yourself. Both the NSF and NIH have 215

data sharing policies in their grant guidelines to prevent sharing personally identifiable 216

information, and to anonymize data on human subjects. 217

In small datasets, a lookup table (protecting PII by removing it and replacing it 218

with a unique id that maps to the sensitive data in an external dataset) is enough to 219

anonymize minimal personal information. Hashing techniques are susceptible to a 220

number of attacks, and all hashed data can eventually be determined. Famously, New 221

York City officials shared what they thought was anonymized data on cab drivers and 222

over 173 million cab rides. However, it was quickly recognized that the city 223

anonymized the data with a simple MD5 hashing scheme and all 20 GB of data were 224

de-anonymized in a matter of hours [26]. This type of error can be prevented by asking 225

a trusted colleague or security personal to try to “crack” anonymised data before 226

releasing it publicly. Often the person who has produced the data is least well placed 227

to check the fine details of their security procedures. If possible the best solution is to 228

remove any sensitive data that is not required from the dataset prior to distribution. 229

In more problematic cases, the data itself allows identifiability: this is the case with 230

human genomic data that map directly onto a subject’s identity [27]. Methods for 231

dealing with these complex issues at the intersection of data storage and privacy are 232

rapidly evolving, and include storing changes against a reference genome to help with 233

privacy and data volume [28,29], or bringing computation to data storage facilities 234

instead of vice versa [30]. Having a plan for privacy before data acquisition is 235

important, because it can determine or limit how data will be stored. 236

Rule 9: Have a systematic backup scheme 237

Every storage medium can fail, and every failure can result in loss of data. 238

Researchers should therefore back data up at all stages of the research process. Data 239

stored on local computers or institutional servers during the collection and analysis 240

phases should be backed up to other locations and formats to protect against data loss. 241

No backup system is failsafe (see the stories of the Dedoose crash and the 242

near deletion of Toy Story 2), so more than one backup system should be used. 243

Kristin Briney advocates the “Rule of 3” for backing up data: two onsite copies (such 244

as on a computer, an external hard drive, or a tape) and one offsite copy (e.g. in cloud 245

storage). For example, keeping backups in multiple locations protects against data loss 246

due to theft or natural disasters. 247

Researchers should also test their backups regularly to ensure that they are 248

functioning properly. Common reasons for backup failure include: 249

• faulty backup software 250

• incorrect configuration (e.g., not backing up sub-directories) 251

• encryption (e.g., someone has encrypted the backups but lost the password) 252

• media errors 253

Consider the backup plan of your selected data repository before publishing your 254

data. Many repositories mirror the data they host on multiple machines. If possible, 255

find out about the long-term storage plans of the repository. Are there plans in place 256

to keep data available if the organization that manages the repository dissolves? 257
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Rule 10: The location and method of data storage 258

depends on how much you have 259

The storage method you should choose depends on the size and nature of your data, 260

the cost of storage and later access, the time it takes to transfer the data, how the 261

data will be used, and any privacy concerns. Data is increasingly generated in the 262

range of many terabytes by environmental sensors, satellites, automated analytical 263

tools, simulation models, and genomic sequencers. Even larger data generating 264

machines like the Large Hadron Collider (LHC) and the Large Scale Synoptic Survey 265

Telescope (LSST) generate many terabytes (TB) per day, rapidly accumulating to 266

petabyte (PB) scale over the course of any particular study. While the cost of storage 267

continues to decrease, the volume of data to be stored impacts the choice of storage 268

methods and locations: for large datasets it is necessary to balance the cost of storage 269

with the time of access and costs of re-generating the data. With new commercial 270

cloud offerings (e.g., Amazon S3) the cost of retrieving the data might exceed the cost 271

of analysis or re-generating the data from scratch. 272

When data takes too long to transfer or is costly to store, it can become more 273

efficient to use a computer that can directly access and use the data in place. Inactive 274

data can be put in longer-term storage; this is less expensive, but can take longer to 275

retrieve. Some storage systems automatically migrate ‘stale’ files to longer term 276

storage. Alternatively, some computing can be done ‘in the database’ or ‘on disk’ via 277

database query languages (e.g. SQL, MapReduce) that perform basic arithmetic, or via 278

the use of procedural languages (e.g. R, Python, C) embedded in the database server. 279

Modern database technologies such as HDFS and Spark allow these computations to 280

be done on data of almost any size. When data is larger than RAM, it can be handled 281

by a ‘big memory’ node, which most high-performance computing have deployed – 282

relying on tight software/hardware integration, these are currently around 1-4 TB. 283

This allows the user to read in and use a large dataset without special tools. 284

If you regularly only need access to a small subset of your data or need to share it 285

with many collaborators, a web-based API (Application Programming Interface) might 286

be a good solution. Using this method, many users can send requests to a web service 287

which can subset the data, perform in-database computation, and return smaller 288

volumes of data as specific slices. Tools based on web services make it easier to find 289

and download data, and facilitate analysis via reproducible scripts, however they can 290

lead to excessive and careless abuse of resources. The time required to re-download 291

and recompute results can be reduced by ‘caching’. Caching stores copies of downloads 292

and generated files that are recognized when the same script is run multiple times. 293

Further Reading and Resources 294

Digital data storage is a vast topic; the references given here and elsewhere in this 295

paper provide some starting points for interested readers. For beginning users of 296

scientific data, Data Carpentry offers workshops and resources on data management 297

and analysis, as do the DataONE education modules [31]. For librarians and others 298

who are responsible for data archiving, Data Curation Profiles [32] may be of interest. 299
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Glossary and abbreviations used in the manuscript 300

