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ABSTRACT

One of the goals of systems and computational neuroscience is to understand how information is
processed by a single neuron and integrated by a network of neurons. A plausible approach to identifying
spatial neighborhoods of the brain that host potential neural networks of interest is by observing spatially-
bounded aggregates of neural activity. To this end, the potential of the multidimensional ensemble
empirical mode decomposition algorithm in extracting multiple resolutions of neural activity from calcium
imaging data is evaluated.
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INTRODUCTION
By providing information about cellular and sub-celluar dynamics of calcium, multi-photon calcium
imaging has been integral in understanding information processing in neural tissue (Stosiek et al., 2003;
Grewe et al., 2010). In addition to understanding how individual neurons give rise to observable behavior,
it is essential to elucidate how ensembles of neurons compute together as a network. An integral
step to understanding the architecture of neural computation at the network level is to identify spatial
neighborhoods of the brain in which ensembles of neurons integrate information.

This report seeks to explore the utility of multi-dimensional ensemble empirical mode decomposition
in the identification of spatial neighborhoods of the brain that have relatively high activity. Since the
raw data is assumed to be of the highest resolution, the overarching goal of the approach is to extract
distant views of neural activity via calcium images while minimizing distortion. The spatial and spatio-
temporal resolutions of neural activity extracted by applying multi-dimensional ensemble empirical mode
decomposition will be emphasized.

METHODS
Data source
The calcium imaging data used for this paper was obtained through the Collaborative Research in
Computational Neuroscience program (Peron et al., 2015; Guo et al., 2014; Peron et al., 2014).

One-Dimensional Decomposition Approach
Empirical Mode Decomposition
The empirical mode decomposition (EMD) method was developed to overcome some of the limitations of
Hilbert spectral analysis (Huang et al., 1998). Since its inception, it has been applied in various biomedical
research areas including but not limited to bioengineering (Akwei-Sekyere, 2015), neuroscience (Liang
et al., 2005) and genetics (Weng et al., 2006).

The goal of EMD is to split a signal into narrow-band amplitude-frequency modulations called
intrinsic mode functions (IMFs). IMFs are obtained via an iterative sifting algorithm. To generate IMFs,
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the local maxima and minima of the one-dimensional data f (x) are first detected and then connected by
cubic splines to give rise to the upper and lower envelopes respectively. Subsequently, the mean of the
envelopes is subtracted from the original data to give rise to the first IMF, and the first IMF is subtracted
from the original data to give rise to the residue. This procedure is iterated k times with the residue
obtained at the end of each iteration serving as the input for the next. At the end of the process, k IMFs
and one residue will be obtained. The original data can be reconstructed by a summation of the IMFs
ξi(x) and residue σ(x):

f (x) =
k

∑
i=1

ξi(x)+σ(x). (1)

Ensemble Empirical Mode Decomposition
The ensemble empirical mode decomposition (EEMD) method is a noise-assisted approach aimed at
improving the robustness of EMD (Wu and Huang, 2009; Wang et al., 2014). With this approach, Gaussian
noise of zero mean with a specified standard deviation is added to the input and EMD is applied over a
designated number of ensembles. The mean of the ensembles give rise to the true IMFs.

Decomposition of Ca2+ Images
In this section, the decomposition of calcium images into various spatial and spatio-temporal resolu-
tions via multidimensional ensemble empirical mode decomposition (MEEMD) will be discussed. The
MEEMD method is an extension of EEMD that decomposes multidimensional data by building up from
a unidimensional perspective (Wu et al., 2009). With MEEMD, all dimensions are considered to be in
orthogonal directions to each other.

For simplicity, let us assume the IMFs and residue belong to a set C and define each element of C as a
component of f (·):

C = {ξ1(·),ξ2(·), ...,σ(·)}. (2)

Spatial Decomposition of Ca2+ Images
Suppose we want to observe the distribution of calcium fluorescence at different spatial resolutions (for
example, from sub-cellular to nuclei) without regard to temporal changes. The MEEMD method can
be employed to split the calcium image into different components, where each component provides
information about calcium fluorescence within spatial neighborhoods.

Assume f (x,y) is a calcium image. The aim is to decompose f (x,y) into k components such that
each component provides information about calcium fluorescence in localized regions and to be able to
reconstruct the original image by a summation of the components:

f (x,y) =
k

∑
i=1

ci(x,y) , ∀ci ∈C. (3)

To accomplish this, we first decompose each row x of f (x,y) with the EEMD approach into p
components (where p = k). Ultimately, we result in p images where each image Ωp(x,y) represents the
pth component of the row decomposition. After this, each column y of Ωp(x,y) is decomposed by EEMD
into q components (with p = q, ∀p,q ∈ Z+). Similarly, we result in p× q images where each image
Ωp,q(x,y) represents the (pth,qth) component (with pth row component and qth column component). By
extension, the original image can be reconstructed by a summation of each image Ωp,q(x,y):

f (x,y) =
p

∑
i=1

q

∑
j=1

Ωi, j(x,y). (4)

Following from Wu et al. (2009), since a summation of components with comparable minimal scales
of EEMD in orthogonal directions provides the most meaningful results, each component ci(x,y) can be
obtained from Ωp,q(x,y) the following manner:

ci(x,y) =
p

∑
α=i

Ωα,i(x,y)+
q

∑
β=i

Ωi,β (x,y)−Ωi,i(x,y). (5)
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Spatio-temporal Decomposition of Ca2+ Images
Assume we want to obtain components of a stack of calcium images with each component being a stack of
images with information about the spatio-temporal distribution of calcium fluorescence. Specifically, we
want to split the stack of images into components that represent fast local changes and slow widespread
changes in calcium fluorescence.

Let f (x,y, t) be a stack of calcium images with rows x, columns y and pages t (time-stamps). Similar
to that of the spatial decomposition, it is our goal to split f (x,y, t) into k components with different
spatio-temporal properties such that a summation of the components results in the original image:

f (x,y, t) =
k

∑
i=1

ci(x,y, t) , ∀ci ∈C. (6)

Each row x of the stack of images f (x,y, t) is decomposed into p components (where p = k) to
obtain p stacks of images via EEMD (with each stack Ωp(x,y, t) representing the pth row decomposition).
Thereafter, each column y of Ωp(x,y, t) is decomposed by EEMD into q components to give rise to
p×q stacks of images (with p = q, ∀p,q ∈ Z+). Each stack Ωp,q(x,y, t) is representative of the pth row
decomposition and the qth column decomposition. Each page t of Ωp,q(x,y, t) is then decomposed via
EEMD into r components to generate p×q× r stacks of images (with p = q = r, ∀p,q,r ∈ Z+). Each
stack Ωp,q,r(x,y, t) represents the pth row decomposition, the qth column decomposition and the rth page
decomposition. Essentially, the original stack of images f (x,y, t) can be reconstructed as follows:

f (x,y, t) =
p

∑
i=1

q

∑
j=1

r

∑
k=1

Ωi, j,k(x,y, t). (7)

Since x is orthogonal to y and we are considering t to be orthogonal to x and y, each component
ci(x,y, t) can be generated as follows:

ci(x,y, t) =
p

∑
α=i

q

∑
β=i

Ωα,β ,i(x,y, t)+
p

∑
α=i

r

∑
γ=i

Ωα,i,γ(x,y, t)+
q

∑
β=i

r

∑
γ=i

Ωi,β ,γ(x,y, t)

−
p

∑
ε=i

Ωε,i,i(x,y, t)−
q

∑
τ=i

Ωi,τ,i(x,y, t)−
r

∑
ψ=i

Ωi,i,ψ(x,y, t)

+ Ωi,i,i(x,y, t).

(8)

RESULTS AND DISCUSSION
Spatial decomposition
To illustrate the process by which MEEMD is applied on calcium images, Figure 1 was generated on a
single frame using the spatial decomposition approach mentioned. From Figure 2, it can be noted that the
spatial decomposition of calcium imaging data results in components of higher variance (IMFs) that are
relatively challenging to interpret. Due to the extraction of changes in florescence in small spatial regions,
IMFs extracted are relatively noisy. On the other hand, the least varying component (residue) is easier to
interpret physiologically. In essence, the spatial decomposition approach acts as a filter that manifests
the most relevant information through the residue. The total number of IMFs extracted from the image
dictates the resolution of neural activity exhibited by the residue. Nevertheless, unlike EEMD, the total
number of IMFs to be extracted also influences the structure of each IMF. In other words, the second IMF
for MEEMD with a total of three IMFs is not equal to the second IMF for MEEMD with a total of four
IMFs.

Spatio-temporal decomposition
As shown in the supplementary figure, the decomposition of calcium imaging data into spatio-temporal
components provides information about dynamics in calcium florescence at multiple resolutions. In
contrast to spatial decomposition via MEEMD, each IMF obtained via the spatio-temporal decomposition
variant is not difficult to interpret. Although the first IMF may be adulterated due to the addition of
Gaussian noise for robustness, subsequent IMFs and the residue portray changes in neural activity
within spatio-temporal bounds defined by the structure of the data. However, just like that of the spatial
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decomposition method, the spatio-temporal decomposition results in components that depend on the
total number of components to be extracted. Thus, the total number of components to be extracted is a
parameter that arbitrarily defines resolution of the decomposed data. Supplementary videos have also
been provided for easier visualization of neural activity realized at multiple resolutions.

CONCLUSION
After exploring multidimensional ensemble empirical mode decomposition of calcium imaging data,
preliminary results have shown that the algorithm has the potential to extract information about neural
activity with various spatial and spatio-temporal resolutions. This procedure can be applied in hypothesis
development and selecting regions of the brain that contain neural networks which may be playing various
roles in an observed phenomenon.
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Figure 1. MEEMD in 2D
(A) The original image, (B) Image decomposition, (C) Extraction of components, (D) Image
reconstruction

6/4

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1441v1 | CC-BY 4.0 Open Access | rec: 21 Oct 2015, publ: 21 Oct 2015



Figure 2. Spatial decomposition
(A) The original image, (B) Extraction of one IMF and the residue via MEEMD, (C) Extraction of two
IMFs and the residue via MEEMD, (D) Extraction of three IMFs and the residue via MEEMD, (E)
Extraction of four IMFs and the residue via MEEMD, (F) Extraction of five IMFs and the residue via
MEEMD

7/4

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1441v1 | CC-BY 4.0 Open Access | rec: 21 Oct 2015, publ: 21 Oct 2015