Projects and Initiatives 301

• GBIF (Global Biodiversity Information Facility, http://www.gbif.org) 302

provides an international open data infrastructure to publish and disseminate 303

biodiversity information. 304

• iDigBio (Integrated Digitized Biocollections, https://www.idigbio.org) is a 305

project funded by the National Science Foundation that facilitates the 306

digitization of natural history collections, and provides data and images for 307

biological specimens. 308

• ITIS (Integrated Taxonomic Information System, http://www.itis.gov) is an 309

international partnership of governmental organizations that aims at providing 310

authoritative taxonomic information for plants, animals, fungi and microbes. 311

File formats 312

• CSV (Comma-Separated Values) and TSV (Tab-Separated Values) are plain 313

text file formats used to store tabular data where each row is represented by a 314

line in the file, and each field (column) is separated by a comma for CSV or by 315

the Tab character for TSV. 316

• FASTA is a simple file format used to represent sequences of nucleotides or 317

amino-acids in plain text making it easy to manipulate programmatically. 318

• HDF5 (Hierarchical Data Format) is an open-source binary file format designed 319

to store large amounts of data (and their associated metadata) by providing a 320

hierarchical structure that could be compared to how a hard drive is organized 321

with directories and files. It is maintained by the non-profit HDF Group, a spin 322

off of the National Center for Supercomputing Applications (NCSA). 323

• JSON is a plain text file format typically used to store arbitrarily structured 324

data in the form of keys and values. It can be used to store non-relational 325

databases as it does not rely on a tabular data format. In many respects, it has 326

been replacing XML. 327

• NetCDF (Network Common Data Form) is an open-source binary file format 328

designed to store large datasets in array-oriented scientific data as typically used 329

in geosciences. It is maintained by Unidata, a non-profit member of the 330

University Corporation for Atmospheric Research (UCAR) which is funded by 331

the National Science Foundation. 332

• XML (Extensible Markup Language) is a markup language and the file format 333

used to store documents written with it. It is used to represent arbitrary data 334

structures and is both human and machine-readable. 335

Programming and algorithms 336

• Web APIs (Application Programming Interface) provide ways to query 337

programmatically databases through the internet. They notably allow users to 338

retrieve and work with a small slice of a large dataset. 339

• HDFS (Hadoop Distributed File System) is a Java based file system where data 340

is stored in small chunks across multiple redundant nodes. 341
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• MapReduce is a style of programming designed to work with large datasets in 342

parallel computing environments. Such programs are composed of a map 343

procedure where the dataset is sliced into several pieces, and a reduce 344

procedure where summary operations are applied to each of the slices. 345

• SHA-2 is a family of Secure Hashing Algorithms used in cryptographic analysis, 346

often to verify the integrity of a file. A cryptographic hash function converts a 347

“message” (e.g., passwords, file content) into an encrypted value. Cryptographic 348

hash functions are easy to compute from the message, but it should be 349

impossible to recover the message from the output, and any modifications to the 350

message should also modify the output. The SHA algorithms are often used in 351

preference to similar tools such as MD5 (mentioned in Rule 8), which are no 352

longer secure. All hashing algorithms are vulnerable to brute force attacks. Key 353

Derivation Function (KDF) implementations like BCrypt and PBKDF2 are 354

considered significantly more secure, but by design more costly to compute. 355

• Apache Spark is an open source computing platform for querying large data 356

sets in memory, in contrast to on disk based methods like MapReduce. 357

• SQL (Structure Query Language) is a programming language used to interact 358

with relational database management systems. 359

Hardware 360

• mega-, giga-, tera-, peta-bytes are units of digital information and are used 361

to measure the size of datasets or the storage media. Originally a byte was the 362

minimum amount of memory needed to store a single character of text in a 363

computer. The prefixes mega-, giga-, tera- and peta- refer to the international 364

system of units for the multiple of the unit, and correspond to 106, 109, 1012, 365

and 1015 abbreviated M, G, T and P respectively. 366

Persistent identifiers 367

• ARK (Archival Resource Key) identifiers are URLs designed to support 368

long-term access to information online. 369

• DOI (Digital Object Identifier) provides unique and persistent identifiers for 370

electronic documents (in particular journal articles and datasets) on the internet. 371

The uniqueness of the identifiers is guaranteed by a central registry. By 372

dissociating the identifier and the location of the document (i.e., the URL), the 373

DOI can remain fixed even if its location changes. 374

• PURL (Persistent Uniform Resource Locator) is an URL used to redirect to the 375

location of an electronic object on the internet. DOI and ARK are examples of 376

implementations of PURL. 377

• URL (Uniform Resource Locator) gives the location of an object on the World 378

Wide Web; the most familiar type of URL is a website address. 379
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Figure Legends 402

Figure 1: Example of an untidy dataset (A) and its tidy equivalent (B). Dataset A is 403

untidy because it mixes observational units (species, location of observations, 404

measurements about individuals), the units are mixed and listed with the observations, 405

more than one variable is listed (both latitude and longitude for the coordinates, and 406

genus and species for the species names), and several formats are used in the same 407

column for dates and geographic coordinates. Dataset B is an example of a tidy 408

version of dataset A that reduces the amount of information that is duplicated in each 409

row, limiting chances of introducing mistakes in the data. By having species in a 410

separate table, they can be identified uniquely using the Taxonomic Serial Number 411

(TSN) from the Integrated Taxonomic Information System (ITIS), and it makes it 412

easy to add information about the classification of these species. It also allows 413

researchers to edit the taxonomic information independently from the table that holds 414

the measurements about the individuals. Unique values for each observational unit 415

facilitate the programmatic combination of information using “join” operations. With 416

this example, if the focus of the study for which these data were collected is based 417

upon the size measurements of the individuals (weight and length), information about 418

“where”, “when”, and “what” animals were measured can be considered meta-data. 419

Using the tidy format makes this distinction clearer. 420
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